1
|
İbiş Ö, Ük N, Nar I, Ünlü C. Manipulation of defect state emission in Zn chalcogenide quantum dots and their effects on chlorophyll spectral response. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125348. [PMID: 39481170 DOI: 10.1016/j.saa.2024.125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Water soluble Zn based quantum dots (QDs) are of interest due to their biocompatibility and less toxic features. They have been frequently used in studies related to biotechnology, especially in agriculture studies. However, to control the optical properties of Zn based QDs has still been a challenge. In this work, the defect state emission of ZnSe QDs was successfully controlled through two different routes; 1) By creating a sulfur rich outer region around the Se rich core 2) By changing the capping agent. Gradient alloyed ZnSeS QDs with Se rich core and S rich outer region were successfully synthesized with two different capping agents; N-Acetyl-L-Cysteine (NAC) and 3-Mercaptopropionic Acid (3-MPA). The contribution of emission originated from surface-defects almost disappeared in NAC capped ZnSeS QDs, with causing a significant increase in photoluminescence quantum yield. The interaction between Zn based QDs with chlorophyll molecules was also investigated. The absorption capacity of chlorophylls significantly enhanced upon interaction with 3-MPA capped ZnSeS QDs. Also, the spectral response of chlorophylls could be modulated through interaction with 3-MPA capped ZnSeS QDs, which could be manipulated by using ZnSeS QDs with different chemical composition. Our results indicated that ZnSeS QDs have potential to be used in agriculture, which could act as a modulator of light-harvesting capacity of chlorophylls. The ability to modulate chlorophyll spectral responses through QD interaction opens new possibilities for optimizing light utilization in photosynthetic organisms, thereby contributing to enhanced crop yields and more efficient use of light energy in natural and artificial ecosystems.
Collapse
Affiliation(s)
- Özge İbiş
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Nida Ük
- Department of Polymer Science and Technology, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Ilgın Nar
- Istanbul Technical University Nanotechnology Research and Application Center (ITUNano), Istanbul, Türkiye
| | - Caner Ünlü
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye; Department of Polymer Science and Technology, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye.
| |
Collapse
|
2
|
Venturoli G, Mamedov MD, Vitukhnovskaya LA, Semenov AY, Francia F. Trehalose Interferes with the Photosynthetic Electron Transfer Chain of Cereibacter (Rhodobacter) sphaeroides Permeating the Bacterial Chromatophore Membrane. Int J Mol Sci 2024; 25:13420. [PMID: 39769184 PMCID: PMC11678701 DOI: 10.3390/ijms252413420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium Cereibacter sphaeroides. In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) bc1 complexes is observable. The kinetics of the third phase of the electrochromic carotenoid shift, due to electrogenic events linked to the reduction in cyt bH heme via the low-potential branch of the cyt bc1 complex and its oxidation by quinone molecule on the Qi site, is about four times slower in the presence of trehalose. In parallel, the reduction in oxidized cyt (c1 + c2) and high-potential cyt bH are strongly slowed down, suggesting that the disaccharide interferes with the electron transfer reactions of the high-potential branch of the bc1 complex. A slowing effect of trehalose on the kinetics of the electrogenic protonation of the secondary quinone acceptor QB in the reaction center complex, measured by direct electrometrical methods, was also found, but was much less pronounced. The direct detection of carbohydrate content indicates that trehalose, at high concentrations, permeates the membrane of chromatophores. The possible mechanisms underlying the observed effect of trehalose on the electron/proton transfer process are discussed in terms of trehalose's propensity to form strong hydrogen bonds with its surroundings.
Collapse
Affiliation(s)
- Giovanni Venturoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy;
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA), Università di Bologna, Via Irnerio 46, 40126 Bologna, Italy
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Liya A. Vitukhnovskaya
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Alexey Y. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy;
| |
Collapse
|
3
|
Aykut S, Ük N, Coşkun İY, Keskin SŞ, Nar I, Trabzon L, Ünlü C. Modulating spectral response of raw photosynthetic pigments via ternary cadmium chalcogenide quantum dots: simultaneous enhancement at green spectrum and inhibition at UV region. PHOTOSYNTHESIS RESEARCH 2024; 160:1-16. [PMID: 38407778 PMCID: PMC11006769 DOI: 10.1007/s11120-024-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Photosynthesis relies on the absorption of sunlight by photosynthetic pigments (PPs) such as chlorophylls and carotenoids. While these pigments are outstanding at harvesting light, their natural structure restricts their ability to harvest light at specific wavelengths. In this study, Oleic acid-capped CdSeS and CdTeS ternary quantum dots (QDs) were synthesized using a novel two-phase synthesis method. Then, these QDs were used to interact with raw PPs, a mixture of chlorophylls and carotenoids isolated from spinach. Our findings revealed the following: (1) Interacting QDs with raw PPs effectively inhibited the chlorophyll fluorescence of the pigments upon excitation in UV light region (250-400 nm) without causing any damage to their structure. (2) By forming an interaction with QDs, the chlorophyll fluorescence of raw PPs could be induced through excitation with green-light spectrum. (3) The composition of the QDs played a fundamental role in their interaction with PPs. Our study demonstrated that the photophysical properties of isolated PPs could be modified by using cadmium-based QDs by preserving the structure of the pigments themselves.
Collapse
Affiliation(s)
- Sümeyye Aykut
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Nida Ük
- Polymer Science and Technology, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - İbrahim Yağız Coşkun
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Sultan Şahin Keskin
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
- MEMS Research Center, Istanbul Technical University, Istanbul, Turkey
| | - Ilgın Nar
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
- Istanbul Technical University Nanotechnology Research and Application Center (ITUNano), Istanbul, Turkey
| | - Levent Trabzon
- MEMS Research Center, Istanbul Technical University, Istanbul, Turkey
- Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Caner Ünlü
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
- Polymer Science and Technology, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
4
|
Ünlü C, Budak E, Kestir SM. Altering natural photosynthesis through quantum dots: effect of quantum dots on viability, light harvesting capacity and growth of photosynthetic organisms. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:444-451. [PMID: 35184797 DOI: 10.1071/fp21136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Quantum dots are versatile fluorescent semiconductor nanocrystals with unique photophysical properties. They have been used in various research fields of biotechnology effectively for almost three decades including cell imaging, protein tracking, energy transfer, etc. With their great potential as energy donors or acceptors, quantum dots have also been used in many studies about altering growth rate and photosynthetic activity of photosynthetic organisms by manipulating their light harvesting capacity. In this review, effect of quantum dots on growth rate of photosynthetic organisms and light harvesting capacity of photosynthetic organisms were discussed in details together with toxic effects of cadmium-based and carbon-based quantum dots on photosynthetic organisms. In short, as one of the promising materials of nanotechnology, quantum dots have become one of the essential research topics in photosynthesis research area and will help researchers to manipulate natural photosynthesis in future.
Collapse
Affiliation(s)
- Caner Ünlü
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey; and Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey; and Istanbul Technical University Nanotechnology Research and Application Centre (ITUNano), Istanbul, Turkey
| | - Esranur Budak
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey
| | - Sacide Melek Kestir
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
5
|
Yoneda Y, Kito M, Mori D, Goto A, Kondo M, Miyasaka H, Nagasawa Y, Dewa T. Ultrafast Energy Transfer between Self-Assembled Fluorophore and Photosynthetic Light-Harvesting Complex 2 (LH2) in Lipid Bilayer. J Chem Phys 2022; 156:095101. [DOI: 10.1063/5.0077910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | | | - Masaharu Kondo
- Life Science and Applied Chemistry, Nagoya Institute of Technology, Japan
| | - Hiroshi Miyasaka
- Frontier Materials Science, Osaka University Graduate School of Engineering Science School of Engineering Science, Japan
| | - Yutaka Nagasawa
- College of Lifesciences, Ritsumeikan University College of Life Sciences Graduate School of Life Sciences, Japan
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Japan
| |
Collapse
|
6
|
Hancock AM, Meredith SA, Connell SD, Jeuken LJC, Adams PG. Proteoliposomes as energy transferring nanomaterials: enhancing the spectral range of light-harvesting proteins using lipid-linked chromophores. NANOSCALE 2019; 11:16284-16292. [PMID: 31465048 DOI: 10.1039/c9nr04653d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bio-hybrid nanomaterials have great potential for combining the most desirable aspects of biomolecules and the contemporary concepts of nanotechnology to create highly efficient light-harvesting materials. Light-harvesting proteins are optimized to absorb and transfer solar energy with remarkable efficiency but have a spectral range that is limited by their natural pigment complement. Herein, we present the development of model membranes ("proteoliposomes") in which the absorption range of the membrane protein Light-Harvesting Complex II (LHCII) is effectively enhanced by the addition of lipid-tethered Texas Red (TR) chromophores. Energy transfer from TR to LHCII is observed with up to 94% efficiency and increased LHCII fluorescence of up to three-fold when excited in the region of lowest natural absorption. The new self-assembly procedure offers the modularity to control the concentrations incorporated of TR and LHCII, allowing energy transfer and fluorescence to be tuned. Fluorescence Lifetime Imaging Microscopy provides single-proteoliposome-level quantification of energy transfer efficiency and confirms that functionality is retained on surfaces. Designer proteoliposomes could act as a controllable light-harvesting nanomaterial and are a promising step in the development of bio-hybrid light-harvesting systems.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon D Connell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lars J C Jeuken
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
7
|
Knox PP, Lukashev EP, Gorokhov VV, Grishanova NP, Paschenko VZ. Hybrid complexes of photosynthetic reaction centers and quantum dots in various matrices: resistance to UV irradiation and heating. PHOTOSYNTHESIS RESEARCH 2019; 139:295-305. [PMID: 29948749 DOI: 10.1007/s11120-018-0529-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
The effects of ultraviolet (UV) irradiation (up to 0.6 J/cm2) and heating (65 °C, 20 min) on the absorption spectra and electron transfer in dehydrated film samples of photosynthetic reaction centers (RCs) from purple bacterium Rhodobacter (Rb.) sphaeroides, as well as in hybrid structures consisting of RCs and quantum dots (QDs), have been studied. The samples were placed in organic matrices containing the stabilizers of protein structure-polyvinyl alcohol (PVA) and trehalose. UV irradiation led to partially irreversible oxidation of some RCs, as well as to transformation of some fraction of the bacteriochlorophyll (BChl) molecules into bacteriopheophytin (BPheo) molecules. In addition, UV irradiation causes degradation of some BChl molecules that is accompanied by formation of 3-acetyl-chlorophyll a molecules. Finally, UV irradiation destroys the RCs carotenoid molecules. The incorporation of RCs into organic matrices reduced pheophytinization. Trehalose was especially efficient in reducing the damage to the carotenoid and BChl molecules caused by UV irradiation. Hybrid films containing RC + QD were more stable to pheophytinization upon UV irradiation. However, the presence of QDs in films did not affect the processes of carotenoid destruction. The efficiency of the electronic excitation energy transfer from QD to P865 also did not change under UV irradiation. Heating led to dramatic destruction of the RCs structure and bacteriochlorins acquired the properties of unbound molecules. Trehalose provided strong protection against destruction of the RCs and hybrid (RC + QD) complexes.
Collapse
Affiliation(s)
- Peter P Knox
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Evgeny P Lukashev
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir V Gorokhov
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Nadezhda P Grishanova
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir Z Paschenko
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| |
Collapse
|
8
|
Krasilnikov PM, Lukashev EP, Knox PP, Seyfullina NK, Rubin AB. Intramolecular Mobility Affects the Energy Migration from Quantum Dots to Reaction Centers of Photosynthesizing Bacterium Rb. sphaeroides. DOKL BIOCHEM BIOPHYS 2019; 484:21-24. [DOI: 10.1134/s160767291901006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 11/23/2022]
|
9
|
Krasilnikov PM, Lukashev EP, Knox PP, Seyfullina NK, Rubin AB. The Efficiency of Energy Transfer from Quantum Dots to Photosynthetic Reaction Centers of Rhodobacter sphaeroides in the Temperature Range of 100–310 K. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Lukashev EP, Oleinikov IP, Knox PP, Seifullina NK, Gorokhov VV, Rubin AB. The Effects of ultraviolet irradiation on hybrid films of photosynthetic reaction centers and quantum dots in various organic matrices. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917050128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Qu W, Zuo W, Li N, Hou Y, Song Z, Gou G, Yang J. Design of multifunctional liposome-quantum dot hybrid nanocarriers and their biomedical application. J Drug Target 2017; 25:661-672. [DOI: 10.1080/1061186x.2017.1323334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenjing Qu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Na Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Zhihua Song
- Department of Pharmaceutical Science, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Guojing Gou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|