1
|
Ono K, Hayashi JI, Suzuki Y, Yamashita M, Nishikawa K, Higuchi N, Goto R, Ohno T, Nishida E, Yamamoto G, Kikuchi T, Hasegawa Y, Mitani A. Photodynamic disruption of a polymicrobial biofilm of two periodontal species using indocyanine green-loaded nanospheres. Photodiagnosis Photodyn Ther 2024; 50:104421. [PMID: 39581435 DOI: 10.1016/j.pdpdt.2024.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Antimicrobial photodynamic therapy (aPDT) is considered a potential treatment for biofilm infections, which have become an increasing health issue because of the rise in antimicrobial resistance. This study aimed to evaluate the bactericidal effect of aPDT using indocyanine green-loaded nanospheres with chitosan coating (ICG-Nano/c) against polymicrobial periodontal biofilms. METHODS Composite biofilms of Porphyromonas gingivalis and Streptococcus gordonii were constructed in 96-well plates, and aPDT with ICG-Nano/c and an 810 nm diode laser was performed either by direct irradiation or transmitting irradiation through a 3-mm-thick gingival model. The efficacy of ICG-Nano/c-based aPDT was compared with antibiotics (minocycline and amoxicillin). Additionally, attenuated aPDT under sublethal conditions was used to investigate gene expression related to the antioxidant response (oxyR and sod of P. gingivalis) and biofilm formation via quorum sensing (luxS of both species) with real-time polymerase chain reaction. RESULTS ICG-Nano/c-based aPDT significantly reduced the bacterial load in the biofilm, achieving at least a 2 log10 reduction in colony-forming units within 5 min for both irradiation methods. After 6 h of treatment, the bactericidal effects of aPDT and antibiotics were similar, but after 32 h, antibiotics were more effective, particularly against P. gingivalis. Attenuated aPDT showed a slight increase in sod expression in P. gingivalis, while luxS expression decreased in both bacteria. CONCLUSION The ICG-Nano/c-based aPDT system exerted a certain degree of bactericidal activity against a composite biofilm of periodontal bacteria. Therefore, it has potential as an alternative option or adjunctive therapy to conventional antibiotics in periodontal treatment.
Collapse
Affiliation(s)
- Kota Ono
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Jun-Ichiro Hayashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Yuiko Suzuki
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Mika Yamashita
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Kiyoshi Nishikawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-Cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Naoya Higuchi
- Department of Endodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Ryoma Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Tasuku Ohno
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Eisaku Nishida
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Genta Yamamoto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-Cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| |
Collapse
|
2
|
Alves F, Nakada PJT, Marques MJDAM, Rea LDC, Cortez AA, Pellegrini VDOA, Polikarpov I, Kurachi C. Complete photodynamic inactivation of Pseudomonas aeruginosa biofilm with use of potassium iodide and its comparison with enzymatic pretreatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112974. [PMID: 38964021 DOI: 10.1016/j.jphotobiol.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Pseudomonas aeruginosa, a gram-negative bacterium, accounts for 7% of all hospital-acquired infections. Despite advances in medicine and antibiotic therapy, P. aeruginosa infection still results in high mortality rates of up to 62% in certain patient groups. This bacteria is also known to form biofilms, that are 10 to 1000 times more resistant to antibiotics compared to their free-floating counterparts. Photodynamic Inactivation (PDI) has been proved to be an effective antimicrobial technique for microbial control. This method involves the incubation of the pathogen with a photosensitizer (PS), then, a light at appropriated wavelength is applied, leading to the production of reactive oxygen species that are toxic to the microbial cells. Studies have focused on strategies to enhance the PDI efficacy, such as a pre-treatment with enzymes to degrade the biofilm matrix and/or an addition of inorganic salts to the PS. The aim of the present study is to evaluate the effectiveness of PDI against P. aeruginosa biofilm in association with the application of the enzymes prior to PDI (enzymatic pre-treatment) or the addition of potassium iodide (KI) to the photosensitizer solution, to increase the inactivation effectiveness of the treatment. First, a range of enzymes and PSs were tested, and the best protocols for combined treatments were selected. The results showed that the use of enzymes as a pre-treatment was effective to reduce the total biomass, however, when associated with PDI, mild bacterial reductions were obtained. Then, the use of KI in association with the PS was evaluated and the results showed that, PDI mediated by methylene blue (MB) in the presence of KI was able to completely eradicate the biofilm. However, when the PDI was performed with curcumin and KI, no additive reduction was observed. In conclusion, out of all strategies evaluated in the present study, the most promising strategy to improve PDI against P. aeruginosa biofilm was the use of KI in association with MB, resulting in eradication with 108 log bacterial inactivation.
Collapse
Affiliation(s)
- Fernanda Alves
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Brazil, Av. Trabalhador São-carlense, 400 - Centro, CEP 13560-970 São Carlos, SP, Brazil
| | - Paulo Júnior Tadayoshi Nakada
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Brazil, Av. Trabalhador São-carlense, 400 - Centro, CEP 13560-970 São Carlos, SP, Brazil
| | - Maria Júlia de Arruda Mazzotti Marques
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Brazil, Av. Trabalhador São-carlense, 400 - Centro, CEP 13560-970 São Carlos, SP, Brazil
| | - Leonardo da Cruz Rea
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Brazil, Av. Trabalhador São-carlense, 400 - Centro, CEP 13560-970 São Carlos, SP, Brazil
| | - Anelyse Abreu Cortez
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Brazil, Av. Trabalhador São-carlense, 400 - Centro, CEP 13560-970 São Carlos, SP, Brazil
| | - Vanessa de Oliveira Arnoldi Pellegrini
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Brazil, Av. Trabalhador São-carlense, 400 - Centro, CEP 13560-970 São Carlos, SP, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Brazil, Av. Trabalhador São-carlense, 400 - Centro, CEP 13560-970 São Carlos, SP, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Brazil, Av. Trabalhador São-carlense, 400 - Centro, CEP 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Nie M, Huang P, Peng P, Shen D, Zhao L, Jiang D, Shen Y, Wei L, Bible PW, Yang J, Wang J, Wu Y. Efficacy of photodynamic therapy as an adjunct to scaling and root planing on clinical parameters and microbial composition in subgingival plaque of periodontitis patients: A split-mouth randomized clinical trial. J Periodontol 2024; 95:535-549. [PMID: 38501762 DOI: 10.1002/jper.23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 03/20/2024]
Abstract
BACKGROUND The aim of this study was to assess the efficacy of photodynamic therapy (PDT) as an adjunct to scaling and root planing (SRP) on clinical parameters and microbial composition in subgingival plaque of periodontitis patients. METHODS Seventeen patients were included in this split-mouth randomized clinical trial. Sites with probing pocket depth (PPD) ≥5 mm in combination with bleeding on probing in different quadrants were randomized into the control group, the group with a single PDT application right after SRP, and the group with three repeated PDT applications 1 week after SRP. The subgingival plaque was collected for 16S rRNA gene sequencing at baseline, Week 2, and Week 8. RESULTS Seventeen patients with 60 sites completed this 8-week follow-up, and 157 subgingival plaques were successfully analyzed by sequencing. Significant improvements were observed in two primary outcomes: PPD at Week 8 and subgingival microbial composition. Compared to the control group, the repeated-PDT group showed a notable improvement in PPD, substantial alterations in the microbial profile, including a reduction in α-diversity and anaerobic bacteria, and an increase in aerobic bacteria at Week 2. Secondary outcomes, such as clinical attachment level and sulcus bleeding index, also showed improvement at Week 8. Furthermore, both the single- and repeated-PDT groups exhibited a decrease in periodontopathogens and an increase in beneficial bacteria compared with baseline. CONCLUSION PDT promotes changes in the microbial composition of periodontitis patients' subgingival plaque in a direction favorable to periodontal health, and repeated PDT is a promising adjunctive therapy for periodontal treatment.
Collapse
Affiliation(s)
- Min Nie
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peien Huang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiyao Peng
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Daonan Shen
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Duan Jiang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lai Wei
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Paul W Bible
- College of Arts and Sciences of Marian University, Indianapolis, Indiana, USA
| | - Jingmei Yang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Harris DM, Sulewski JG. Photoinactivation and Photoablation of Porphyromonas gingivalis. Pathogens 2023; 12:1160. [PMID: 37764967 PMCID: PMC10535405 DOI: 10.3390/pathogens12091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Several types of phototherapy target human pathogens and Porphyromonas gingivitis (Pg) in particular. The various approaches can be organized into five different treatment modes sorted by different power densities, interaction times, effective wavelengths and mechanisms of action. Mode 1: antimicrobial ultraviolet (aUV); mode 2: antimicrobial blue light (aBL); mode 3: antimicrobial selective photothermolysis (aSP); mode 4: antimicrobial vaporization; mode 5: antimicrobial photodynamic therapy (aPDT). This report reviews the literature to identify for each mode (a) the putative molecular mechanism of action; (b) the effective wavelength range and penetration depth; (c) selectivity; (d) in vitro outcomes; and (e) clinical trial/study outcomes as these elements apply to Porphyromonas gingivalis (Pg). The characteristics of each mode influence how each is translated into the clinic.
Collapse
Affiliation(s)
- David M. Harris
- Bio-Medical Consultants, Inc., Canandaigua, NY 14424, USA
- Department of Periodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - John G. Sulewski
- Institute for Advanced Dental Technologies, Huntington Woods, MI 48070, USA
- Millennium Dental Technologies, Inc., Cerritos, CA 90703, USA
| |
Collapse
|
5
|
Garcia de Carvalho G, Maquera-Huacho PM, Silva Pontes C, Annunzio SRD, Fontana Mendonça CR, Nara de Souza Rastelli A, de Oliveira KT, Teughels W, Chorilli M, Leal Zandim-Barcelos D, Palomari Spolidorio DM. Chlorin-e6 conjugated to the antimicrobial peptide LL-37 loaded nanoemulsion enhances photodynamic therapy against multi-species biofilms related to periodontitis. Photodiagnosis Photodyn Ther 2023; 43:103725. [PMID: 37500031 DOI: 10.1016/j.pdpdt.2023.103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
In our previous studies, Chlorin-e6 (Ce6) demonstrated a significant reduction of microorganisms' viability against multi-species biofilm related to periodontitis while irradiated with blue light. However, the conjugation of Ce6 and antimicrobial peptides, and the incorporation of this photosensitizer in a nanocarrier, is still poorly explored. We hypothesized that chlorin-e6 conjugated to the antimicrobial peptide LL-37 loaded nanoemulsion could inhibit a multi-species biofilm related to periodontitis during photodynamic therapy (PDT), the pre-treatment with hydrogen peroxide was also tested. The nanoemulsion (NE) incorporated with Ce6 was characterized regarding the physiochemical parameters. Images were obtained by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Later, the Ce6 and LL-37 incorporated in NE was submitted to UV-Vis analysis and Reactive Oxygen Species (ROS) assay. Finally, the combined formulation (Ce6+LL-37 in nanoemulsion) was tested against multi-species biofilm related to periodontitis. The formed nanoformulation was kinetically stable, optically transparent with a relatively small droplet diameter (134.2 unloaded and 146.9 loaded), and weak light scattering. The NE system did not impact the standard UV-VIS spectra of Ce6, and the ROS production was improved while Ce6 was incorporated in the NE. The combination of Ce6 and LL-37 in NE was effective to reduce the viability of all bacteria tested. The treatment with hydrogen peroxide previous to PDT significantly impacted bacterial viability. The current aPDT regimen was the best already tested against periodontal biofilm by our research team. Our results suggest that this combined protocol must be exploited for clinical applications in localized infections such as periodontal disease. - Nanoemulsion demonstrated to be an excellent nanocarrier for photodynamic application. - Chlorin-e6 incorporated in nanoemulsion showed great physicochemical and biophotonic parameters. - The combination of chlorin-e6 and LL-37 peptide in nanoemulsion is effective to eliminate periodontal pathogenic bacteria. - The treatment with hydrogen peroxide previous to PDT significantly impacted bacterial viability.
Collapse
Affiliation(s)
- Gabriel Garcia de Carvalho
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry at Araraquara, Araraquara, São Paulo, Brazil.
| | - Patricia Milagros Maquera-Huacho
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry at Araraquara, Araraquara, São Paulo, Brazil
| | - Cristiano Silva Pontes
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry at Araraquara, Araraquara, São Paulo, Brazil
| | - Sarah Raquel de Annunzio
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | | | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp School of Dentistry at Araraquara, Araraquara, São Paulo, Brazil
| | | | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - Marlus Chorilli
- Department of Drugs and Medicines, International School of Pharmaceuticals Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniela Leal Zandim-Barcelos
- Department of Oral Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry at Araraquara, Araraquara, São Paulo, Brazil
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry at Araraquara, Araraquara, São Paulo, Brazil
| |
Collapse
|
6
|
Li Y, Sun G, Xie J, Xiao S, Lin C. Antimicrobial photodynamic therapy against oral biofilm: influencing factors, mechanisms, and combined actions with other strategies. Front Microbiol 2023; 14:1192955. [PMID: 37362926 PMCID: PMC10288113 DOI: 10.3389/fmicb.2023.1192955] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Oral biofilms are a prominent cause of a wide variety of oral infectious diseases which are still considered as growing public health problems worldwide. Oral biofilms harbor specific virulence factors that would aggravate the infectious process and present resistance to some traditional therapies. Antimicrobial photodynamic therapy (aPDT) has been proposed as a potential approach to eliminate oral biofilms via in situ-generated reactive oxygen species. Although numerous types of research have investigated the effectiveness of aPDT, few review articles have listed the antimicrobial mechanisms of aPDT on oral biofilms and new methods to improve the efficiency of aPDT. The review aims to summarize the virulence factors of oral biofilms, the progress of aPDT in various oral biofilm elimination, the mechanism mediated by aPDT, and combinatorial approaches of aPDT with other traditional agents.
Collapse
Affiliation(s)
- Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Guanwen Sun
- Department of Stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Jingchan Xie
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Suli Xiao
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
7
|
Minhaco VMTR, Maquera Huacho PM, Mancim Imbriani MJ, Tonon CC, Chorilli M, Rastelli ANDS, Spolidorio DMP. Improving antimicrobial activity against endodontic biofilm after exposure to blue light-activated novel curcumin nanoparticle. Photodiagnosis Photodyn Ther 2023; 42:103322. [PMID: 36773754 DOI: 10.1016/j.pdpdt.2023.103322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/29/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
New therapies involving natural products and nanobiotechnology open additional perspectives to reduce endodontic infections. Curcumin is a natural polyphenol extracted from the dry rhizome of curcuma long Linn with therapeutic properties for application in nanobiotechnology and as a photosensitizer for photodynamic therapy. This study aimed to synthesize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with curcumin (NP+Cur), and evaluate its antimicrobial activity against endodontic biofilms. Additionally, its biocompatibility using oral keratinocytes was assessed. The polymeric NP+Cur was prepared by the nanoprecipitation method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were calculated for the three endodontic bacteria (Enterococcus faecalis, Streptococcus oralis and Actinomyces viscosus). Antibacterial activity of NP+Cur against single- and multispecies biofilm pre-formed on the botton 24-well plate and into dentin tubules of bovine teeth were evaluated by colony forming units and confocal laser scanning microscopy. The pre-irradiation time was 5 min followed by exposure to blue light-emitting diode at 450 nm for the photodynamic treatment. Cell viability using oral keratinocytes was assessed by Alamar Blue assay. MIC and MBC showed antibacterial activity of NP+Cur against endodontic bacteria. A treatment of pre-formed biofilms of endodontic bacteria with NP+Cur also significantly decreased bacterial viability. The concentration of 325 μg/mL of photoactivated NP+Cur was the one that most reduced the viability of the endodontic bacteria evaluated. Regarding biocompatibility, NP+Cur 325 μg/mL and pure nanoparticles showed a cell viability greater than 80%. The novel polymeric nanoparticles loaded with curcumin may be a promising adjunct use to treatment of endodontic infections.
Collapse
Affiliation(s)
- Vivian Maria Tellaroli Rodrigues Minhaco
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil; Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Maria Júlia Mancim Imbriani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil; Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital, and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States
| | - Marlus Chorilli
- Department of Drugs and Medicines, International School of Pharmaceuticals Sciences, São Paulo State University (Unesp), Rodovia Araraquara Jaú, Km 01, Araraquara, SP 14800-903, Brazil
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil.
| |
Collapse
|
8
|
Mohamad F, Alzahrani RR, Alsaadi A, Alrfaei BM, Yassin AEB, Alkhulaifi MM, Halwani M. An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation. Infect Drug Resist 2023; 16:19-49. [PMID: 36636380 PMCID: PMC9830422 DOI: 10.2147/idr.s380883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the efficacy of antibiotics and evade the host's immunity. Producing a biofilm is not limited to a specific group of bacteria; however, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi-targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques.
Collapse
Affiliation(s)
- F Mohamad
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Raghad R Alzahrani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia,Manal M Alkhulaifi, P.O. Box 55670, Riyadh, 11544, Tel +966 (11) 805-1685, Email
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Correspondence: Majed Halwani, P.O. Box 3660, Mail Code 1515 (KAIMRC), Riyadh, 11481, Tel +966 (11) 429-4433, Fax +966 (11) 429-4440, Email ;
| |
Collapse
|
9
|
Garcia de Carvalho G, Pacheco Mateo R, Costa E Silva R, Maquera Huacho PM, de Souza Rastelli AN, de Oliveira KT, Chierici Marcantonio RA, Zandim-Barcelos DL, Palomari Spolidorio DM. Chlorin-based photosensitizer under blue or red-light irradiation against multi-species biofilms related to periodontitis. Photodiagnosis Photodyn Ther 2022; 41:103219. [PMID: 36473689 DOI: 10.1016/j.pdpdt.2022.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In our previous study, Chlorin-e6 (Ce6) demonstrated a significant reduction of microorganisms' viability against single-species biofilm related to periodontitis once irradiated by red light (660 nm). Also, higher bacteria elimination was observed under blue light (450 nm) irradiation. However, the use of blue light irradiation of Ce6 for antimicrobial administration is poorly explored. This study evaluated the effect of chlorin-e6-mediated antimicrobial photodynamic therapy (aPDT) using different wavelengths (450 or 660 nm) against multi-species biofilms related to periodontitis. Streptococcus oralis, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans composed the mature biofilm developed under proper conditions for five days. aPDT was performed using different concentrations of Ce6 (100 and 200 μM), wavelengths (450 or 660 nm), and comparisons were made after qPCR assay and confocal laser scanning microscopy (CLSM) analysis. The greatest bacterial elimination was observed in the groups where Ce6 was used with blue light, for S. orallis (2.05 Log10 GeQ mL-1, p < 0.0001) and P. gingivalis (1.4 Log10 GeQ mL-1, p < 0.0001), aPDT with red light showed significant bacteria reduction only for S. orallis. aPDT with blue light demonstrated statistically higher elimination in comparison with aPDT with red light. The aPDT did not show a statistically significant effect when tested against A. actinomycetemcomitans and F. nucleatum (p=0.776 and 0.988, respectively). The aPDT using blue light showed a promising higher photobiological effect, encouraging researchers to consider it in the irradiation of Ce6 for further investigations.
Collapse
Affiliation(s)
- Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Rafaela Pacheco Mateo
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Rodrigo Costa E Silva
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Kleber Thiago de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | | | - Daniela Leal Zandim-Barcelos
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil.
| |
Collapse
|
10
|
Tonon CC, Panariello B, Chorilli M, Spolidorio DMP, Duarte S. Effect of curcumin-loaded photoactivatable polymeric nanoparticle on peri-implantitis-related biofilm. Photodiagnosis Photodyn Ther 2022; 40:103150. [PMID: 36244678 DOI: 10.1016/j.pdpdt.2022.103150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Curcumin has been used as a photosensitizer (PS) for antimicrobial photodynamic chemotherapy (PACT). However, its low solubility, instability, and poor bioavailability challenge its in vivo application. This study aimed to synthesize curcumin-loaded polymeric nanoparticles (curcumin-NP) and determine their antimicrobial and cytotoxic effects. Nanoparticles (NP) were synthesized using polycaprolactone (PCL) as a polymer by the nanoprecipitation method. Curcumin-NP was characterized by particle size, polydispersity index and zeta potential, scanning electron microscopy, and curcumin encapsulation efficiency (EE). Curcumin-NP was compared to free curcumin solubilized in 10% DMSO as photosensitizers for PACT in single and multispecies Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus oralis biofilms. Chlorhexidine 0.12% (CHX) and ultrapure water were used as positive and negative controls. The cytotoxic effect of curcumin-NP was evaluated on human periodontal ligament fibroblast cells (HPLF). Data were analyzed by ANOVA (α=0.05). Curcumin-NP exhibited homogeneity and stability in solution, small particle size, and 67.5% EE of curcumin. Curcumin-NP presented reduced antibiofilm activity at 500 µg/ml, although in planktonic cultures it showed inhibitory and bactericidal effect. Curcumin-NP and curcumin with and without photoactivation were not cytotoxic to HPLF cells. Curcumin-NP has antimicrobial and antibiofilm properties, with better effects when associated with blue light, being a promising therapy for preventing and treating peri-implant diseases.
Collapse
Affiliation(s)
- Caroline Coradi Tonon
- Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Beatriz Panariello
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Marlus Chorilli
- Department of Drugs and Pharmaceuticals, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Simone Duarte
- American Dental Association Science and Research Institute, 211 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Tonon CC, Ashraf S, de Souza Rastelli AN, Ghosh G, Hasan T, Xu Q, Greer A, Lyons AM. Evaluation of photosensitizer-containing superhydrophobic surfaces for the antibacterial treatment of periodontal biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112458. [PMID: 35691161 PMCID: PMC10373426 DOI: 10.1016/j.jphotobiol.2022.112458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) is a promising approach to control biofilms involved in periodontal diseases. However, certain challenges, such as staining of teeth, preferential interaction of photosensitizer (PS) with Gram-positive versus Gram-negative bacteria, and insufficient oxygen in hypoxic periodontal pockets have presented barriers to its use in the clinic. To overcome these challenges, a novel superhydrophobic (SH) film that generates airborne singlet oxygen has been developed. The SH-aPDT approach isolates the PS onto a topologically rough solid SH film on which channels allow air to diffuse to the PS surface, thus ensuring sufficient oxygen supply. Upon illumination, gas phase singlet oxygen (1O2) is produced and diffuses from the SH surface to the underlying biofilm. The killing efficacy was assessed as a function of transmitted fluence (17.9-89.5 J/cm2) and chorin e6 loading (96-1110 nmol/cm2) by counting of colony forming units, biofilm metabolism by XTT and confocal microscopy. The decrease in viability of both Gram-positive and Gram-negative bacteria in a multi-species biofilm was found to be linearly dependent on the fluence as well as the loading of the PS up to 71.6 J/cm2 when 1110 nmols/cm2 of chlorin e6 was used. A > 4.6 log bacterial reduction was observed under these conditions (p < 0.05). This novel SH-aPDT approach shows promise as an effective method to disinfect multi-species bacterial biofilms associated with periodontal disease and will be evaluated in animal models in future studies.
Collapse
Affiliation(s)
- Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University-UNESP, 1680 Humaitá St., Araraquara, SP 14801-903, Brazil
| | - Goutam Ghosh
- SingletO(2) Therapeutics LLC, TechBox, Suite 3, 75 Clinton St, Staten Island, NY 10304, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States; Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - QianFeng Xu
- SingletO(2) Therapeutics LLC, TechBox, Suite 3, 75 Clinton St, Staten Island, NY 10304, United States
| | - Alexander Greer
- SingletO(2) Therapeutics LLC, TechBox, Suite 3, 75 Clinton St, Staten Island, NY 10304, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY 11210, United States.
| | - Alan M Lyons
- SingletO(2) Therapeutics LLC, TechBox, Suite 3, 75 Clinton St, Staten Island, NY 10304, United States; Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, United States.
| |
Collapse
|
12
|
Effect of the technique of photodynamic therapy against the main microorganisms responsible for periodontitis: A systematic review of in-vitro studies. Arch Oral Biol 2022; 138:105425. [DOI: 10.1016/j.archoralbio.2022.105425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
|
13
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
15
|
Kattan HF. Efficacy of antimicrobial photodynamic therapy (aPDT) in reducing cariogenic bacteria in primary deciduous dentine. Photodiagnosis Photodyn Ther 2021; 36:102600. [PMID: 34699983 DOI: 10.1016/j.pdpdt.2021.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022]
Abstract
AIM The aim is to systematically review the efficacy of aPDT in minimizing cariogenic bacteria in primary dentine when compared to tooth preparation and endodontic debridement. MATERIALS AND METHODS The focused question was: Is aPDT (intervention) effective in minimizing the cariogenic bacteria (outcome) in deciduous dentine (participants) after caries removal when compared to before aPDT or mechanical caries removal alone (controls). The keywords that were used were: 'antimicrobial photodynamic therapy', 'dentine', 'primary teeth' and 'deciduous teeth' in different combinations. Following the exclusion of the irrelevant studies, eight (seven clinical studies and one in vitro study) studies were included in the review. The data from each study was extracted and the quality of each article was assessed. RESULTS In four out of the eight studies, aPDT with methylene blue or toluidine blue had improved the efficacy of microbial reduction in deciduous dentine when compared to conventional root canal treatment or caries removal. In four studies, no significant improvement in microbial reduction was observed following aPDT compared to caries removal or endodontic debridement without aPDT. Four studies received an overall quality grading of 'medium', three studies were assessed as having a 'low' quality and only one study received an overall grading of 'high' quality. CONCLUSION Within the limitations of this review, aPDT may improve the anti-bacterial efficacy of restorative and endodontic procedures in deciduous teeth. However, due to lack of long-term clinical trials and robust study designs, the efficacy of aPDT in minimizing cariogenic bacteria in deciduous dentine is debatable.
Collapse
Affiliation(s)
- Hiba F Kattan
- Preventive Dental Science Department, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Feng Y, Coradi Tonon C, Ashraf S, Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Adv Drug Deliv Rev 2021; 177:113941. [PMID: 34419503 DOI: 10.1016/j.addr.2021.113941] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment, the mainstay for the control of bacterial infections, is greatly hampered by the global prevalence of multidrug-resistant (MDR) bacteria. Photodynamic therapy (PDT) is effective against MDR infections, but PDT-induced bacterial inactivation is often incomplete, causing the relapse of infections. Combination of PDT and antibiotics is a promising strategy to overcome the limitation of both antibiotic treatment and PDT, exerting increased disinfection efficacy on MDR bacterial pathogens versus either of the monotherapies alone. In this review, we present an overview of the therapeutic effects of PDT/antibiotic combinations that have been developed. We further summarize the influencing factors and the governing molecular mechanisms of the therapeutic outcomes of PDT/antibiotic combinations. In the end, we provide concluding remarks on the strengths, limitations, and future research directions of PDT/antibiotic combination therapy to guide its appropriate usage and further development.
Collapse
Affiliation(s)
- Yanfang Feng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Health Sciences and Technology (Harvard-MIT), Cambridge, MA, USA.
| |
Collapse
|
17
|
Theodoro LH, Marcantonio RAC, Wainwright M, Garcia VG. LASER in periodontal treatment: is it an effective treatment or science fiction? Braz Oral Res 2021; 35:e099. [PMID: 34586213 DOI: 10.1590/1807-3107bor-2021.vol35.0099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
There are several studies that evaluate the use of lasers in periodontal treatment in non-surgical or surgical therapy. However, while several studies showed clinically beneficial effects of some lasers in periodontal treatment, there are few clinical reports of additional advantages of lasers as adjunctive treatments in periodontology. The aim of this paper is to demonstrate and critically analyze the level of scientific evidence of effects of low-level lasers and high-power lasers in periodontology. A narrative review of the studies was carried out in each topic and type of laser or periodontal treatment. In nonsurgical periodontal therapy the results showed that there is an additional clinical benefit when using a diode laser (DL) associated with scaling and root planing (SRP) in patients with moderate to severe periodontitis. The Er:YAG laser seems to be the most suitable for nonsurgical periodontal therapy and promotes the same clinical effects as conventional therapy. In periodontal surgery vaporization of the gingival or mucosal tissue can be carried out with DL, CO2, Nd:YAG, Er:YAG and Er,Cr:YSGG lasers. Photobiomodulation (PBM), mediated by low-level lasers associated with non-surgical periodontal therapy, promotes additional benefits in the short term and accelerates the bone and gingival tissue repair process and also reduces postoperative symptoms of periodontal surgery. The effect of antimicrobial Photodynamic Therapy is relevant in the initial reevaluation periods. Studies have shown controversial results of the use of lasers in periodontics, and this fact may be due to the lack of standard parameters of irradiation in each clinical application.
Collapse
Affiliation(s)
- Letícia Helena Theodoro
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Diagnostic and Surgery, Araçatuba, SP, Brazil
| | | | - Mark Wainwright
- Liverpool John Moores University, School of Pharmacy & Biomolecular Sciences, Liverpool, UK
| | - Valdir Gouveia Garcia
- Latin American Institute of Dental Research and Education - Ilapeo, Curitiba, PR, Brazil
| |
Collapse
|
18
|
Howard KC, Gonzalez OA, Garneau-Tsodikova S. Porphyromonas gingivalis: where do we stand in our battle against this oral pathogen? RSC Med Chem 2021; 12:666-704. [PMID: 34124669 PMCID: PMC8152699 DOI: 10.1039/d0md00424c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontal diseases, such as gingivitis and periodontitis, are inflammatory diseases triggered by pathogenic bacteria that lead to damage of the soft tissue and bone supporting the teeth. Amongst the identified oral periodontopathogenic bacteria, Porphyromonas gingivalis is able to enhance oral dysbiosis, which is an imbalance in the beneficial commensal and periodontal pathogenic bacteria that induces chronic inflammation. Given the critical role of oral pathogenic bacteria like P. gingivalis in the pathogenesis of periodontitis, local and/or systemic antibacterial therapy has been suggested to treat this disease, especially in its severe or refractory forms. Nevertheless, the majority of the antibacterial agents currently used for the treatment of periodontal diseases are broad-spectrum, which harms beneficial bacterial species that are critical in health, inhibit the growth of pathogenic bacteria, contribute in protecting the periodontal tissues to damage and aid in its healing. Thus, the development of more effective and specific antibacterial agents is needed to control oral pathogens in a polymicrobial environment. The strategies for the development of novel antibacterial agents include natural product isolation as well as synthetic and semi-synthetic methodologies. This review presents an overview of the periodontal diseases gingivitis and periodontitis along with current antibacterial treatment options (i.e., classes of antibacterial agents and the mechanism(s) of resistance that hinder their usage) used in periodontal diseases that specifically target oral pathogens such as P. gingivalis. In addition, to help medicinal chemists gain a better understanding of potentially promising scaffolds, this review provides an in-depth coverage of the various families of small molecules that have been investigated as potential anti-P. gingivalis agents, including novel families of compounds, repositioned drugs, as well as natural products.
Collapse
Affiliation(s)
- Kaitlind C Howard
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky Lexington KY 40536-0596 USA +1 859 218 1686
| | - Octavio A Gonzalez
- College of Dentistry, Center for Oral Health Research and Division of Periodontics, University of Kentucky Lexington KY 40536-0305 USA
| | - Sylvie Garneau-Tsodikova
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky Lexington KY 40536-0596 USA +1 859 218 1686
| |
Collapse
|
19
|
Rey LPL, Pinto SML, Muelhmann LA, Méndez LM, Sandoval LVH. In vitro antimicrobial effect of chloroaluminum phthalocyanine nanoemulsion on periodontal bacteria. J Indian Soc Periodontol 2021; 25:267-269. [PMID: 34158697 PMCID: PMC8177176 DOI: 10.4103/jisp.jisp_433_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/25/2020] [Accepted: 01/26/2021] [Indexed: 11/05/2022] Open
Abstract
Context: Nowadays, complementary therapies are necessary for a major removal of microbial subgingival biofilm in the conventional treatment of periodontitis. Research has suggested the use of photodynamic therapy (PDT) as a promising therapy to manage oral cavity infections. This project proposes a new combination of photosensitizer chloroaluminum phthalocyanine and nanoemulsion as a strategy for improving bioactivity. The main purpose of this in vitro study was to evaluate the antimicrobial activity of nanoemulsion ClAlPc (ClAlPc-NE) on relevant periodontal bacteria before and after PDT. Materials and Methods: The phototoxic and antibacterial effect of ClAlPc-NE was evaluated against epithelial cells derived from an African green monkey kidney using the colorimetric method with salt tetrazolium 3-(4.5-dimethylthiazolyl-2)-2.5-Diphenyltetrazolium bromide (Merck) and periodontopathogen bacteria (Porphyromonas gingivalis (ATCC 33277), Aggregatibacter actinomycetemcomitans (ATCC 33384), and Prevotella intermedia (ATCC 25611) using the plate microdilution method according to Tavares et al., 2018, respectively. The light source used for the PDT was a LED laser (400–700 nm); the cells were irradiated for 2 min using 4.83 joules/cm2. Results: Antibacterial effect of NE-PcAlCl against P. intermedia with minimum inhibitory concentration (MIC) 0.63 μM after TFD was determined. In the case of P. gingivalis and A. actinomycetemcomitans, no biological activity was found after PDT (MIC > 20 μM) under-evaluated experimental conditions. On the other hand, the ClAlPc-free and ClAlPc-NE cells were phototoxic on epithelial cells. Conclusion: The results helped to identify the potential use of ClAlPc-NE to inhibit the periodontal bacterial and additional studies are being developed.
Collapse
Affiliation(s)
- Laura Patricia Lloreda Rey
- Faculty of Health Sciences, University of Santander, Bucaramanga, Colombia.,Oral Medicine Clinic, Oral Vida S.A.S, Bucaramanga, Colombia
| | | | - Luis Alexandre Muelhmann
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil
| | - Luz Mery Méndez
- Faculty of Health Sciences, University of Santander, Bucaramanga, Colombia
| | - Laura Viviana Herrera Sandoval
- Department of Basic Sciences, Stomatognathic System and Morphophysiology Research Group, Santo Tomás University, Bucaramanga, Colombia
| |
Collapse
|
20
|
Openda YI, Nyokong T. Enhanced photo-ablation effect of positively charged phthalocyanines-detonation nanodiamonds nanoplatforms for the suppression of Staphylococcus aureus and Escherichia coli planktonic cells and biofilms. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Openda YI, Nyokong T. Detonation nanodiamonds-phthalocyanine photosensitizers with enhanced photophysicochemical properties and effective photoantibacterial activity. Photodiagnosis Photodyn Ther 2020; 32:102072. [PMID: 33130028 DOI: 10.1016/j.pdpdt.2020.102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
The nanophotosensitizers based on acetophenoxy tetrasubstituted metallophthalocyanines (MPc) and detonation nanodiamonds (DNDs) were successfully formed and their photophysicochemical properties were determined. The zinc(II)Pc and indium(III)Pc complexes along with their nanoconjugates were found to have high singlet oxygen quantum yields (0.72 - 0.84) associated with the heavy central metal effect. The ability of the functional groups present on the DNDs to bind to the bacteria cell and the improved solubility of the nanoconjugates due to DNDs resulted in effective photodynamic antimicrobial therapy (PACT) activity against S. aureus planktonic cells, with the highest log reduction of 9.72 ± 0.02 for the conjugate of InPc conjugate with DNDs after 30 min irradiation. PACT studies were investigated at a dose of 10 μg/mL for each sample. The results suggest that the readily synthesized nanoconjugates can be used as appropriate PACT agents.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
22
|
Openda YI, Matshitse R, Nyokong T. A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine-detonation nanodiamond-Ag nanoconjugates. Photochem Photobiol Sci 2020; 19:1442-1454. [PMID: 33000851 DOI: 10.1039/d0pp00075b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present work reports on the synthesis and characterization of novel zinc (2) and indium (3) 2-amino-4-bromophenoxy substituted phthalocyanines (Pcs) along with the self-assembled nanoconjugates formed viaπ-π stacking interaction onto detonation nanodiamonds (DNDs) to form 2@DNDs and 3@DNDs. 2@DNDs and 3@DNDs were covalently linked to chitosan-silver mediated nanoparticles (CSAg) to form 2@DNDs-CSAg and 3@DNDs-CSAg nanoconjugates. High singlet oxygen quantum yields in DMSO of 0.69 and 0.72 for Pcs alone and 0.90 and 0.92 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively, were obtained. The photodynamic antimicrobial chemotherapy (PACT) activity of both phthalocyanines and nanoconjugates was tested against planktonic cells and biofilms of S. aureus. 2@DNDs-CSAg and 3@DNDs-CSAg caused effective killing with a log reduction of 9.74. In addition, PACT studies on single-species S. aureus biofilms were carried out with log reduction values of 5.12 and 5.27 at 200 μg mL-1 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa.
| | | | | |
Collapse
|
23
|
Vergara Serpa OV, Cortina Gutiérrez A, Serna Otero DA, Zuluaga Salazar JF, Reyes Jaraba CA. Porphyromonas gingivalis ligada a enfermedad periodontal y su relación con la artritis reumatoide: identificación de nuevos mecanismos biomoleculares. ACTA ODONTOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/aoc.v10n2.85185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objetivo: revisar la literatura científica existente con respecto a la patogenicidad de Porphyromonas gingivalis, ligada a enfermedad periodontal (EP) (disbiosis oral), y su asociación con la activación de mecanismos fisiopatológicos en la artritis reumatoide (AR), a fin de exponer los nuevos mecanismos biomoleculares implicados. Métodos: búsqueda sistemática en la base de datos del Medical Subject Headings (MeSH), PubMed, Science Direct, Nature y Google académico usando las palabras clave: Aggregatibacter actinomycetemcomitans; artritis reumatoide; citrulinación; disbiosis; odontología; periodontitis; Porphyromonas gingivalis y reumatología. De un total de 297 publicaciones, se seleccionaron 52, todas a partir del año 2018; la selección fue hecha a partir de los criterios de inclusión y exclusión establecidos por los autores. Resultados: la infección por Porphyromonas gingivalis, ligada a la EP, está fuertemente implicada en la patogénesis y desarrollo de AR. Su relación se vincula con el proceso de citrulinación y producción de anticuerpos antipéptidos citrulinados. Se han identificado asociaciones entre la virulencia microbiana de dicho agente y la expresión de múltiples genes, relacionados con la activación de la respuesta inmune y el inicio del proceso inflamatorio crónico. Conclusiones: existe una alta asociación entre la patogenia de ambas enfermedades, donde microorganismos ligados a la EP, como Porphyromonas gingivalis, tienen la capacidad de aumentar la citrulinación, galactosilación, fucosilación, así como la excesiva glicosilación de Fragmentos de unión al antígeno (Fab), y por lo tanto, la agresividad de la AR.
Collapse
|
24
|
Garcia de Carvalho G, Sanchez-Puetate JC, Donatoni MC, Maquera Huacho PM, de Souza Rastelli AN, de Oliveira KT, Palomari Spolidorio DM, Leal Zandim-Barcelos D. Photodynamic inactivation using a chlorin-based photosensitizer with blue or red-light irradiation against single-species biofilms related to periodontitis. Photodiagnosis Photodyn Ther 2020; 31:101916. [PMID: 32645434 DOI: 10.1016/j.pdpdt.2020.101916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Chlorin-e6 (Ce6), as a photosensitizer (PS), has demonstrated significant reduction of microorganisms' viability when irradiated by red light. However, the main absorption peak of this PS is located at blue light spectrum, which is less investigated. This study aimed to evaluate the effect of pure-chlorin-e6-mediated photodynamic inactivation (PDI) using different light sources (450 or 660 nm) against biofilms related to periodontitis. Streptococcus oralis, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans single-species biofilms were developed under proper conditions for five days. PDI was performed using different concentrations of Ce6 (100 and 200 mM), wavelengths (450 and 660 nm) and comparisons were made after colony forming unit and confocal laser scanning microscopy (CLSM) analysis. The use of light and PS were also individually tested. The greatest bacterial elimination was observed in the group where PDI was employed with blue light and concentration of 200 mM for all bacterial strains tested (4.01 log10 for A. actinomycetemcomitans, and total elimination for P. gingivalis and S. oralis), except for F. nucleatum, where 3.46 log10 reduction was observed when red light and 200 mM Ce6 were applied (p < 0.05). The antimicrobial effects of PDI mediated by Ce6 for all single pathogenic biofilms were confirmed by live/dead staining under CLSM analysis. For all single-species biofilms, the use of PDI mediated by chlorin-e6 photosensitizer under blue or red-light irradiation (450 and 660 nm) demonstrated a significant reduction in bacterial viability, but blue light showed a promising higher photobiological effect, encouraging its adjuvant use to basic periodontitis treatment.
Collapse
Affiliation(s)
- Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Julio Cesar Sanchez-Puetate
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Maria Carolina Donatoni
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Kleber Thiago de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Daniela Leal Zandim-Barcelos
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| |
Collapse
|
25
|
Teixeira CGDS, Sanitá PV, Ribeiro APD, Dias LM, Jorge JH, Pavarina AC. Antimicrobial photodynamic therapy effectiveness against susceptible and methicillin-resistant Staphylococcus aureus biofilms. Photodiagnosis Photodyn Ther 2020; 30:101760. [PMID: 32283312 DOI: 10.1016/j.pdpdt.2020.101760] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Staphylococcus aureus have a great ability to become rapidly resistant to conventional antimicrobial therapies. This study evaluated the efficacy of antimicrobial photodynamic therapy (aPDT) mediated by Curcumin (Cur) and light-emitting diode (LED) in the inactivation of biofilms of methicillin susceptible and resistant S. aureus (MSSA and MRSA, respectively). METHODS Biofilms were treated with Cur (20, 40 or 80 μM) and illuminated with LED source (455 ± 3 nm; 5.28 J/cm2) (aPDT groups), or treated either with Cur or LED only. Other samples were not exposed to Cur or LED (negative control). The biofilms viability after all experimental conditions were evaluated by counting the number of colonies (CFU/mL) and XTT assay. Additional samples were also evaluated by LIVE/DEAD® staining using confocal laser scanning microscopy (CLSM). Data were analyzed by ANOVAs followed by the Games-Howell post hoc test (α = 0.05). RESULTS For both strains, all aPDT groups significantly reduced both CFU/mL and metabolic activity of biofilms compared to the negative control (p < 0.001). The results were enhanced when 80 μM of Cur was used. CLSM images showed that both bacteria biofilms submitted to aPDT had a large number of red-stained colonies, especially at aPDT80. In general, MRSA biofilms tended to be less susceptible to aPDT than MSSA biofilms. CONCLUSIONS It can be concluded that aPDT mediated by Cur and LED was an efficient method to inactivate 48 -h biofilms of both S. aureus strains.
Collapse
Affiliation(s)
- Camilo Geraldo de Souza Teixeira
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Paula Volpato Sanitá
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Paula Dias Ribeiro
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Center Dr. 1395, Gainesville, 32610, FL, USA
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Janaina Habib Jorge
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| |
Collapse
|
26
|
Liu S, Mai B, Jia M, Lin D, Zhang J, Liu Q, Wang P. Synergistic antimicrobial effects of photodynamic antimicrobial chemotherapy and gentamicin on Staphylococcus aureus and multidrug-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 30:101703. [PMID: 32151763 DOI: 10.1016/j.pdpdt.2020.101703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bacterial resistance to antibiotics is generally increasing, which has become a great challenge for treating infectious diseases caused by microbes. Photodynamic antibacterial chemotherapy (PACT) has been considered as a promising method for inactivating bacteria. The combination of antimicrobial agent with PACT may provide efficient way against drug-resistant microbe. This study aims to investigate the synergistic effects of PACT mediated by toluidine blue (TB), combined with gentamicin (GEN) on common pathogens Staphylococcus aureus (S. aureus) and multidrug-resistant S. aureus (MDR S. aureus). METHODS Alkaline lysis was used to detect the uptake of TB by S. aureus and MDR S. aureus. Plate counting was applied to evaluate the inhibition efficiency of GEN alone, TB-PACT alone, and work together. Flow cytometry and fluorescence microscopy were performed to examine the permeability of bacterial membranes after different treatments. Intracellular and extracellular reactive oxygen species (ROS) were assessed with the assist of H2DCF-DA and SOSG probes. RESULTS TB-PACT combined with GEN led to more pronounced antibacterial effects in S. aureus and MDR S. aureus, as compared with either alone. TB-PACT treatment permeabilized the bacterial membranes, promoted GEN cellular accumulation and augmented the antibacterial efficiency. The intracellular ROS generation by the combination of TB-PACT and GEN was much higher than that of single treatment groups. CONCLUSIONS TB-PACT decreased the GEN cytotoxic threshold and usage, and the synergy of them significantly enhanced the sterilization of S. aureus and MDR S. aureus.
Collapse
Affiliation(s)
- Shupei Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bingjie Mai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Mengqi Jia
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Dewu Lin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingdan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|