1
|
García MJ, Kamaid A, Malacrida L. Label-free fluorescence microscopy: revisiting the opportunities with autofluorescent molecules and harmonic generations as biosensors and biomarkers for quantitative biology. Biophys Rev 2023; 15:709-719. [PMID: 37681086 PMCID: PMC10480099 DOI: 10.1007/s12551-023-01083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, the utilization of advanced fluorescence microscopy technologies has presented numerous opportunities to study or re-investigate autofluorescent molecules and harmonic generation signals as molecular biomarkers and biosensors for in vivo cell and tissue studies. The label-free approaches benefit from the endogenous fluorescent molecules within the cell and take advantage of their spectroscopy properties to address biological questions. Harmonic generation can be used as a tool to identify the occurrence of fibrillar or lipid deposits in tissues, by using second and third-harmonic generation microscopy. Combining autofluorescence with novel techniques and tools such as fluorescence lifetime imaging microscopy (FLIM) and hyperspectral imaging (HSI) with model-free analysis of phasor plots has revolutionized the understanding of molecular processes such as cellular metabolism. These tools provide quantitative information that is often hidden under classical intensity-based microscopy. In this short review, we aim to illustrate how some of these technologies and techniques may enable investigation without the need to add a foreign fluorescence molecule that can modify or affect the results. We address some of the most important autofluorescence molecules and their spectroscopic properties to illustrate the potential of these combined tools. We discuss using them as biomarkers and biosensors and, under the lens of this new technology, identify some of the challenges and potentials for future advances in the field.
Collapse
Affiliation(s)
- María José García
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| | - Andrés Kamaid
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Ferrigno A, Campagnoli LIM, Barbieri A, Marchesi N, Pascale A, Croce AC, Vairetti M, Di Pasqua LG. MCD Diet Modulates HuR and Oxidative Stress-Related HuR Targets in Rats. Int J Mol Sci 2023; 24:9808. [PMID: 37372956 DOI: 10.3390/ijms24129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The endogenous antioxidant defense plays a big part in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder that can lead to serious complications such as cirrhosis and cancer. HuR, an RNA-binding protein of the ELAV family, controls, among others, the stability of MnSOD and HO-1 mRNA. These two enzymes protect the liver cells from oxidative damage caused by excessive fat accumulation. Our aim was to investigate the expression of HuR and its targets in a methionine-choline deficient (MCD) model of NAFLD. To this aim, we fed male Wistar rats with an MCD diet for 3 and 6 weeks to induce NAFLD; then, we evaluated the expression of HuR, MnSOD, and HO-1. The MCD diet induced fat accumulation, hepatic injury, oxidative stress, and mitochondrial dysfunction. A HuR downregulation was also observed in association with a reduced expression of MnSOD and HO-1. Moreover, the changes in the expression of HuR and its targets were significantly correlated with oxidative stress and mitochondrial injury. Since HuR plays a protective role against oxidative stress, targeting this protein could be a therapeutic strategy to both prevent and counteract NAFLD.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | | | - Annalisa Barbieri
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Anna Cleta Croce
- IGM-CNR, Unit of Histochemistry and Cytometry, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Lifante J, de la Fuente-Fernández M, Román-Carmena M, Fernandez N, Jaque García D, Granado M, Ximendes E. In vivo grading of lipids in fatty liver by near-infrared autofluorescence and reflectance. JOURNAL OF BIOPHOTONICS 2023; 16:e202200208. [PMID: 36377726 DOI: 10.1002/jbio.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of nonalcoholic fatty liver (NAFLD) is rapidly increasing worldwide. When untreated, it may lead to complications such as liver cirrhosis or hepatocarcinoma. The diagnosis of NAFLD is usually obtained by ultrasonography, a technique that can underestimate its prevalence. For this reason, physicians aspire for an accurate, cost-effective, and noninvasive method to determine both the presence and the specific stage of the NAFLD. In this paper, we report an integrated approach for the quantitative estimation of the density of triglycerides in the liver based on the use of autofluorescence and reflectance signals generated by the abdomen of obese C57BL6/J mice. Singular value decomposition is applied to the generated spectra and its corresponding regression model provided a determination coefficient of 0.99 and a root mean square error of 240 mg/dl. This, in turn, enabled the quantitative imaging of triglycerides density in the livers of mice under in vivo conditions.
Collapse
Affiliation(s)
- José Lifante
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| | | | | | - Nuria Fernandez
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Jaque García
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| | - Miriam Granado
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| |
Collapse
|
4
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
5
|
Sternisha SM, Mukherjee P, Alex A, Chaney EJ, Barkalifa R, Wan B, Lee JH, Rico-Jimenez J, Žurauskas M, Spillman DR, Sripada SA, Marjanovic M, Arp Z, Galosy SS, Bhanushali DS, Hood SR, Bose S, Boppart SA. Longitudinal monitoring of cell metabolism in biopharmaceutical production using label-free fluorescence lifetime imaging microscopy. Biotechnol J 2021; 16:e2000629. [PMID: 33951311 DOI: 10.1002/biot.202000629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022]
Abstract
Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time-consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day-to-day changes in the cellular microenvironment need further in-depth characterization. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom-built multimodal microscope with two-photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale-up. To our knowledge, this is the first study to use FLIM as a label-free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,In vitro/In vivo Translation, Research, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ronit Barkalifa
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Boyong Wan
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Jang Hyuk Lee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jose Rico-Jimenez
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mantas Žurauskas
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sobhana A Sripada
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zane Arp
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sybille S Galosy
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | - Steve R Hood
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - Sayantan Bose
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Arista Romeu EJ, Rivera Fernández JD, Roa Tort K, Valor A, Escobedo G, Fabila Bustos DA, Stolik S, de la Rosa JM, Guzmán C. Combined methods of optical spectroscopy and artificial intelligence in the assessment of experimentally induced non-alcoholic fatty liver. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 198:105777. [PMID: 33069975 DOI: 10.1016/j.cmpb.2020.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Due to the existing prevalence of nonalcoholic fatty liver disease (NAFLD) and its relation to the epidemic of obesity in the general population, it is imperative to develop detection and evaluation methods of the early stages of the disease with improved efficacy over the current diagnostic approaches. We aimed to obtain an improved diagnosis, combining methods of optical spectroscopy -diffuse reflectance and fluorescence- with statistical data analysis applied to detect early stages of NAFLD. METHODS Statistical analysis scheme based on quadratic discriminant analysis followed by canonical discriminant analysis were applied to the diffuse reflectance data combined with endogenous fluorescence spectral data excited at one of these wavelengths: 330, 365, 385, 405 or 415 nm. The statistical scheme was also applied to the combinations of fluorescence spectrum (405 nm) with each one of the other fluorescence spectra. Details of the developed software, including the application of machine learning algorithms to the combination of spectral data followed by classification statistical schemes, are discussed. RESULTS Steatosis progression was differentiated with little classification error (≤1.3%) by using diffuse reflectance and endogenous fluorescence at different wavelengths. Similar results were obtained using fluorescence at 405 nm and one of the other fluorescence spectra (classification error ≤1.0%). Adding the corresponding areas under the curves to the above combinations of spectra diminished errors to 0.6% and 0.3% or less, respectively. The best results for the compounded reflectance-plus-fluorescence spectra were obtained with fluorescence spectra excited at 415 nm with a total classification error of 0.2%; for the combination of the 405nm-excited fluorescence spectrum with another fluorescence spectrum, the best results were achieved for 385 nm, for which total relative classification error amounted 0.4%. The consideration of the area under the spectral curves further improved both classifiers, reducing the error to 0.0% in both cases. CONCLUSION Spectrometric techniques combined with statistical processing are a promising tool to improve steatosis classification through a label free approach. However, statistical schemes here applied, might result complex for the everyday medical practice, the designed software including machine learning algorithms is able to render automatic classification of samples according to their steatosis grade with low error.
Collapse
Affiliation(s)
- Eduardo J Arista Romeu
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Josué D Rivera Fernández
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Karen Roa Tort
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Alma Valor
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico.
| | - Galileo Escobedo
- Laboratorio de Proteómica, Dirección de Investigación, Hospital General de Mexico "Dr. Eduardo Liceaga", Dr. Balmis 148, Col. Doctores, Alc. Cuauhtémoc, Ciudad de Mexico 06720, Mexico
| | - Diego A Fabila Bustos
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico; Laboratorio de Espectroscopia, UPIIH, Instituto Politécnico Nacional, Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42162, Hidalgo, Mexico
| | - Suren Stolik
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - José Manuel de la Rosa
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Carolina Guzmán
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México/Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis 148, Col. Doctores, Alc. Cuauhtémoc, Ciudad de México 06720, México.
| |
Collapse
|
7
|
Berardo C, Di Pasqua LG, Cagna M, Richelmi P, Vairetti M, Ferrigno A. Nonalcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: Current Issues and Future Perspectives in Preclinical and Clinical Research. Int J Mol Sci 2020; 21:ijms21249646. [PMID: 33348908 PMCID: PMC7766139 DOI: 10.3390/ijms21249646] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a continuum of liver abnormalities often starting as simple steatosis and to potentially progress into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Because of its increasing prevalence, NAFLD is becoming a major public health concern, in parallel with a worldwide increase in the recurrence rate of diabetes and metabolic syndrome. It has been estimated that NASH cirrhosis may surpass viral hepatitis C and become the leading indication for liver transplantation in the next decades. The broadening of the knowledge about NASH pathogenesis and progression is of pivotal importance for the discovery of new targeted and more effective therapies; aim of this review is to offer a comprehensive and updated overview on NAFLD and NASH pathogenesis, the most recommended treatments, drugs under development and new drug targets. The most relevant in vitro and in vivo models of NAFLD and NASH will be also reviewed, as well as the main molecular pathways involved in NAFLD and NASH development.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea Ferrigno
- Correspondence: (L.G.D.P.); (A.F.); Tel.: +39-0382-986-451 (L.G.D.P.)
| |
Collapse
|
8
|
Valor A, Arista Romeu EJ, Escobedo G, Campos-Espinosa A, Romero-Bello II, Moreno-González J, Fabila Bustos DA, Stolik S, de la Rosa Vázquez JM, Guzmán C. Study of Methionine Choline Deficient Diet-Induced Steatosis in Mice Using Endogenous Fluorescence Spectroscopy. Molecules 2019; 24:molecules24173150. [PMID: 31470620 PMCID: PMC6749569 DOI: 10.3390/molecules24173150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Non-alcoholic fatty liver disease is a highly prevalent condition worldwide that increases the risk to develop liver fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, it is imperative to develop novel diagnostic tools that together with liver biopsy help to differentiate mild and advanced degrees of steatosis. Ex-vivo liver samples were collected from mice fed a methionine-choline deficient diet for two or eight weeks, and from a control group. The degree of hepatic steatosis was histologically evaluated, and fat content was assessed by Oil-Red O staining. On the other hand, fluorescence spectroscopy was used for the assessment of the steatosis progression. Fluorescence spectra were recorded at excitation wavelengths of 330, 365, 385, 405, and 415 nm by establishing surface contact of the fiber optic probe with the liver specimens. A multi-variate statistical approach based on principal component analysis followed by quadratic discriminant analysis was applied to spectral data to obtain classifiers able to distinguish mild and moderate stages of steatosis at the different excitation wavelengths. Receiver Operating Characteristic (ROC) curves were computed to compare classifier’s performances for each one of the five excitation wavelengths and steatosis stages. Optimal sensitivity and specificity were calculated from the corresponding ROC curves using the Youden index. Intensity in the endogenous fluorescence spectra at the given wavelengths progressively increased according to the time of exposure to diet. The area under the curve of the spectra was able to discriminate control liver samples from those with steatosis and differentiate among the time of exposure to the diet for most of the used excitation wavelengths. High specificities and sensitivities were obtained for every case; however, fluorescence spectra obtained by exciting with 405 nm yielded the best results distinguishing between the mentioned classes with a total classification error of 1.5% and optimal sensitivities and specificities better than 98.6% and 99.3%, respectively.
Collapse
Affiliation(s)
- Alma Valor
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Eduardo J Arista Romeu
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Galileo Escobedo
- Laboratorio de Proteómica, Dirección de Investigación, Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico
| | - Adriana Campos-Espinosa
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de Mexico/Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico
| | - Ivette Irais Romero-Bello
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de Mexico/Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico
| | - Javier Moreno-González
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de Mexico/Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico
| | - Diego A Fabila Bustos
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
- Laboratorio de Espectroscopia, UPIIH, Instituto Politécnico Nacional, Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42162, Mexico
| | - Suren Stolik
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | | | - Carolina Guzmán
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de Mexico/Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico.
| |
Collapse
|
9
|
Croce AC, Ferrigno A, Bottiroli G, Vairetti M. Autofluorescence-based optical biopsy: An effective diagnostic tool in hepatology. Liver Int 2018; 38:1160-1174. [PMID: 29624848 DOI: 10.1111/liv.13753] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Autofluorescence emission of liver tissue depends on the presence of endogenous biomolecules able to fluoresce under suitable light excitation. Overall autofluorescence emission contains much information of diagnostic value because it is the sum of individual autofluorescence contributions from fluorophores involved in metabolism, for example, NAD(P)H, flavins, lipofuscins, retinoids, porphyrins, bilirubin and lipids, or in structural architecture, for example, fibrous proteins, in close relationship with normal, altered or diseased conditions of the liver. Since the 1950s, hepatocytes and liver have been historical models to study NAD(P)H and flavins as in situ, real-time autofluorescence biomarkers of energy metabolism and redox state. Later investigations designed to monitor organ responses to ischaemia/reperfusion were able to predict the risk of dysfunction in surgery and transplantation or support the development of procedures to ameliorate the liver outcome. Subsequently, fluorescent fatty acids, lipofuscin-like lipopigments and collagen were characterized as optical biomarkers of liver steatosis, oxidative stress damage, fibrosis and disease progression. Currently, serum AF is being investigated to improve non-invasive optical diagnosis of liver disease. Validation of endogenous fluorophores and in situ discrimination of cancerous from non-cancerous tissue belong to the few studies on liver in human subjects. These reports along with other optical techniques and the huge work performed on animal models suggest many optically based applications in hepatology. Optical diagnosis is currently offering beneficial outcomes in clinical fields ranging from the respiratory and gastrointestinal tracts, to dermatology and ophthalmology. Accordingly, this review aims to promote an effective bench to bedside transfer in hepatology.
Collapse
Affiliation(s)
- Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia, Italy.,Department of Biology & Biotechnology, University of Pavia, Pavia, Italy
| | - Andrea Ferrigno
- Internal Medicine and Therapy Department, University of Pavia, Pavia, Italy
| | - Giovanni Bottiroli
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia, Italy.,Department of Biology & Biotechnology, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Internal Medicine and Therapy Department, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Ranjit S, Dvornikov A, Dobrinskikh E, Wang X, Luo Y, Levi M, Gratton E. Measuring the effect of a Western diet on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:3143-3154. [PMID: 28717559 PMCID: PMC5508820 DOI: 10.1364/boe.8.003143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 05/12/2023]
Abstract
The phasor approach to auto-fluorescence lifetime imaging was used to identify and characterize a long lifetime species (LLS) (~7.8 ns) in livers of mice fed with a Western diet. The size of the areas containing this LLS species depends on the type of diet and the size distribution shows Western diet has much larger LLS sizes. Combination of third harmonic generation images with FLIM identified the LLS species with fat droplets and the droplet size distribution was estimated. Second harmonic generation microscopy combined with phasor FLIM shows that there is an increase in fibrosis with a Western diet. A new decomposition in three components of the phasor plot shows that a Western diet is correlated with a higher fraction of free NADH, signifying more reducing condition and more glycolytic condition. Multiparametric analysis of phasor distribution shows that from the distribution of phasor points, a Western diet fed versus a low fat diet fed samples of mice livers can be separated. The phasor approach for the analysis of FLIM images of autofluorescence in liver specimens can result in discovery of new fluorescent species and then these new fluorescent species can help assess tissue architecture. Finally integrating FLIM and second and third harmonic analysis provides a measure of the advancement of fibrosis as an effect of diet.
Collapse
Affiliation(s)
- Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Alexander Dvornikov
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Evgenia Dobrinskikh
- Departments of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoxin Wang
- Departments of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yuhuan Luo
- Departments of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moshe Levi
- Departments of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
11
|
Croce AC, Ferrigno A, Di Pasqua LG, Berardo C, Mannucci B, Bottiroli G, Vairetti M. Fluorescing fatty acids in rat fatty liver models. JOURNAL OF BIOPHOTONICS 2017; 10:905-910. [PMID: 27981808 DOI: 10.1002/jbio.201600195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
The autofluorescence (AF) of NAD(P)H and flavins has been at the basis of many in-situ studies of liver energy metabolism and functionality. Conversely, few data have been so far reported on fluorescing lipids. In this work we investigated the AF of liver lipid extracts from two fatty liver models, Wistar rats fed with MCD diet for 12 days (Wi-MCD), and obese (fa/fa) Zucker rats. Among the most abundant fatty acids in the lipid extracts, indicated by mass spectrometry, arachidonic acid (AA) exhibited higher quantum yield than the other fluorescing fatty acids (FLFA), and red shifted AF spectrum. This allowed to estimate the AA contribution to the overall emission of lipid extracts by curve fitting analysis. AA prevailed in obese Zucker livers, accounting for the different AF spectral profiles between the two models. AF and mass spectrometry indicated also a different balance between the fluorescing fraction and the overall amount of AA in the two models. The ability of AF to detect directly AA and FLFA was demonstrated, suggesting its supportive role as tool in wide-ranging applications, from the control of animal origin food, to experimental investigations on liver fat accumulation, lipotoxicity and disease progression, with potential translation to the clinics.
Collapse
Affiliation(s)
- Anna C Croce
- Italian National Research Council (CNR), Institute of Molecular Genetics, Via Abbiategrasso 207, Pavia, Italy
- Istituto di Genetica Molecolare - CNR, University of Pavia, Department of Biology & Biotechnology, Via Ferrata 9, 27100, Pavia, Italy
| | - Andrea Ferrigno
- University of Pavia, Internal Medicine and Therapy, Via Ferrata 9, Pavia, Italy
| | - Laura G Di Pasqua
- University of Pavia, Internal Medicine and Therapy, Via Ferrata 9, Pavia, Italy
| | - Clarissa Berardo
- University of Pavia, Internal Medicine and Therapy, Via Ferrata 9, Pavia, Italy
| | - Barbara Mannucci
- Centro Grandi Strumenti, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Giovanni Bottiroli
- Italian National Research Council (CNR), Institute of Molecular Genetics, Via Abbiategrasso 207, Pavia, Italy
- Istituto di Genetica Molecolare - CNR, University of Pavia, Department of Biology & Biotechnology, Via Ferrata 9, 27100, Pavia, Italy
| | - Mariapia Vairetti
- University of Pavia, Internal Medicine and Therapy, Via Ferrata 9, Pavia, Italy
| |
Collapse
|
12
|
Croce AC, Bottiroli G. Lipids: Evergreen autofluorescent biomarkers for the liver functional profiling. Eur J Histochem 2017; 61:2808. [PMID: 28735528 PMCID: PMC5460376 DOI: 10.4081/ejh.2017.2808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Depending on their chemical nature, lipids can be classified in two main categories: hydrophilic, greatly contributing to membrane composition and subcellular organelle compartmentalization, and hydrophobic, mostly triglycerides, greatly enrolled in the storage and production of energy. In both cases, some lipid molecules can be involved as signaling agents in the regulation of metabolism and protective or damaging pathways in responses to harmful stimuli. These events could affect in particular the liver, because of its central role in the maintenance of lipid homeostasis. Lipids have been demonstrated to fluoresce, contributing to the overall emission signal of the liver tissue along with other endogenous fluorophores, relatable to energy metabolism and oxidative events. The mere estimation of the fluorescing lipid fraction in parallel with the other endogenous fluorophores, and with the common biochemical and histochemical biomarkers of tissue injury has been exploited to investigate the liver morpho- functional conditions in experimental hepatology. More interestingly, the fluorescing lipid fraction is greatly relatable to free fatty acids such as arachidonic, linoleic and linolenic acid, which are deserving increasing attention as precursors of products involved in several and complex signaling pathways. On these bases, the ability of autofluorescence to detect directly arachidonic acid and its balance with other unsaturated fatty acids may be exploited in the diagnosis and follow-up of fatty livers, helping to improve the personalization of the metabolic/ lipidomic profiling. This could also contribute to elucidate the role of the injuring factors in the choice of suitable donors, and in the set-up of preservation procedures in liver transplantation.
Collapse
|
13
|
Croce AC, Bottiroli G. Autofluorescence Spectroscopy for Monitoring Metabolism in Animal Cells and Tissues. Methods Mol Biol 2017; 1560:15-43. [PMID: 28155143 DOI: 10.1007/978-1-4939-6788-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excitation of biological substrates with light at a suitable wavelength can give rise to a light emission in the ultraviolet (UV)-visible, near-infrared (IR) spectral range, called autofluorescence (AF). This is a widespread phenomenon, ascribable to the general presence of biomolecules acting as endogenous fluorophores (EFs) in the organisms of the whole life kingdom. In cytochemistry and histochemistry, AF is often an unwanted signal enhancing the background and affecting in particular the detection of low signals or rare positive labeling spots of exogenous markers. Conversely, AF is increasingly considered as a powerful diagnostic tool because of its role as an intrinsic biomarker directly dependent on the nature, amount, and microenvironment of the EFs, in a strict relationship with metabolic processes and structural organization of cells and tissues. As a consequence, AF carries multiple information that can be decrypted by a proper analysis of the overall emission signal, allowing the characterization and monitoring of cell metabolism in situ, in real time and in the absence of perturbation from exogenous markers. In the animal kingdom, AF studies at the cellular level take advantage of the essential presence of NAD(P)H and flavins, primarily acting as coenzymes at multiple steps of common metabolic pathways for energy production, reductive biosynthesis and antioxidant defense. Additional EFs such as vitamin A, porphyrins, lipofuscins, proteins, and neuromediators can be detected in different kinds of cells and bulk tissues, and can be exploited as photophysical biomarkers of specific normal or altered morphofunctional properties, from the retinoid storage in the liver to aging processes, metabolic disorders or cell transformation processes. The AF phenomenon involves all living system, and literature reports numerous investigations and diagnostic applications of AF, taking advantage of continuously developing self-assembled or commercial instrumentation and measuring procedures, making almost impossible to provide their comprehensive description. Therefore a brief summary of the history of AF observations and of the development of measuring systems is provided, along with a description of the most common EFs and their metabolic significance. From our direct experience, examples of AF imaging and microspectrofluorometric procedures performed under a single excitation in the near-UV range for cell and tissue metabolism studies are then reported.
Collapse
Affiliation(s)
- Anna C Croce
- Institute of Molecular Genetics (IGM) - CNR, via Abbiategrasso, 207, 27100, Pavia, Italy.
| | - Giovanni Bottiroli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|