1
|
Liu L, Shen Z, Wang C. Recent advances and new insights on the construction of photocatalytic systems for environmental disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120235. [PMID: 38310793 DOI: 10.1016/j.jenvman.2024.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Photocatalysis, as a sustainable and environmentally friendly green technology, has garnered widespread recognition and application across various fields. Especially its potential in environmental disinfection has been highly valued by researchers. This study commences with foundational research on photocatalytic disinfection technology and provides a comprehensive overview of its current developmental status. It elucidates the complexity of the interface reaction mechanism between photocatalysts and microorganisms, providing valuable insights from the perspectives of materials and microorganisms. This study reviews the latest design and modification strategies (Build heterojunction, defect engineering, and heteroatom doping) for photocatalysts in environmental disinfection. Moreover, this study investigates the research focuses and links in constructing photocatalytic disinfection systems, including photochemical reactors, light sources, and material immobilization technologies. It studies the complex challenges and influencing factors generated by different environmental media during the disinfection process. Simultaneously, a comprehensive review extensively covers the research status of photocatalytic disinfection concerning bacteria, fungi, and viruses. It reveals the observable efficiency differences caused by the microstructure of microorganisms during photocatalytic reactions. Based on these influencing factors, the economy and effectiveness of photocatalytic disinfection systems are analyzed and discussed. Finally, this study summarizes the current application status of photocatalytic disinfection products. The challenges faced by the synthesis and application of future photocatalysts are proposed, and the future development in this field is discussed. The potential for research and innovation has been further emphasized, with the core on improving efficiency, reducing costs, and strengthening the practical application of photocatalysis in environmental disinfection.
Collapse
Affiliation(s)
- Liming Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Zhurui Shen
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
2
|
Fasna PHF, Sasi S, Sharmila TKB, Chandra CSJ, Antony JV, Raman V. Photocatalytic remediation of methylene blue and antibacterial activity study using Schiff base-Cu complexes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54318-54329. [PMID: 35296999 DOI: 10.1007/s11356-022-19694-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This work describes the design of novel Cu(II) complexes and their application in the photocatalytic degradation of methylene blue (MB). The same photocatalyst exhibits antibacterial activity against Escherichia coli (gram-negative) and Bacillus circulans (gram-positive). The characterisation of the photocatalysts has been done by several up-to-date physical methods. The rationale behind the photocatalysts' beneficial intervention is discussed in this study. Statistical analysis of the degradation of MB is done using a one-way ANOVA, and the significance of means is determined by a multiple comparison test using Turkey HSD. Also, the degradation of MB follows pseudo first-order kinetics with high correlation coefficient values (R2 > 0.95), making them useful as simple and low-cost organic dye degradation agents.
Collapse
Affiliation(s)
- P H Fathima Fasna
- Department of Chemistry, Maharaja's College, Park Avenue Road, Ernakulam, Kerala, 682011, India
| | - Sreesha Sasi
- Department of Chemistry, Maharaja's College, Park Avenue Road, Ernakulam, Kerala, 682011, India.
| | - T K Bindu Sharmila
- Department of Chemistry, Maharaja's College, Park Avenue Road, Ernakulam, Kerala, 682011, India
| | - C S Julie Chandra
- Department of Chemistry, Maharaja's College, Park Avenue Road, Ernakulam, Kerala, 682011, India
| | - Jolly V Antony
- Department of Chemistry, Maharaja's College, Park Avenue Road, Ernakulam, Kerala, 682011, India
| | - Vidya Raman
- Department of Chemistry, TMJM Government College, Kerala, Manimalakunnu Koothattukulam, India
| |
Collapse
|
3
|
Pereira D, Carreira TS, Alves N, Sousa Â, Valente JFA. Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. Int J Mol Sci 2022; 23:1165. [PMID: 35163090 PMCID: PMC8835760 DOI: 10.3390/ijms23031165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Tiago Soares Carreira
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Nuno Alves
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Joana F. A. Valente
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| |
Collapse
|
4
|
Manikandan DB, Arumugam M, Veeran S, Sridhar A, Krishnasamy Sekar R, Perumalsamy B, Ramasamy T. Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:33927-33941. [PMID: 33410001 DOI: 10.1007/s11356-020-12108-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology tends to be a swiftly growing field of research that actively influences and inhibits the growth of bacteria/cancer. Noble metal nanoparticles (NPs) such as silver, copper, and gold have been used to damage bacterial and cancer growth over recent years; however, the toxicity of higher NPs concentrations remains a major issue. The copper oxide nanoparticles (CuONPs) were therefore fabricated using a simple green chemistry approach. Biofabricated CuONPs were characterized using UV-visible, FE-SEM with EDS, HR-TEM, FT-IR, XRD, Raman spectroscopy, and XPS analysis. Formations of CuONPs have been observed by UV-visible absorbance peak at 360.74 nm. The surface morphology of the CuONPs showed the spherical structure and size (~ 68 nm). The EDS spectrum of CuONPs has proved to be the key signals of copper (Cu) and oxygen (O) components. FT-IR analysis, to validate the important functional biomolecules (O-H, C=C, C-H, C-O) are responsible for reduction and stabilization of CuONPs. The monoclinic end-centered crystalline structures of CuONPs were confirmed with XRD planes. The electrochemical oxygen states of the CuONPs have been studied using spectroscopy of the Raman and X-ray photoelectron. After successful preparation, CuONPs examined their antibacterial, anticancer, and photocatalytic activities. Green-fabricated CuONPs were promising antibacterial candidate against human pathogenic gram-negative bacteria Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. CuONPs were demonstrated the excellent anticancer activity against A549 human lung adenocarcinoma cell line. Furthermore, CuONPs exhibited photocatalytic degradation of azo dyes such as eosin yellow (EY), rhodamine 123 (Rh 123), and methylene blue (MB). Biofabricated CuONPs may therefore be an important biomedical research for the aid of bacterial/cancer diseases and photocatalytic degradation of azo dyes.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
5
|
Abraham J, Dowling K, Florentine S. Can Copper Products and Surfaces Reduce the Spread of Infectious Microorganisms and Hospital-Acquired Infections? MATERIALS (BASEL, SWITZERLAND) 2021; 14:3444. [PMID: 34206230 PMCID: PMC8269470 DOI: 10.3390/ma14133444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023]
Abstract
Pathogen transfer and infection in the built environment are globally significant events, leading to the spread of disease and an increase in subsequent morbidity and mortality rates. There are numerous strategies followed in healthcare facilities to minimize pathogen transfer, but complete infection control has not, as yet, been achieved. However, based on traditional use in many cultures, the introduction of copper products and surfaces to significantly and positively retard pathogen transmission invites further investigation. For example, many microbes are rendered unviable upon contact exposure to copper or copper alloys, either immediately or within a short time. In addition, many disease-causing bacteria such as E. coli O157:H7, hospital superbugs, and several viruses (including SARS-CoV-2) are also susceptible to exposure to copper surfaces. It is thus suggested that replacing common touch surfaces in healthcare facilities, food industries, and public places (including public transport) with copper or alloys of copper may substantially contribute to limiting transmission. Subsequent hospital admissions and mortality rates will consequently be lowered, with a concomitant saving of lives and considerable levels of resources. This consideration is very significant in times of the COVID-19 pandemic and the upcoming epidemics, as it is becoming clear that all forms of possible infection control measures should be practiced in order to protect community well-being and promote healthy outcomes.
Collapse
Affiliation(s)
- Joji Abraham
- School of Engineering, Information Technology and Physical Sciences, Mt Helen Campus, Ballarat, VIC 3353, Australia;
| | - Kim Dowling
- School of Engineering, Information Technology and Physical Sciences, Mt Helen Campus, Ballarat, VIC 3353, Australia;
- Department of Geology, University of Johannesburg, Johannesburg 2006, South Africa
| | - Singarayer Florentine
- Future Regions Research Centre, School of Science, Psychology and Sport, Federation University Australia, Mt Helen Campus, Ballarat, VIC 3353, Australia;
| |
Collapse
|
6
|
Update on Interfacial Charge Transfer (IFTC) Processes on Films Inactivating Viruses/Bacteria under Visible Light: Mechanistic Considerations and Critical Issues. Catalysts 2021. [DOI: 10.3390/catal11020201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review presents an update describing binary and ternary semiconductors involving interfacial charge transfer (IFCT) in composites made up by TiO2, CuO, Ag2O and Fe2O3 used in microbial disinfection (bacteria and viruses). The disinfection mechanism, kinetics and generation of reactive oxygen species (ROS) in solution under solar/visible light are discussed. The surface properties of the photocatalysts and their active catalytic sites are described in detail. Pathogenic biofilm inactivation by photocatalytic thin films is addressed since biofilms are the most dangerous agents of spreading pathogens into the environment.
Collapse
|
7
|
Tomina V, Furtat IM, Lebed AP, Kotsyuda SS, Kolev H, Kanuchova M, Behunova DM, Vaclavikova M, Melnyk IV. Diverse Pathway to Obtain Antibacterial and Antifungal Agents Based on Silica Particles Functionalized by Amino and Phenyl Groups with Cu(II) Ion Complexes. ACS OMEGA 2020; 5:15290-15300. [PMID: 32637802 PMCID: PMC7331045 DOI: 10.1021/acsomega.0c01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Production of environmentally friendly multitasking materials is among the urgent challenges of chemistry and ecotechnology. The current research paper describes the synthesis of amino-/silica and amino-/phenyl-/silica particles using a one-pot sol-gel technique. CHNS analysis and titration demonstrated a high content of functional groups, while scanning electron microscopy revealed their spherical form and ∼200 nm in size. X-ray photoelectron spectroscopy data testified that hydrophobic groups reduced the number of water molecules and protonated amino groups on the surface, increasing the portion of free amino groups. The complexation with Cu(II) cations was used to analyze the sorption capacity and reactivity of the aminopropyl groups and to enhance the antimicrobial action of the samples. Antibacterial activities of suspensions of aminosilica particles and their derivative forms containing adsorbed copper(II) ions were assayed against Gram-positive (Staphylococcus aureus ATCC 25923) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). Meanwhile, antifungal activity was tested against fungi (Candida albicans UCM Y-690). According to zeta potential measurements, its value could be depended on the suspension concentration, and it was demonstrated that the positively charged suspension had higher antibacterial efficiency. SiO2/-C6H5/-NH2 + Cu(II) sample's water suspension (1%) showed complete growth inhibition of the bacterial culture on the solid medium. The antimicrobial activity could be due to occurrence of multiple and nonspecific interactions between the particle surfaces and the surface layers of bacteria or fungi.
Collapse
Affiliation(s)
- Veronika
V. Tomina
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
| | - Iryna M. Furtat
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Anastasia P. Lebed
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Sofiya S. Kotsyuda
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Hristo Kolev
- Institute
of Catalysis BAS, Acad.
G. Bonchev str. 11, Sofia 1113, Bulgaria
| | - Maria Kanuchova
- Technical
University of Kosice, Letna str. 9, Kosice 04200, Slovak Republi
| | | | | | - Inna V. Melnyk
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
- Institute
of Geotechnics, SAS, 45, Watsonova, Kosice 04001, Slovak Republic
| |
Collapse
|
8
|
Marković D, Vasiljević J, Ašanin J, Ilic‐Tomic T, Tomšič B, Jokić B, Mitrić M, Simončič B, Mišić D, Radetić M. The influence of coating with aminopropyl triethoxysilane and CuO/Cu
2
O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. J Appl Polym Sci 2020. [DOI: 10.1002/app.49194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Darka Marković
- Innovation Center of the Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | - Jelena Vasiljević
- Faculty of Natural Sciences and Engineering LjubljanaUniversity of Ljubljana Ljubljana Slovenia
| | - Jelena Ašanin
- Innovation Center of the Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | - Tatjana Ilic‐Tomic
- Institute of Molecular Genetics and Genetic EngineeringUniversity of Belgrade Belgrade Serbia
| | - Brigita Tomšič
- Faculty of Natural Sciences and Engineering LjubljanaUniversity of Ljubljana Ljubljana Slovenia
| | - Bojan Jokić
- Faculty of Applied ArtsUniversity of Arts in Belgrade Belgrade Serbia
| | - Miodrag Mitrić
- University of Belgrade, “Vinča” Institute of Nuclear Sciences Belgrade Serbia
| | - Barbara Simončič
- Faculty of Natural Sciences and Engineering LjubljanaUniversity of Ljubljana Ljubljana Slovenia
| | - Dušan Mišić
- Faculty of Veterinary MedicineUniversity of Belgrade Belgrade Serbia
| | - Maja Radetić
- Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| |
Collapse
|
9
|
Rtimi S, Kiwi J. Recent advances on sputtered films with Cu in ppm concentrations leading to an acceleration of the bacterial inactivation. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Liu S, Li J, Zhang S, Zhang X, Ma J, Wang N, Wang S, Wang B, Chen S. Template-Assisted Magnetron Sputtering of Cotton Nonwovens for Wound Healing Application. ACS APPLIED BIO MATERIALS 2019; 3:848-858. [DOI: 10.1021/acsabm.9b00942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shangpeng Liu
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Shaohua Zhang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Xiying Zhang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, P. R. China
| | - Jianwei Ma
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Na Wang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shuang Wang
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Bin Wang
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
11
|
Hameed S, Hans S, Singh S, Fatima Z. Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans. Curr Drug Discov Technol 2019; 17:415-429. [PMID: 30827249 DOI: 10.2174/1570163816666190227231437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
Abstract
Fungal infections, particularly of Candida species, which are the commensal organisms of human, are one of the major debilitating diseases in immunocompromised patients. The limited number of antifungal drugs available to treat Candida infections, with the concomitant increasing incidence of multidrug-resistant (MDR) strains, further worsens the therapeutic options. Thus, there is an urgent need for the better understanding of MDR mechanisms, and their reversal, by employing new strategies to increase the efficacy and safety profiles of currently used therapies against the most prevalent human fungal pathogen, Candida albicans. Micronutrient availability during C. albicans infection is regarded as a critical factor that influences the progression and magnitude of the disease. Intracellular pathogens colonize a variety of anatomical locations that are likely to be scarce in micronutrients, as a defense strategy adopted by the host, known as nutritional immunity. Indispensable critical micronutrients are required both by the host and by C. albicans, especially as a cofactor in important metabolic functions. Since these micronutrients are not freely available, C. albicans need to exploit host reservoirs to adapt within the host for survival. The ability of pathogenic organisms, including C. albicans, to sense and adapt to limited micronutrients in the hostile environment is essential for survival and confers the basis of its success as a pathogen. This review describes that micronutrients availability to C. albicans is a key attribute that may be exploited when one considers designing strategies aimed at disrupting MDR in this pathogenic fungi. Here, we discuss recent advances that have been made in our understanding of fungal micronutrient acquisition and explore the probable pathways that may be utilized as targets.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
12
|
Crawford AM, Deb A, Penner-Hahn JE. M-BLANK: a program for the fitting of X-ray fluorescence spectra. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:497-503. [PMID: 30855260 PMCID: PMC6412182 DOI: 10.1107/s1600577519000651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/14/2019] [Indexed: 05/23/2023]
Abstract
The X-ray fluorescence data from X-ray microprobe and nanoprobe measurements must be fitted to obtain reliable elemental maps. The most common approach in many fitting programs is to initially remove a per-pixel baseline. Using X-ray fluorescence data of yeast and glial cells, it is shown that per-pixel baselines can result in significant, systematic errors in quantitation and that significantly improved data can be obtained by calculating an average blank spectrum and subtracting this from each pixel.
Collapse
Affiliation(s)
- Andrew M. Crawford
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
- Department of Geology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - James E. Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
13
|
Photocatalytic Performance of Cu xO/TiO₂ Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation. MATERIALS 2019; 12:ma12030412. [PMID: 30699939 PMCID: PMC6385099 DOI: 10.3390/ma12030412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
Abstract
In the present study, we propose a new photocatalytic interface prepared by high-power impulse magnetron sputtering (HiPIMS), and investigated for the degradation of Reactive Green 12 (RG12) as target contaminant under visible light light-emitting diodes (LEDs) illumination. The CuxO/TiO₂ nanoparticulate photocatalyst was sequentially sputtered on polyester (PES). The photocatalyst formulation was optimized by investigating the effect of different parameters such as the sputtering time of CuxO, the applied current, and the deposition mode (direct current magnetron sputtering, DCMS or HiPIMS). The results showed that the fastest RG12 degradation was obtained on CuxO/TiO₂ sample prepared at 40 A in HiPIMS mode. The better discoloration efficiency of 53.4% within 360 min was found in 4 mg/L of RG12 initial concentration and 0.05% Cuwt/PESwt as determined by X-ray fluorescence. All the prepared samples contained a TiO₂ under-layer with 0.02% Tiwt/PESwt. By transmission electron microscopy (TEM), both layers were seen uniformly distributed on the PES fibers. The effect of the surface area to volume (dye volume) ratio (SA/V) on the photocatalytic efficiency was also investigated for the discoloration of 4 mg/L RG12. The effect of the presence of different chemicals (scavengers, oxidant or mineral pollution or salts) in the photocatalytic medium was studied. The optimization of the amount of added hydrogen peroxide (H₂O₂) and potassium persulfate (K₂S₂O₈) was also investigated in detail. Both, H₂O₂ and K₂S₂O₈ drastically affected the discoloration efficiency up to 7 and 6 times in reaction rate constants, respectively. Nevertheless, the presence of Cu (metallic nanoparticles) and NaCl salt inhibited the reaction rate of RG12 discoloration by about 4 and 2 times, respectively. Moreover, the systematic study of reactive oxygen species' (ROS) contribution was also explored with the help of iso-propanol, methanol, and potassium dichromate as •OH radicals, holes (h⁺), and superoxide ion-scavengers, respectively. Scavenging results showed that O₂- played a primary role in RG12 removal; however, •OH radicals' and photo-generated holes' (h⁺) contributions were minimal. The CuxO/TiO₂ photocatalyst was found to have a good reusability and stability up to 21 cycles. Ions' release was quantified by means of inductively coupled plasma mass spectrometry (ICP-MS) showing low Cu-ions' release.
Collapse
|
14
|
Hajjaji A, Elabidi M, Trabelsi K, Assadi A, Bessais B, Rtimi S. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf B Biointerfaces 2018; 170:92-98. [DOI: 10.1016/j.colsurfb.2018.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
15
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|