1
|
Luan M, Feng Z, Zhu W, Xing Y, Ma X, Zhu J, Wang Y, Jia Y. Mechanism of metal ion-induced cell death in gastrointestinal cancer. Biomed Pharmacother 2024; 174:116574. [PMID: 38593706 DOI: 10.1016/j.biopha.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.
Collapse
Affiliation(s)
- Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
2
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
4
|
Devendrapandi G, I Sahay M, Padmanaban D, Panneerselvam A, Palraj R, Thanikasalam R, kuppan S, Sadaiyandi V, Balu R, Rajendiran N. Biogenic Synthesis of Gold Nanoparticles using Bael Fruit Juice and its efficacy against human A-549 lung cancer cell line. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Anti-bacterial Effect and Characteristics of Gold Nanoparticles (AuNps) Formed with Vitex negundo Plant Extract. Appl Biochem Biotechnol 2023; 195:1630-1643. [PMID: 36355335 DOI: 10.1007/s12010-022-04217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Our current study reports the anti-bacterial activity of the gold nanoparticles (AuNps) synthesized by the green synthesis method using Vitex negundo plant leaves. The aqueous extract of Vitex negundo plant leaves are acting as the capping and stabilizing agent in the synthesis of AuNps. It is already evident from earlier studies that Vitex negundo is an abundant source of polyphenols, flavonoids, terpenoids, and many other biologically active compounds. The present study reveals the potential of biologically active compounds from the plant in the reduction reaction of chloroauric acid (HAuCl4) into gold nanoparticles. The green synthesis method is adapted instead of the chemical method, which is toxic and more expensive. The gold nanoparticles subjected to characterization with the help of UV-visible spectroscopy, FTIR to determine functional groups, light scattering to estimate size and uniformity, scanning emission microscopy with EDX for accurate size and shape of AuNps, and X-ray diffraction to reveal the crystalline structure. The characteristics of AuNps formed are UV reading at 520 nm, FTIR showing the presence of phenols and alkenes, DLS, SEM, and XRD confirming the spherical shape with the size around 70-90 nm. The anti-bacterial activity of the gold nanoparticles is evaluated against four different species of bacteria, each two gram-positive and gram-negative. The gold nanoparticles formed by Vitex negundo show good anti-bacterial activity against Salmonella typhi and M. luteus bacteria with a zone of inhibition of 6 mm and 2 mm respectively. Furthermore, the cytotoxic activities of the gold nanoparticles are yet to be known to their full extent.
Collapse
|
6
|
Asl SS, Tafvizi F, Noorbazargan H. Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: a potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20168-20184. [PMID: 36251187 DOI: 10.1007/s11356-022-23507-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.
Collapse
Affiliation(s)
- Sahar Sadeghi Asl
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Puja AM, Xu X, Wang R, Kim H, Kim YJ. Ginsenoside compound K-loaded gold nanoparticles synthesized from Curtobacterium proimmune K3 exerts anti-gastric cancer effect via promoting PI3K/Akt-mediated apoptosis. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Compound K (CK) is the minor ginsenoside present in fermented Panax ginseng extract. Despite the pharmacological efficacy of CK, its industrial use has been restricted due to its low water solubility and poor permeability. To overcome this defect, our study was to synthesize gold nanoparticles from CK (CK-AuNPs) to investigate their potential as anticancer candidates.
Methods
To biologically synthesize CK-AuNPs, a novel strain, Curtobacterium proimmune K3, was isolated from fermented ginseng beverage, then combined with CK and gold salts to biosynthesize gold nanoparticles (CurtoCK-AuNPs). Their physicochemical characteristics were evaluated using UV–Vis spectrometry, FE-TEM, EDX, elemental mapping, XRD, SAED, DLS and TGA.
Results
CurtoCK-AuNPs exerted significant selective cytotoxic effects on AGS human gastric cancer cells. Fluorescence staining with Hoechst, propidium iodide, and MitoTracker demonstrated that CurtoCK-AuNPs induce apoptosis and mitochondrial damage, respectively. Quantitative real-time PCR and western blotting analyses showed that cytotoxic effect of CurtoCK-AuNPs were involved in apoptosis, based on their activation of Bax/Bcl-2, cytochrome c, caspase 9, and caspase 3, as well as their suppression of PI3K–Akt signaling.
Conclusion
Our findings provide data for understanding the molecular mechanisms of nanoparticles; thus, providing insight into the development of alternative medications based on gold nanoparticles of ginseng-derived CK.
Collapse
|
8
|
Naik J, David M. ROS mediated apoptosis and cell cycle arrest in human lung adenocarcinoma cell lines by silver nanoparticles synthesized using Swietenia macrophylla seed extract. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Daei S, Ziamajidi N, Abbasalipourkabir R, Khanaki K, Bahreini F. Anticancer Effects of Gold Nanoparticles by Inducing Apoptosis in Bladder Cancer 5637 Cells. Biol Trace Elem Res 2022; 200:2673-2683. [PMID: 34455542 DOI: 10.1007/s12011-021-02895-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Nanotechnology is a developing and revolutionary science that has been widely recommended for diagnosis and treatment of cancer. Among the various nanoparticles used in nanotechnology, gold nanoparticles (AuNPs) have attracted much attentions due to their promising anticancer properties. Despite the potential advantages of AuNPs, their apoptotic and anti-angiogenic effects have not yet been reported on human bladder cancer 5637 cells. This motivated us to evaluate (reactive oxygen species) ROS-mediated apoptosis in 5637 cells. For this task, inhibitory effect of AuNPs was investigated after 24-h exposure to different concentrations of AuNPs by MTT assay. Also, apoptosis level was assessed by ROS production, flow cytometry, and Hoechst 33,258 staining. Besides, mRNA expression of B-cell lymphoma protein 2 (Bcl-2), Bcl-2-associated X (Bax), vascular endothelial growth factor A (VEGFA) genes, and caspase-3,7 activity were determined by qRT-PCR and colorimetric assay, respectively. Moreover, migration rate was evaluated by wound healing assay. MTT results demonstrate that AuNPs can reduce 5637-cell viability in a dose-dependent manner, while fluorimetric assay data show significant increased ROS production in 25 and 50 µg/ml-treated cells. It is also observed that AuNPs lead to Bax overexpression and downregulation of Bcl-2 and VEGFA genes. In line with this, flow cytometry results show increased levels of apoptosis in 25 and 50 µg/ml AuNP-treated cells (p < 0.05). Similarly, Hoechst staining indicates a remarkable increase in cells with apoptotic morphology after treating with AuNPs. Overall, our findings show that AuNPs significantly provoke ROS production, induce apoptosis, and suppress cell migration in bladder cancer 5637 cells.
Collapse
Affiliation(s)
- Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Korosh Khanaki
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Bahreini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Begum SJP, Pratibha S, Rawat JM, Venugopal D, Sahu P, Gowda A, Qureshi KA, Jaremko M. Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15040455. [PMID: 35455452 PMCID: PMC9024851 DOI: 10.3390/ph15040455] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles (NPs) are elements derived from a cluster of atoms with one or more dimensions in the nanometer scale in the range of 1–100 nm. The bio nanofabrication of metallic NPs is now an important dynamic area of research, with major significance in applied research. Biogenic synthesis of NPs is more desirable than physical and chemical synthesis due to its eco-friendliness, non-toxicity, lower energy consumption, and multifunctional nature. Plants outperform microorganisms as reducing agents as they contain large secondary biomolecules that accelerate the reduction and stability of the NPs. The produced NPs can then be studied spectroscopically (UV-Visible, XRD, Raman, IR, etc.) and microscopically (SEM, TEM, AFM, etc.). The biological reduction of a metallic ion or its oxide to a nanoparticle is quick, simple, and may be scaled up at room temperature and pressure. The rise in multi-drug resistant (MDR) microbes due to the immoderate use of antibiotics in non-infected patients is a major cause of morbidity and mortality in humans. The contemporary development of a new class of antibiotics with different mechanisms of action to kill microbes is crucial. Metals and their oxides are extremely toxic to microbes at unprecedentedly low concentrations. In addition, prevailing infections in plants and animals are raising significant concerns across the globe. NPs’ wide range of bioactivity makes them ideal antimicrobial agents in agricultural and medical fields. The present review outlines the synthesis of metallic NPs from botanicals, which enables the metals to be in a stabilized form even after ionization. It also presents a valuable database on the biofunctionalization of synthesized NPs for further drug development.
Collapse
Affiliation(s)
- Shabaaz J. P. Begum
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - S. Pratibha
- Department of Physics, BMS Institute of Technology and Management, Bengaluru 560064, India
- Correspondence:
| | - Janhvi M. Rawat
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - Divya Venugopal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - Prashant Sahu
- Babulal Tara Bhai Institute of Pharmaceutical Sciences, Sagar 470228, India;
| | - Abhilash Gowda
- Bangalore Medical College and Research Institute, Bengaluru 560002, India;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah 23955, Saudi Arabia;
| |
Collapse
|
11
|
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. NANOMATERIALS 2022; 12:nano12071102. [PMID: 35407220 PMCID: PMC9000429 DOI: 10.3390/nano12071102] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.
Collapse
|
12
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
13
|
Dash SS, Sen IK, Dash SK. A review on the plant extract mediated green syntheses of gold nanoparticles and its anti-microbial, anti-cancer and catalytic applications. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Wei X, Zhao Z, Zhong R, Tan X. A comprehensive review of herbacetin: From chemistry to pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114356. [PMID: 34166735 DOI: 10.1016/j.jep.2021.114356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbacetin is an active constituent of traditional Chinese medicines such as Ephedra sinica Stapf (MaHuang) and Sedum roseum (L.). Scop. (Hong JingTian). MaHuang was used to treat cough, asthma, fever, and edema for more than 5000 years, while Hong JingTian was used to treat depression, fatigue, cancers, and cardiovascular disease. Recent studies indicate that herbacetin and its glycosides play a critical role in the pharmacological activities of these herbs. However, currently, no comprehensive review on herbacetin has been published yet. AIM OF THE STUDY This review aimed to summarize information on the chemistry, natural sources, and pharmacokinetic features of herbacetin, with an emphasis on its pharmacological activities and possible mechanisms of action. MATERIALS AND METHODS A literature search was performed on the Web of Science, PubMed, and China Knowledge Resource Integrated databases (CNKI) using the search term "herbacetin" ("all fields") from 1935 to 2020. Information was also obtained from classic books of Chinese herbal medicine, Chinese pharmacopeia, and the database "The Plant List" (www.theplantlist.org). Studies have been analyzed and summarized in this review if they dealt with chemistry, taxonomy, pharmacokinetic, and pharmacological activity. RESULTS Herbacetin is distributed in various plants and can be extracted or synthesized. It showed diverse pharmacological activities including antioxidant, antiviral, anti-inflammatory, anticancer, antidiabetic, and anticholinesterase. It is thought to have great potential in cancer treatment, especially colon and skin cancers. However, the bioavailability of herbacetin is low and the toxicity of herbacetin has not been studied. Thus, more studies are required to solve these problems. CONCLUSIONS Herbacetin shows promising pharmacological activities against multiple diseases. Future research should focus on improving bioavailability, further studying its pharmacological mechanism, evaluating its toxicity and optimal dose, and performing the clinical assessment. We hope that the present review will serve as a guideline for future research on herbacetin.
Collapse
Affiliation(s)
- Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China
| | - Zhejun Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongheng Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
16
|
Biogenic nanosized gold particles: Physico-chemical characterization and its anticancer response against breast cancer. ACTA ACUST UNITED AC 2021; 30:e00612. [PMID: 33996520 PMCID: PMC8099502 DOI: 10.1016/j.btre.2021.e00612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022]
Abstract
Biogenic synthesized gold nanoparticles (AuNPs) falls in the range of 4−10 nm of spherical in shape. AuNPs exhibited anticancer potential against the various studied breast cancer cell lines. Flow cytometry analysis revealed that increasing dosage of AuNPs can induce apoptosis in cancer cells but PBMC remains unaffected. Also, Biogenic synthesized gold nanoparticles inhibit colony formation units as the dose increases.
With the advancement of nanotechnology, the nano-sized particles make an imprint on our daily lives.The present investigation revealed that biomolecules present in seed exudates of Vigna radiata are responsible for the synthesis of AuNPs, confirmed by the routine characterization techniques. Anticancer efficacy showed by AuNPs might be due to the release of phytochemicals in the exudate which is being adsorbed on the surface of AuNPs referencing their anticancer efficacy against the tested breast cancer cell lines. Inhibition of clonogenicity and cell cycle arrest at G2/M phase then apoptosis of AuNPs was also observed, but found nontoxic to the human PBMC cells which further confirms its biocompatible property Among the various physicochemical study, present AuNPs shows unique information, they show photoluminescent property which may be used for bioimaging purposes. However, further molecular analysis needs to be explored to understand the underlying mechanism for therapeutic and biomedical application.
Collapse
|
17
|
Vinayagam R, Santhoshkumar M, Lee KE, David E, Kang SG. Bioengineered gold nanoparticles using Cynodon dactylon extract and its cytotoxicity and antibacterial activities. Bioprocess Biosyst Eng 2021; 44:1253-1262. [PMID: 33606108 DOI: 10.1007/s00449-021-02527-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/31/2021] [Indexed: 02/08/2023]
Abstract
In this study, simple and green route approach was applied for the synthesis gold nanoparticles (AuNPs) containing an aqueous extract of Cynodon dactylon L. Pers., (C. dactylon). The synthesized AuNPs were characterized using spectral and microscopic analysis. The changes in the color pattern were observed upon synthesis by UV-vis spectrophotometer with a peak of 530 nm. The FT-IR, XRD, SEM, and TEM were used to analyze the crystal nature and morphology of the green synthesized AuNPs. The C. dactylon-loaded AuNPs in different concentrations (0.625-100 μg/ml) were used to assess cytotoxicity activity against MCF-7 cell line and where the IC50 was found to be 31.34 μg/ml by MTT assay. The C. dactylon-AuNPs were significantly increased reactive oxygen species (ROS) generation, DNA fragmentation, and mitochondrial membrane changes observed by dichlorodihydroflurescenin diacetate (DCFH-DA), 4',6-diamidino-2-phenylindole (DAPI), Rhodamine-123, and acridine orange (AO)/ethidium bromide (EtBr) staining assay. Besides the microbial study revealed that C. dactylon-AuNPs exhibited significant antibacterial activity against clinically isolated pathogenic bacteria such as Enterobacter cloacae, Staphylococus Haemolytics, Staphylococcus petrasii subsp. Pragensis and Bacillus cereus with a zone of inhibition 13, 12, 13 and 12 mm, respectively. It could be concluded that C. dactylon has the ability to be involved in the biosynthesis of AuNPs, and the pharmacological studies proved the promising cytotoxic effect on MCF-7 cell line and pathogenic bacterial species.
Collapse
Affiliation(s)
- Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Murali Santhoshkumar
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamil Nadu, 632 115, India
| | - Kyung Eun Lee
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.,Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamil Nadu, 632 115, India
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
18
|
Qiao J, Qi L. Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta 2021; 223:121396. [PMID: 33298252 DOI: 10.1016/j.talanta.2020.121396] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
The preparation of gold nanoparticles via green routes applying plant extracts as the reducing agents and stabilizers has received broad interest in the last decades. Plant-gold nanoparticles have been well-developed and applied in biochemical and medical research, but there are still challenges that must be overcome. The main challenges include the construction of chemically-robust plant-gold nanoparticles, the precise design of biomimetic surfaces to fabricate nanozymes with high catalytic activities, and the development of approaches to construct biosensors with high selectivities and sensitivities. The cores and surfaces of plant-gold nanoparticles must be considered, as well as their catalytic activities and biosensing mechanisms. This review highlights the latest achievements in plant-gold nanoparticle preparation, heterogeneous nucleation, and surface functionalization, while also focusing on their optical properties and various biological and catalytic activities. Moreover, their antioxidant and cell apoptosis mechanisms, and biological activities are described. Plant-gold nanoparticles have shown great potential in high-performance analytical assays, high-activity catalysts, effective intracellular imaging, and clinical treatment.
Collapse
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Qi
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Zhang Y, Tan J, Zhou L, Shan X, Liu J, Ma Y. Synthesis and Application of AS1411-Functionalized Gold Nanoparticles for Targeted Therapy of Gastric Cancer. ACS OMEGA 2020; 5:31227-31233. [PMID: 33324832 PMCID: PMC7726946 DOI: 10.1021/acsomega.0c04605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/10/2020] [Indexed: 05/09/2023]
Abstract
Gastric cancer therapy is still a big challenge, and nanomedicines bring much more hope. It is essential to develop multifunctional nanoparticles, especially those with high targeted capacity and antitumor effects, to improve gastric cancer therapy. In this study, we constructed AS1411 aptamer-based gold nanoparticles with appropriate size facilitating endocytosis and actively targeted drug delivery for gastric cancer cells via the specific AS1411-nucleolin interaction. The AS1411-based nanoparticles showed obviously increased targeted capacity towards AGS cells compared to random ssDNA-based nanoparticles. Meanwhile, compared to L929 cells, the AS1411-based nanoparticles showed selective drug uptake and delivery for AGS cells. Importantly, the AS1411-based nanoparticles exhibited significantly stronger antitumor effects on AGS cells under laser irradiation compared to chemotherapy alone. Our nanoparticles combined targeted drug delivery and efficient antitumor effects within one single nanoplatform, which are promising to be applied as targeted nanomedicines against gastric cancer.
Collapse
Affiliation(s)
- Yajie Zhang
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
- Department
of Gastroenterology, Shengjing Hospital
of China Medical University, Shenyang 110004, China
| | - Jingwei Tan
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Lu Zhou
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Xiaoqing Shan
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Jianling Liu
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Yong Ma
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
20
|
Antibacterial, anti-efflux, anti-biofilm, anti-slime (exopolysaccharide) production and urease inhibitory efficacies of novel synthesized gold nanoparticles coated Anthemis atropatana extract against multidrug- resistant Klebsiella pneumoniae strains. Arch Microbiol 2020; 202:2105-2115. [PMID: 32500253 DOI: 10.1007/s00203-020-01930-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
In this study, the antibacterial, anti-efflux, anti-biofilm, anti-slime (exopolysaccharide) production and urease inhibitory efficacies of green synthesized gold nanoparticles (AuNPs) coated Anthemis atropatana extract against multidrug- resistant (MDR) Klebsiella pneumoniae strains were evaluated. The green synthesized AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometer (XRD), particle size distribution, zeta potential and Fourier-transform infrared spectroscopy (FTIR). Then, antibacterial, anti-slime (exopolysaccharide) production, anti-biofilm and anti-efflux activities of AuNPs were investigated using micro-dilation, Congored agar, microtiter plate and MIC of ethidium bromide methods, respectively. Subsequently, the expression of mrkA, wzm and acrB genes was evaluated using quantitative Real-Time PCR (qRT-PCR). The synthesized AuNPs exhibited antibacterial activity against MDR strains of K. pneumoniae (minimum inhibitory concentration (MIC) of 6.25-50 µg/ml), as well as showed significant anti-slime (exopolysaccharide) production, anti-biofilm and anti-efflux activities against MDR strains. AuNPs showed significant inhibition against jack-bean urease and down-regulated the expression of mrkA, wzm and acrB genes. Moreover, the in vitro cytotoxic activity confirmed by MTT assay on the HEK-293 normal cell line showed negligible cytotoxicity. Thus, the present study suggests the potential use of AuNPs in the development of novel therapeutics for the prevention of biofilm-associated K. pneumoniae infections.
Collapse
|