1
|
Khilari R, Chauhan S, Tripathi M, Pande R, Alqahtani MS, Syed R, Shahid M, Das D, Sarkar A. Nucleic acid binding affinity and antioxidant activity of N-m-Tolyl-4-Chlorophenoxyacetohydroxamicacid. Sci Rep 2024; 14:22465. [PMID: 39341868 PMCID: PMC11439026 DOI: 10.1038/s41598-024-72477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Hydroxamic acids represent a group of weak organic acids, both naturally occurring and synthetically derived, characterized by the general formula RC(= O)N(R'OH). In this study, we investigated the binding behavior of N-m-tolyl-4-chlorophenoxyaceto hydroxamic acid with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) through a combination of techniques including UV-visible spectroscopy, fluorescence emission analysis, viscometry, and computational simulations using AutoDock4 software. Our findings reveal that the mode of binding between the compound and the nucleic acids is consistent with intercalation. Competitive binding experiments demonstrated that the complex competes effectively with ethidium bromide (EB) for binding to ct-DNA/t-RNA, displacing EB from its binding sites. Additionally, the introduction of the compound into the DNA-EB system resulted in a quenching of fluorescence emission peaks. Analysis of absorption spectra indicated a red shift and hypochromic shift when the compound interacted with DNA, further supporting the intercalative binding mode. The calculated binding constant (Kb) value for the compound is 6.62 × 104 M-1 and 5.40 × 103 M-1 indicating a strong interaction with ct-DNA and t-RNA respectively. We determined the Stern-Volmer constants for ct-DNA and t-RNA as 9.96 × 104 M-1 and 8.13 × 105 M-1, respectively. The binding free energy values for ct-DNA/t-RNA were calculated to be - 3.741 × 107 and - 5.425 × 108 kcal/mol, respectively. Viscometric studies corroborated the UV results, showing a continuous increase in relative viscosity of ct-DNA/t-RNA solutions with the addition of the optimal hydroxamic acid concentration. Furthermore, we assessed the antioxidant activity of the compound using DPPH-radical scavenging and β-carotene linoleic acid assays. Gel electrophoresis results demonstrated the compound's remarkable efficacy in preventing DNA damage. Collectively, all experimental evidence supports the conclusion that N-m-tolyl-4-chlorophenoxyaceto hydroxamic acid binds to ct-DNA/t-RNA through an intercalative mechanism, which is consistent with our molecular docking simulations.
Collapse
Affiliation(s)
- Rubi Khilari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, Raipur, India
| | - Sohilkhan Chauhan
- Department of Chemistry, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University Visnagar Gujarat, Visnagar, 384315, India
| | - Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, Raipur, India.
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, Raipur, India
| | - Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Devashish Das
- Department of Chemical Engineering, Konkuk University, Seoul, South Korea
| | - Avijit Sarkar
- Department of Chemistry, Bhairab Ganguly College, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Kumar D, Gauri, Kaur N. Multispectroscopic and computational techniques to study the interaction of anthraquinone appended sensor with calf thymus DNA. J Biomol Struct Dyn 2024; 42:4370-4378. [PMID: 37227792 DOI: 10.1080/07391102.2023.2216302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
An anthraquinone based derivative (AQ) has been designed and synthesized to find its applications for the interactions with calf thymus DNA (ctDNA) involving various spectroscopic techniques, thermodynamic and computational approaches. The UV-vis studies pointed to interaction of AQ with ctDNA via groove binding mode, which has been further supported well by the ionic strength studies, viscosity measurement, circular dichroism and melting temperature (Tm) curves. These findings have been further validated by dye-displacement assay and molecular docking studies. The analysis of thermodynamic parameters supports that the AQ-ctDNA binding is entropy favoured and enthalpy disfavoured and main acting binding interaction is hydrophobic interaction. The outcomes of the molecular modelling suggested that AQ might have entered the A-T abundant area of the ctDNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Gauri
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Nivetha R, Bhuvaragavan S, Muthu Kumar T, Ramanathan K, Janarthanan S. Inhibition of multiple SARS-CoV-2 proteins by an antiviral biomolecule, seselin from Aegle marmelos deciphered using molecular docking analysis. J Biomol Struct Dyn 2022; 40:11070-11081. [PMID: 34431451 DOI: 10.1080/07391102.2021.1955009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Our earlier experimental and computational report produced evidence on the antiviral nature of the compound seselin purified from the leaf extracts of Aegle marmelos against Bombyx mori Nuclear Polyhedrosis Virus (BmNPV). In the pandemic situation of COVID-19 caused by the SARS-COV-2 virus, an in silico effort to evaluate the potentiality of the seselin was made to test its efficacy against multiple targets of SARS-COV-2 such as spike protein S2, COVID-19 main protease and free enzyme of the SARS-CoV-2 (2019-nCoV) main protease. The ligand seselin showed the best interaction with receptors, spike protein S2, COVID-19 main protease and free enzyme of the SARS-CoV-2 (2019-nCoV) main protease with a binding energy of -6.3 kcal/mol, -6.9 kcal/mol and -6.7 kcal/mol, respectively. Docking analysis with three different receptors identified that all the computationally predicted lowest energy complexes were stabilized by intermolecular hydrogen bonds and stacking interactions. The amino acid residues involved in interactions were ASP1184, GLU1182, ARG1185 and SER943 for spike protein, SER1003, ALA958 and THR961 for COVID-19 main protease, and for SARS-CoV-2 (2019-nCoV) main protease, it was THR111, GLN110 and THR292. The MD simulation and MM/PBSA analysis showed that the compound seselin could effectively bind with the target receptors. The outcome of pharmacokinetic analysis suggested that the compound had favourable drugability properties. The results suggested that the seselin had inhibitory potential over multiple SARS-COV-2 targets and hold a high potential to work effectively as a novel drug for COVID-19 if evaluated in experimental setups in the foreseeable future. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Thirunavukkarasu Muthu Kumar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Karuppasamy Ramanathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
4
|
Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Rossi F, Crnjar A, Comitani F, Feliciano R, Jahn L, Malim G, Southgate L, Kay E, Oakey R, Buggs R, Moir A, Kistler L, Rodriguez Mateos A, Molteni C, Schulz R. Extraction and high-throughput sequencing of oak heartwood DNA: Assessing the feasibility of genome-wide DNA methylation profiling. PLoS One 2021; 16:e0254971. [PMID: 34793449 PMCID: PMC8601515 DOI: 10.1371/journal.pone.0254971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability of oak heartwood and hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation. Studies of the methylation state of DNA preserved in oak heartwood thus could identify epigenetic tree ring features informing on past environmental conditions. In this study, we aimed to establish protocols for the extraction of DNA, the high-throughput sequencing of whole-genome DNA libraries (WGS) and the profiling of DNA methylation by whole-genome bisulfite sequencing (WGBS) for oak (Quercus robur) heartwood drill cores taken from the trunks of living standing trees spanning the AD 1776-2014 time period. Heartwood contains little DNA, and large amounts of phenolic compounds known to hinder the preparation of high-throughput sequencing libraries. Whole-genome and DNA methylome library preparation and sequencing consistently failed for oak heartwood samples more than 100 and 50 years of age, respectively. DNA fragmentation increased with sample age and was exacerbated by the additional bisulfite treatment step during methylome library preparation. Relative coverage of the non-repetitive portion of the oak genome was sparse. These results suggest that quantitative methylome studies of oak hardwood will likely be limited to relatively recent samples and will require a high sequencing depth to achieve sufficient genome coverage.
Collapse
Affiliation(s)
- Federico Rossi
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Crnjar
- Department of Physics, King’s College London, London, United Kingdom
| | - Federico Comitani
- Department of Chemistry, University College London, London, United Kingdom
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rodrigo Feliciano
- Department of Nutrition, King’s College London, London, United Kingdom
- Division of Cardiology, Pulmonology and Vascular Medicine, University of Dusseldorf, Dusseldorf, Germany
| | - Leonie Jahn
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - George Malim
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Laura Southgate
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Emily Kay
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Rebecca Oakey
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Richard Buggs
- Department of Natural Capital and Plant Health, Royal Botanical Gardens, Richmond, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Andy Moir
- Tree-Ring Services Limited, Mitcheldean, United Kingdom
| | - Logan Kistler
- Department of Anthropology, National Museum Of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | | | - Carla Molteni
- Department of Physics, King’s College London, London, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Hussain I, Fatima S, Siddiqui S, Ahmed S, Tabish M. Exploring the binding mechanism of β-resorcylic acid with calf thymus DNA: Insights from multi-spectroscopic, thermodynamic and bioinformatics approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119952. [PMID: 34052761 DOI: 10.1016/j.saa.2021.119952] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
β-resorcylic acid (BR) is a phytochemical which is widely used in the food industry as a flavouring agent and preservative. It has also been found to exhibit antibacterial action against several types of food-borne bacteria. DNA is the main molecular target for many small molecules of therapeutic importance. Hence, the interest is rapidly growing among the researchers to elucidate the interaction between small molecules and DNA. Thus, paving the way to design novel DNA-specific drugs. In this study, an attempt was made to examine the mechanism of binding of BR with calf thymus DNA (ctDNA) with the help of various experiments based on spectroscopy and in silico studies. The spectroscopic studies like UV absorption and fluorescence affirmed the complex formation between BR and ctDNA. The observed binding constant was in the order of 103 M-1 which is indicative of the groove binding mechanism. These findings were further verified by dye-displacement assay, potassium iodide quenching, urea denaturation assay, the study of the effect of ssDNA, circular dichroism and DNA thermal denaturing studies. Different temperature-based fluorescence and isothermal titration calorimetry (ITC) experiments were employed to evaluate thermodynamic parameters. The analysis of thermodynamic parameters supports the enthalpically driven, exothermic and spontaneous nature of the reaction between BR and ctDNA. The forces involved in the binding process were mainly found to be hydrogen bonding, van der Waals and hydrophobic interactions. The results obtained from the molecular docking and molecular dynamics (MD) simulation were consistent with the in vitro experiments, which support the groove binding mode of BR with ctDNA.
Collapse
Affiliation(s)
- Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Sharmin Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India.
| |
Collapse
|
7
|
Alves JEF, de Oliveira JF, de Lima Souza TRC, de Moura RO, de Carvalho Júnior LB, Alves de Lima MDC, de Almeida SMV. Novel indole-thiazole and indole-thiazolidinone derivatives as DNA groove binders. Int J Biol Macromol 2021; 170:622-635. [PMID: 33359805 DOI: 10.1016/j.ijbiomac.2020.12.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
In this study, we report the synthesis of eight novel indole-thiazole and indole-thiazolidinone derivatives, as well as their ability to interact with DNA, analysed through the UV-vis absorption, fluorescence, circular dichroism (CD), viscosity techniques and molecular docking. The ctDNA interaction analysis demonstrated different spectroscopic effects and the affinity constants (Kb) calculated by the UV-vis absorption method were between 2.08 × 105 and 6.99 × 106 M-1, whereas in the fluorescence suppression constants (Ksv) ranged between 0.38 and 0.77 × 104 M-1 and 0.60-7.59 × 104 M-1 using Ethidium Bromide (EB) and 4',6-Diamidino-2-phenylindole (DAPI) as fluorescent probes, respectively. Most derivatives did not alter significantly the secondary structure of the ctDNA according to the CD results. None of the compounds was able to change the relative viscosity of the ctDNA. These results prove that compounds interact with ctDNA via groove binding, which was confirmed by A-T rich oligonucleotide sequence assay with compound JF-252, suggesting the importance of both the phenyl ring coupled to C-4 thiazole ring and the bromo-unsubstituted indole nucleus.
Collapse
Affiliation(s)
| | | | | | - Ricardo Olímpio de Moura
- Departamento de Ciências Farmacêuticas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba e Bodocongo, Campina Grande, PB 58429-500, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, 50670-901, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, 50670-901, Brazil; Laboratório de Biologia Molecular, Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil.
| |
Collapse
|
8
|
Somu C, Karuppiah H, Sundaram J. Antiviral activity of seselin from Aegle marmelos against nuclear polyhedrosis virus infection in the larvae of silkworm, Bombyx mori. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112155. [PMID: 31449858 DOI: 10.1016/j.jep.2019.112155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 06/19/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Indian medicine has utilized Aeglemarmelos (L.) Corr. commonly called as bael in several indigenous systems against various diseases. Bioactive components isolated from various plant parts of A. marmelos were used in ethno-medicine. More precisely they are known for its antiviral property against various human and animal viruses. AIM OF THE STUDY The study was conducted to investigate the antiviral activity of A.marmelos against Bombyx mori nucleopolyhedrovirus (BmNPV). MATERIALS AND METHODS Among the various crude extracts tested, hexane extracts of leaves of A. marmelos with promising anti-BmNPV activity was subjected to bioactivity guided fractionation based on column chromatography. Out of 40 fractions obtained from the fractionation, fractions showing similar TLC profiles were pooled into 14 fractions. A fraction with potential activity was used to purify a molecule with anti-BmNPV activity. This molecule was characterized through structural and functional analyses. RESULTS The functionally and structurally characterized molecule in the fraction with prospective anti-BmNPV activity revealed a single crystal compound 'seselin' (8, 8-dimethyl pyrido oxazine-2-one). CONCLUSION It is therefore understood that this seselin compound could be used as a natural medicine for the management of NPV infection in the silkworm larvae under commercial conditions after suitable field evaluations.
Collapse
Affiliation(s)
- Chitra Somu
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Hilda Karuppiah
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
9
|
Ribeiro AG, Almeida SMVD, de Oliveira JF, Souza TRCDL, Santos KLD, Albuquerque APDB, Nogueira MCDBL, Carvalho Junior LBD, Moura ROD, da Silva AC, Pereira VRA, Castro MCABD, Lima MDCAD. Novel 4-quinoline-thiosemicarbazone derivatives: Synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur J Med Chem 2019; 182:111592. [DOI: 10.1016/j.ejmech.2019.111592] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
|
10
|
Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: Increased Bax/Bcl-2 ratio and caspase-dependent apoptosis in colorectal cancer cell line. Bioorg Chem 2019; 93:103329. [PMID: 31590040 DOI: 10.1016/j.bioorg.2019.103329] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023]
Abstract
3-Amino-1-aryl-1H-benzo[f]chromene-2-carbonitrile derivatives were synthesized from three-component reaction of arylaldehyde, malononitrile and 2-naphthol in the presence of 1, 4-bis(4-ferrocenylbutyl)piperazine as a new catalyst. Cytotoxic potencies of the compounds were tested on HT-29 cells. 3-Amino-1-(4-fluorophenyl)-1H-benzo[f]chromene-2-carbonitrile (4c) was more active among these compounds and was selected for further studies. Apoptosis was investigated by acridine orange/ethidium bromide (AO/EtBr) double staining and flow cytometry. The qRT-PCR was used to analyze the expression of pro- and anti-apoptotic genes. The binding attributes of 4c with calf thymus DNA (ctDNA) was examined using multi-spectroscopic measurements. We found that 4c had potent cytotoxic activity against HT-29 cells with an IC50 value of 60 µM through induction of cell cycle arrest in the sub-G1 phase and apoptosis. RT-PCR analysis demonstrated down-regulation of Bcl-2 expression, while the expression of Bax, caspase-3, -8 and -9 genes was up-regulated in HT-29 cells incubated with 4c compared with control cells. These studies revealed that 4c interacts with DNA through groove binding mode with the intrinsic binding constant (Kb) of 3 × 102 M-1. Thus, 4c is a valuable candidate for further evaluation as a new series of potent chemotherapeutic family in colon cancer treatment.
Collapse
|
11
|
Flavonoids of Pulicaria salviifolia. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Mehdipour M, Dehghan G, Yekta R, Hanifeh Ahagh M, Mahdavi M, Ghasemi Z, Fathi Z. DNA-binding affinity, cytotoxicity, apoptosis, cell cycle inhibition and molecular docking studies of a new stilbene derivative. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:101-118. [PMID: 30931800 DOI: 10.1080/15257770.2018.1498517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stilbene derivatives have been found to possess promising anticancer activities against human cancer cell lines in vitro. In the present study, we have investigated cytotoxic, apoptosis induction and DNA binding activity of new stilbene derivative, (E)-1-(4-Chlorophenyl)-4,5-diphenyl-2-[4-(4-methoxystryl)phenyl]-1H-imidazol (STIM) on K562 chronic myeloid leukemia cell line. Via MTT assay STIM demonstrated cytotoxic activity against K562 cell line with IC50 value of 150 µM. Apoptosis, as the mechanism of cell death, was evaluated by morphological study and flow cytometric analysis. In vitro DNA binding property of STIM has been studied by vital spectroscopic techniques, which indicated that STIM interact with ctDNA through groove binding mode and binding constant (Kb) was estimated to be 6.9 × 104 M-1. Docking studies revealed that hydrophobic is the most important interaction in STIM-DNA complex, and that the ligand (STIM) interacts with DNA via groove binding mode and the bindiyspng energy was calculated as -13.37 kcal/mol. Taken together, the present study suggests that STIM exhibits anticancer effect on K562 cell line through the induction of apoptosis as well as cell cycle arrest at Sub-G1 phase and also can bind to double helix DNA in vitro.
Collapse
Affiliation(s)
- Maryam Mehdipour
- a Department of Biology, Faculty of Natural Science s, University of Tabriz , Tabriz , Iran
| | - Gholamreza Dehghan
- a Department of Biology, Faculty of Natural Science s, University of Tabriz , Tabriz , Iran
| | - Reza Yekta
- a Department of Biology, Faculty of Natural Science s, University of Tabriz , Tabriz , Iran
| | - Mina Hanifeh Ahagh
- a Department of Biology, Faculty of Natural Science s, University of Tabriz , Tabriz , Iran
| | - Majid Mahdavi
- a Department of Biology, Faculty of Natural Science s, University of Tabriz , Tabriz , Iran
| | - Zarrin Ghasemi
- b Department of Organic Chemistry and Biochemistry, Faculty of Chemistry , University of Tabriz , Tabriz , Iran
| | - Zahra Fathi
- b Department of Organic Chemistry and Biochemistry, Faculty of Chemistry , University of Tabriz , Tabriz , Iran
| |
Collapse
|
13
|
Marques RA, Gomes AO, de Brito MV, dos Santos AL, da Silva GS, de Lima LB, Nunes FM, de Mattos MC, de Oliveira FC, do Ó Pessoa C, de Moraes MO, de Fátima Â, Franco LL, Silva MDM, Dantas MDDA, Santos JC, Figueiredo IM, da Silva-Júnior EF, de Aquino TM, de Araújo-Júnior JX, de Oliveira MC, Leslie Gunatilaka A. Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:156-166. [DOI: 10.1016/j.jphotobiol.2018.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/23/2022]
|
14
|
Vinokur AI, White PB, Fotsing MT, Arderne C, Ndinteh DT, Vestling MM, Guzei IA. Deciphering composition and connectivity of a natural product with the assistance of MS and 2D NMR. Acta Crystallogr C Struct Chem 2017; 73:994-1002. [PMID: 29111532 PMCID: PMC5674227 DOI: 10.1107/s2053229617014966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/16/2017] [Indexed: 11/11/2022] Open
Abstract
A complementary application of three analytical techniques, viz. multidimensional nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS), and single-crystal X-ray diffractometry was required to identify and refine two natural products isolated from Millettia versicolor and solvent of crystallization. The two compounds, namely 3-(2H-1,3-benzodioxol-5-yl)-6-methoxy-8,8-dimethyl-4H,8H-pyrano[2,3-h]chromen-4-one, or durmillone, (I), and (2E)-1-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-2-hydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one, (II), could not be separated by routine column chromatography and cocrystallized in a 2:1 ratio with 0.13 molecules of ethanol solvent. Compound (II) and ethanol could not be initially identified by single-crystal X-ray analysis due to complex disorder in the aliphatic chain region of (II). Mass spectrometry ensured that (II) represented only one species disordered over several positions in the solid state, rather than several species cohabitating on the same crystallographic site. The atomic identification and connectivity in (II) were established by several 2D (two-dimensional) NMR techniques, which in turn relied on a knowledge of its exact mass. The derived connectivity was then used in the single-crystal analysis to model the disorder of the aliphatic chain in (II) over three positions and allowed identification of a partially occupied ethanol solvent molecule that was disordered over an inversion center. The disordered moieties were refined with restraints and constraints.
Collapse
Affiliation(s)
- Anastasiya I. Vinokur
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ, The Netherlands
| | | | - Charmaine Arderne
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Martha M. Vestling
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706, USA
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
15
|
Parveen M, Azaz S, Zafar A, Ahmad F, Silva MR, Silva PSP. Structure elucidation, DNA binding specificity and antiproliferative proficiency of isolated compounds from Garcinia nervosa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 167:176-188. [PMID: 28082231 DOI: 10.1016/j.jphotobiol.2016.12.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 01/01/2023]
Abstract
Garcinia nervosa is an abundant source of bioactive phytochemicals. The present paper deals with the isolation of a novel isoflavone 5,7-dihydroxy-3-(3'-hydroxy-4',5'-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one (1) along with a known compound DL-Allantoin (2) from the ethanolic extract of the leaves of Garcinia nervosa (Family: Guttiferae). Their structures were elucidated on the basis of chemical and physical evidences viz. elemental analysis, UV, FT-IR, 1H NMR, 13C NMR and mass spectral analysis. Single-crystal X-ray analysis was further used for the authentication of structure of both compounds (1 and 2). Interaction studies of compound (1) and (2) with ctDNA were studied by UV-Visible spectroscopy, fluorescence, KI quenching studies, competitive displacement assay and circular dichroism studies, which showed groove binding interaction (non-intercalation) of both the compounds 1 and 2 with ctDNA. However, compound 1 (K=3.9×104M-1) shows higher binding affinity to the ctDNA than compound 2 (K=1.44×104M-1). The molecular modeling results also illustrated that compound 1 strongly binds to groove of DNA by relative binding energy of docked structure -6.82kcal/mol. In addition the antiproliferative activity also showed high potential of compound 1 against MCF-7 and MDA-MB 231 cell line with IC50 value 8.44±3.5μM and 6.94±2.6μM, respectively.
Collapse
Affiliation(s)
- Mehtab Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shaista Azaz
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Atif Zafar
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Faheem Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Manuela Ramos Silva
- CEMDRX Physics Department, University of Coimbra, 3004-516 Coimbra, Portugal
| | | |
Collapse
|
16
|
Parveen M, Ahmad F, Malla AM, Azaz S, Alam M, Basudan OA, Silva MR, Pereira Silva PS. Acetylcholinesterase and Cytotoxic Activity of Chemical Constituents of Clutia lanceolata Leaves and its Molecular Docking Study. NATURAL PRODUCTS AND BIOPROSPECTING 2016; 6:267-278. [PMID: 27757926 PMCID: PMC5136371 DOI: 10.1007/s13659-016-0110-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/08/2016] [Indexed: 05/20/2023]
Abstract
Phytochemical investigations of the ethanolic extract of leaves of Clutia lanceolata (Family: Euphorbiaceae) resulted in the isolation of four compounds viz. 3,4-dihydroxy-2-methylbenzoic acid (1), 2,2'-dihydroxy-1,1'-binaphthyl (2), 1,3,8-trihydroxy-6-methylanthracene-9,10-dione (3) and 5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (4). Although all the isolated compounds were known but this was the first report from this plant source. Their structures were established on the basis of chemical and physical evidences viz. elemental analysis, FT-IR, 1H-NMR, 13C-NMR and mass spectral analysis. Structure of compound 2 and 4 was further authenticated by single-crystal X-ray analysis and density functional theory calculations. The isolated compounds (1-4) were screened for AChE enzyme inhibition assay in which compound 3 and 4 were found to be more potent AChE inhibitor. Molecular docking study of potent AChE inhibitor was performed to find the probable binding mode of the compounds into the active site of receptor. Moreover, the isolated compounds were also screened for in vivo cytotoxicity by brine shrimp lethality assay.
Collapse
Affiliation(s)
- Mehtab Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Faheem Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Ali Mohammed Malla
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Shaista Azaz
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Mahboob Alam
- Division of Bioscience, Dongguk University, Gyeongju, 780-714, Republic of Korea
| | - Omer A Basudan
- Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 4451, Saudi Arabia
| | - Manuela Ramos Silva
- CFisUC, Department of Physics, University of Coimbra, 3004-516, Coimbra, Portugal
| | | |
Collapse
|