1
|
Garg D, Kumar D, Paliwal S, Pinnaka AK, Sachdev A, Matai I. Self-adhesive poly-l-lysine/tannic acid hybrid hydrogel for synergistic antibacterial activity against biofilms. Int J Biol Macromol 2024; 278:134961. [PMID: 39179081 DOI: 10.1016/j.ijbiomac.2024.134961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Biomedical implants are crucial for enhancing various human physiological functions. However, they are susceptible to microbial contamination after implantation, posing a risk of implant failure. To address this issue, hydrogel-based coatings are used, but achieving both effective antibacterial properties and stable adhesion remains challenging. This study introduces a hybrid hydrogel network made from Tannic Acid (TA) and Poly-l-Lysine (PLL), cross-linked through ionic and hydrogen bonds, which imparts adhesive and anti-infective properties. The physicochemical analysis revealed that the hydrogels exhibited significant porosity, favorable mechanical characteristics, and demonstrated in vitro enzymatic biodegradation. Moreover, the hydrogels demonstrated adhesion to various substrates, including Ti alloy with an adhesive strength of 42.5 kPa, and retained their integrity even after immersion in water for a minimum of 10 days. The modified Ti surfaces significantly reduced protein adsorption (∼70 %), indicating antifouling properties. The hydrogels prevented bacterial adhesion on titanium surfaces through a "contact-kill" mode of action and inhibited biofilm formation by around 94.5 % for Staphylococcus aureus and 90.8 % for Pseudomonas aeruginosa. The modified Ti retained biofilm inhibitory effects for at least six days without significant performance decline. In vitro cytotoxicity assay confirmed the biocompatibility of the hydrogels with NIH3T3 cells. Overall, these results highlight the competence of hybrid hydrogels as effective coatings for Ti implants, offering strong adhesion and biofilm prevention to mitigate implant-related infections.
Collapse
Affiliation(s)
- Deepa Garg
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Deepak Kumar
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sakshi Paliwal
- CSIR - Institute of Microbial Technology, Chandigarh 160036, India
| | | | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali 140306, India.
| |
Collapse
|
2
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Mohanty S, Swarup J, Priya S, Jain R, Singhvi G. Exploring the potential of polysaccharide-based hybrid hydrogel systems for their biomedical and therapeutic applications: A review. Int J Biol Macromol 2024; 256:128348. [PMID: 38007021 DOI: 10.1016/j.ijbiomac.2023.128348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Hydrogels are a versatile category of biomaterials that have been widely applied in the fields of biomedicine for the last several decades. The three-dimensional polymeric crosslinked hydrophilic structures of the hydrogel can proficiently hold drugs, nanoparticles, and cells, making them a potential delivery system. However, disadvantages like low mechanical strength, poor biocompatibility, and unusual in-vivo biodegradation are associated with conventional hydrogels. To overcome these hurdles, hybrid hydrogels are designed using two or more structurally different polymeric units. Polysaccharides, characterized by their innate biocompatibility, biodegradability, and abundance, establish an ideal foundation for the development of these hybrid hydrogels. This review aims to discuss the studies that have utilized naturally occurring polysaccharides to prepare hybrid systems, which were aimed for various biomedical applications such as tissue engineering, bone and cartilage regeneration, wound healing, skin cancer treatment, antimicrobial therapy, osteoarthritis treatment, and drug delivery. Furthermore, this review extensively examines the properties of the employed polysaccharides within hydrogel matrices, emphasizing the advantageous characteristics that make them a preferred choice. Furthermore, the challenges associated with the commercial implementation of these systems are explored alongside an assessment of the current patent landscape.
Collapse
Affiliation(s)
- Shambo Mohanty
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jayanti Swarup
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rupesh Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
4
|
Thapa K, FitzSimons TM, Otakpor MU, Siller MM, Crowell AD, Zepeda JE, Torres E, Roe LN, Arts J, Rosales AM, Betancourt T. Photothermal Modulation of Dynamic Covalent Poly(ethylene glycol)/PEDOT Composite Hydrogels for On-Demand Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37924292 DOI: 10.1021/acsami.3c11288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Hydrogels are cross-linked three-dimensional polymer networks that have tissue-like properties. Dynamic covalent bonds (DCB) can be utilized as hydrogel cross-links to impart injectability, self-healing ability, and stimuli responsiveness to these materials. In our research, we utilized dynamic thiol-Michael bonds as cross-links in poly(ethylene glycol) (PEG)-based hydrogels. Because the equilibrium of the reversible, exothermic thiol-Michael reaction can be modulated by temperature, we investigated the possibility of using thermal and photothermal stimuli to modulate the gel-to-sol transition of these materials with the aim of developing an on-demand pulsatile cargo release system. For this purpose, we incorporated poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles within the hydrogel to facilitate photothermal modulation using near-infrared light. PEDOT nanoparticles of 50 nm in diameter and with strong near-infrared absorption were prepared by oxidative emulsion polymerization. We then used Michael addition of thiol-ene pairs from 4-arm PEG-thiol (PEG-SH) and 4-arm PEG-benzylcyanoacetamide (PEG-BCA) to form dynamically cross-linked hydrogels. PEDOT nanoparticles were entrapped in situ to form Gel/PEDOT composites. Rheology and inverted tube test studies showed that the gel-to-sol transition occurred at 45-50 °C for 5 wt % gels and that this transition could be tailored by varying the wt % of the polymer precursors. The hydrogels were found to be capable of self-healing and being injected with a clinically relevant injection force. Bovine serum albumin-fluorescein isothiocyanate (BSA-FITC), a fluorescently labeled protein, was then loaded into the Gel/PEDOT as a therapeutic mimic. Increased release of BSA-FITC upon direct thermal stimulation and photothermal stimulation with an 808 nm laser was observed. Pulsatile release of BSA-FITC over seven cycles was demonstrated. MTS and live-dead assays demonstrated that Gel/PEDOT was cytocompatible in MDA-MB-231 breast cancer and 3T3 fibroblast cell lines. Further studies demonstrated that the encapsulation and laser-triggered release of the chemotherapeutic agent doxorubicin (DOX) could also be achieved. Altogether, this work advances our understanding of the temperature-dependent behavior of a dynamic covalent hydrogel, Gel/PEDOT, and leverages that understanding for application as a photothermally responsive biomaterial for controlled release.
Collapse
Affiliation(s)
- Kushal Thapa
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666-4684, United States
| | - Thomas M FitzSimons
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas 78712, United States
| | - Mackenzie U Otakpor
- Department of Biology, Texas State University, San Marcos, Texas 78666, United States
| | - Mckenzie M Siller
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Anne D Crowell
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas 78712, United States
| | - Joanna E Zepeda
- Department of Biology, Texas State University, San Marcos, Texas 78666, United States
| | - Edgar Torres
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Lillian N Roe
- Department of Biology, Texas State University, San Marcos, Texas 78666, United States
| | - Jorge Arts
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas 78712, United States
| | - Tania Betancourt
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666-4684, United States
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| |
Collapse
|
5
|
Rahman M, Chowdhury F, Uddin K, Ahmed KS, Hossain H, Jain P, Reza HM, Lee K, Sharker SM. Nanostructured chitosan-polyphenolic patch for remote NIR-photothermal controlled dermal drug delivery. Int J Biol Macromol 2023; 241:124701. [PMID: 37137352 DOI: 10.1016/j.ijbiomac.2023.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
We describe the synthesis of a nanostructured dermal patch composed of chitosan-tannic acid (CT) that can carry near-infrared (NIR) active Indocyanine green (ICG) dye for performing photothermal heat conversion activity. The NIR-responsive CT-I dermal patch can deliver topical antibiotic drugs (Neomycin). The CT-I and drug-loaded CT-I/N patches have been demonstrated by FTIR, SEM/EDX, TGA, and DSC analysis. The in vitro drug release from the CT-I/N patch are favorable in the dermal environment (pH = 5.5) and significantly increases 25 % more at higher temperatures of 40 to 45 °C. The CT-I/N showed increasing photothermal heat in response to NIR (808 nm) light. The in vivo thermograph demonstrated that the CT-I/N patch can generate >45 °C within 5 min NIR irradiation. As a result, sustained wound healing was shown in H&E (hematoxylin and eosin) staining dermal tissue. Such NIR-active nanostructure film/patch is promising for the future of any sustained on-demand drug delivery system.
Collapse
Affiliation(s)
- Muntasir Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Fariha Chowdhury
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Kamal Uddin
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Khondoker Shahin Ahmed
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Preeti Jain
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Shazid Md Sharker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh.
| |
Collapse
|
6
|
Zhang R, Miao Q, Deng D, Wu J, Miao Y, Li Y. Research progress of advanced microneedle drug delivery system and its application in biomedicine. Colloids Surf B Biointerfaces 2023; 226:113302. [PMID: 37086686 DOI: 10.1016/j.colsurfb.2023.113302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Transdermal drug delivery is an effective way of drug delivery in addition to oral and intravenous administration. Among them, microneedle administration is a new type of subcutaneous drug delivery, which forms micron-level pores on the surface of the skin, making the drug enter the dermis through the cuticular layer of the skin in the least invasive way. This mode of drug delivery not only increases the permeation efficiency of transdermal drug delivery but also improves the bioavailability of drug delivery. At present, there are many kinds of research on microneedles, such as solid microneedles, hollow microneedles, soluble polymer microneedles, etc. However, some new microneedle drug delivery systems have been gradually developed and applied with the development of microneedle drug delivery technology, for meeting the more complex pathological environment. In this review, we focus on the principle, structure, and function of some new types of microneedles, such as stimulus-response microneedles, iontophoresis microneedles, and bionic microneedles. We summarize the effects of materials, geometry, and size on the properties of microneedles as well as their applications and potential developments in the field of biomedicine. We hope that this review can provide new ideas and help with the development of new microneedle drug delivery systems.
Collapse
Affiliation(s)
- Rui Zhang
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Garg D, Matai I, Agrawal S, Sachdev A. Hybrid gum tragacanth/sodium alginate hydrogel reinforced with silver nanotriangles for bacterial biofilm inhibition. BIOFOULING 2022; 38:965-983. [PMID: 36519335 DOI: 10.1080/08927014.2022.2156286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Biomaterial associated bacterial infections are indomitable to treatment due to the rise in antibiotic resistant strains, thereby triggering the need for new antibacterial agents. Herein, composite bactericidal hydrogels were formulated by incorporating silver nanotriangles (AgNTs) inside a hybrid polymer network of Gum Tragacanth/Sodium Alginate (GT/SA) hydrogels. Physico-chemical examination revealed robust mechanical strength, appreciable porosity and desirable in vitro enzymatic biodegradation of composite hydrogels. The antibacterial activity of AgNT-hydrogel was tested against planktonic and biofilm-forming Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. For all the strains, AgNT-hydrogel showed a dose-dependent decrease in bacterial growth. The addition of AgNT-hydrogels (40-80 mg ml-1) caused 87% inhibition of planktonic biomass and up to 74% reduction in biofilm formation. Overall, this study proposes a promising approach for designing antibacterial composite hydrogels to mitigate various forms of bacterial infection.
Collapse
Affiliation(s)
- Deepa Garg
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali, India
| | - Shruti Agrawal
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
| | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Zhang X, Li Q, Wang Z, Zhou W, Zhang L, Liu Y, Xu Z, Li Z, Zhu C, Zhang X. Bone regeneration materials and their application over 20 years: A bibliometric study and systematic review. Front Bioeng Biotechnol 2022; 10:921092. [PMID: 36277397 PMCID: PMC9581237 DOI: 10.3389/fbioe.2022.921092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Bone regeneration materials (BRMs) bring us new sights into the clinical management bone defects. With advances in BRMs technologies, new strategies are emerging to promote bone regeneration. The aim of this study was to comprehensively assess the existing research and recent progress on BRMs, thus providing useful insights into contemporary research, as well as to explore potential future directions within the scope of bone regeneration therapy. A comprehensive literature review using formal data mining procedures was performed to explore the global trends of selected areas of research for the past 20 years. The study applied bibliometric methods and knowledge visualization techniques to identify and investigate publications based on the publication year (between 2002 and 2021), document type, language, country, institution, author, journal, keywords, and citation number. The most productive countries were China, United States, and Italy. The most prolific journal in the BRM field was Acta Biomaterialia, closely followed by Biomaterials. Moreover, recent investigations have been focused on extracellular matrices (ECMs) (370 publications), hydrogel materials (286 publications), and drug delivery systems (220 publications). Research hotspots related to BRMs and extracellular matrices from 2002 to 2011 were growth factor, bone morphogenetic protein (BMP)-2, and mesenchymal stem cell (MSC), whereas after 2012 were composite scaffolds. Between 2002 and 2011, studies related to BRMs and hydrogels were focused on BMP-2, in vivo, and in vitro investigations, whereas it turned to the exploration of MSCs, mechanical properties, and osteogenic differentiation after 2012. Research hotspots related to BRM and drug delivery were fibroblast growth factor, mesoporous materials, and controlled release during 2002–2011, and electrospinning, antibacterial activity, and in vitro bioactivity after 2012. Overall, composite scaffolds, 3D printing technology, and antibacterial activity were found to have an important intersection within BRM investigations, representing relevant research fields for the future. Taken together, this extensive analysis highlights the existing literature and findings that advance scientific insights into bone tissue engineering and its subsequent applications.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Qianming Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhengxi Wang
- Department of Orthopedics, Anhui Provincial Hospital, Wannan Medical College, Hefei, China
| | - Wei Zhou
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingsheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ze Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zheng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xianzuo Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xianzuo Zhang,
| |
Collapse
|
9
|
Lebepe TC, Oluwafemi OS. Thermal and Medium Stability Study of Polyvidone-Modified Graphene Oxide-Coated Gold Nanorods with High Photothermal Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193382. [PMID: 36234510 PMCID: PMC9565574 DOI: 10.3390/nano12193382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 05/13/2023]
Abstract
Coating gold nanorods (AuNRs) with different materials, such as polymers and graphene-based materials, has improved their biocompatibility. However, these materials have been shown to cause the instability of AuNRs in thermal and culture mediums. In addressing this issue, we herein report the synthesis, thermal and culture medium stability, and photothermal profiling of Polyvidone (PVP)-modified graphene oxide (GO)-coated AuNRs (mGO@AuNRs). The AuNRs, with a size of 40.70 nm × 9.16 nm and absorbing at 820 nm, were coated with PVP, GO, and mGO. The colloidal stability of the nanocomposites was tested in three commonly used cell culture mediums: the Roswell Park Memorial Institute 1640 (RPMI-1640), Dulbecco's Modified Eagle Medium, (DMEM) and Dulbecco's phosphate-buffered saline (PBS) using UV-Vis-NIR and dynamic light scattering. The GO-based nanocomposites were stable compared to PVP@AuNRs and AuNRs in all mediums. The photothermal profiling of mGO@AuNRs showed higher heat production, with the photothermal conversion efficiency of 54.8%, which is higher than the bare AuNRs, GO@AuNRs, and PVP@AuNRs. In addition, the mGO@AuNRs also showed good thermal stability at 70 °C for more than 24 h. These results present the dual coating of PVP and GO as excellent stabilising agents for AuNRs with good photothermal profiling.
Collapse
Affiliation(s)
- Thabang Calvin Lebepe
- Department of Chemical Science, University of Johannesburg, Johannesburg 2028, South Africa
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Science, University of Johannesburg, Johannesburg 2028, South Africa
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Johannesburg 2028, South Africa
- Correspondence:
| |
Collapse
|
10
|
Lacroce E, Rossi F. Polymer-based thermoresponsive hydrogels for controlled drug delivery. Expert Opin Drug Deliv 2022; 19:1203-1215. [PMID: 35575265 DOI: 10.1080/17425247.2022.2078806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION controlled drug delivery through hydrogels is generally limited by the poor barrier that polymeric network can create to diffusion mechanism. Stimuli responsive polymers can help in this way guaranteeing that delivery can be sustained and finely controlled using an external stimulus. AREA COVERED this review provides an overview of recent studies about the use of temperature as an external stimulus able to work as an efficient new route of drug's administration. Thermoresponsive hydrogels are discussed and compared in terms of physical properties and mechanism of drug release considering their classification in intrinsically (formed by thermosensitive polymers) and non-intrinsically (polymers with thermosensitive moieties) hydrogels. EXPERT OPINION thermoresponsive hydrogels can be developed by using different polymers added or not with micro/nanoparticles of organic or inorganic origin. In both cases the final system represents an innovative way for the local and sustained drug delivery in a specific site of the body. In particular, it is possible to obtain an on-demand release of drug by applying a local increase of temperature to the system.
Collapse
Affiliation(s)
- Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
11
|
Bordbar-Khiabani A, Gasik M. Smart Hydrogels for Advanced Drug Delivery Systems. Int J Mol Sci 2022; 23:3665. [PMID: 35409025 PMCID: PMC8998863 DOI: 10.3390/ijms23073665] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
Since the last few decades, the development of smart hydrogels, which can respond to stimuli and adapt their responses based on external cues from their environments, has become a thriving research frontier in the biomedical engineering field. Nowadays, drug delivery systems have received great attention and smart hydrogels can be potentially used in these systems due to their high stability, physicochemical properties, and biocompatibility. Smart hydrogels can change their hydrophilicity, swelling ability, physical properties, and molecules permeability, influenced by external stimuli such as pH, temperature, electrical and magnetic fields, light, and the biomolecules' concentration, thus resulting in the controlled release of the loaded drugs. Herein, this review encompasses the latest investigations in the field of stimuli-responsive drug-loaded hydrogels and our contribution to this matter.
Collapse
Affiliation(s)
- Aydin Bordbar-Khiabani
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland;
| | | |
Collapse
|
12
|
Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14030664. [PMID: 35336038 PMCID: PMC8951391 DOI: 10.3390/pharmaceutics14030664] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both NIR-responsive cargo delivery and photothermal/photodynamic therapies. In this review, a comprehensive insight into the properties, synthesis methods and toxicity of gold nanorods are overviewed first. For the main body of the review, the therapeutic applications of GNRs are provided in four main sections: (i) drug delivery, (ii) gene delivery, (iii) photothermal/photodynamic therapy, and (iv) theranostics applications. Finally, the challenges and future perspectives of their therapeutic application are discussed.
Collapse
|
13
|
Dual-mode antibacterial core-shell gold nanorod@mesoporous-silica/curcumin nanocomplexes for efficient photothermal and photodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
|
15
|
ATİLA DİNÇER C, GETİREN B, GÖKALP C, ÇIPLAK Z, KARAKEÇİLİ A, YILDIZ N. An anticancer drug loading and release study to ternary GO-Fe3O4-PPy and Fe3O4 @PPy-NGQDs nanocomposites for photothermal chemotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Huang S, Ma Z, Sun C, Zhou Q, Li Z, Wang S, Yan Q, Liu C, Hou B, Zhang C. An injectable thermosensitive hydrogel loading with theranostic nanoprobe for synergetic chemo-photothermal therapy of multidrug-resistant hepatocellular carcinoma. J Mater Chem B 2022; 10:2828-2843. [PMID: 35316319 DOI: 10.1039/d2tb00044j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-drug resistance (MDR) is a complicated cellular defense mechanism for tumor cells to resist chemotherapy drugs, which is also the main cause of chemotherapy failure. In this study, we used...
Collapse
Affiliation(s)
- Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- South China University of Technology School of Medicine, Guangzhou 51000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Shantou University of Medical College, Shantou 515000, China
| | - Chengjun Sun
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhenchong Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- South China University of Technology School of Medicine, Guangzhou 51000, China
| | - Shujie Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Shantou University of Medical College, Shantou 515000, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- South China University of Technology School of Medicine, Guangzhou 51000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- South China University of Technology School of Medicine, Guangzhou 51000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Chen G, Ullah A, Xu G, Xu Z, Wang F, Liu T, Su Y, Zhang T, Wang K. Topically applied liposome-in-hydrogels for systematically targeted tumor photothermal therapy. Drug Deliv 2021; 28:1923-1931. [PMID: 34550040 PMCID: PMC8462874 DOI: 10.1080/10717544.2021.1974607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Transdermal drug delivery for local or systemic therapy provides a potential anticancer modality with a high patient compliance. However, the drug delivery efficiency across the skin is highly challenging due to the physiological barriers, which limit the desired therapeutic effects. In this study, we prepared liposome-in-hydrogels containing a tumor targeting photosensitizer IR780 (IR780/lipo/gels) for tumor photothermal therapy (PTT). The formulation effectively delivered IR780 to subcutaneous tumor and deep metastatic sites, while the hydrogels were applied on the skin overlying the tumor or on an area of distant normal skin. The photothermal antitumor activity of topically administered IR780/lipo/gels was evaluated following laser irradiation. We observed significant inhibition of the rate of the tumor growth without any toxicity associated with the topical administration of hydrogels. Collectively, the topical administration of IR780/lipo/gels represents a new noninvasive and safe strategy for targeted tumor PTT.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Aftab Ullah
- School of Pharmacy, Nantong University, Nantong, China
- Department of Pharmacy, Shantou University Medical College, Shantou, China
| | - Gang Xu
- Department of Burn and Plastic Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Fei Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tianqing Liu
- School of Pharmacy, Nantong University, Nantong, China
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Yi Su
- Department of Medical, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Yi Su Department of Medical, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu210002, China
| | - Tangjie Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Tangjie Zhang Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou225009, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, China
- CONTACT Kaikai Wang School of Pharmacy, Nantong University, Nantong226001, China
| |
Collapse
|
18
|
Zhang X, Tan B, Wu Y, Zhang M, Liao J. A Review on Hydrogels with Photothermal Effect in Wound Healing and Bone Tissue Engineering. Polymers (Basel) 2021; 13:2100. [PMID: 34202237 PMCID: PMC8271463 DOI: 10.3390/polym13132100] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 02/05/2023] Open
Abstract
Photothermal treatment (PTT) is a promising strategy to deal with multidrug-resistant bacteria infection and promote tissue regeneration. Previous studies demonstrated that hyperthermia can effectively inhibit the growth of bacteria, whereas mild heat can promote cell proliferation, further accelerating wound healing and bone regeneration. Especially, hydrogels with photothermal properties could achieve remotely controlled drug release. In this review, we introduce a photothermal agent hybrid in hydrogels for a photothermal effect. We also summarize the potential mechanisms of photothermal hydrogels regarding antibacterial action, angiogenesis, and osteogenesis. Furthermore, recent developments in photothermal hydrogels in wound healing and bone regeneration applications are introduced. Finally, future application of photothermal hydrogels is discussed. Hydrogels with photothermal effects provide a new direction for wound healing and bone regeneration, and this review will give a reference for the tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Z.); (B.T.); (Y.W.); (M.Z.)
| |
Collapse
|
19
|
Mohammadi Kalakoo M, Heydarinasab A, Moniri E, Ahmad Panahi H, Khoshneviszadeh R. Near‐infrared
triggered drug delivery of Imatinib Mesylate by molybdenum disulfide nanosheets grafted copolymers as thermosensitive nanocarriers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mina Mohammadi Kalakoo
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Amir Heydarinasab
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Elham Moniri
- Department of Chemistry, Varamin‐Pishva Branch Islamic Azad University Varamin Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch Islamic Azad University Tehran Iran
| | | |
Collapse
|
20
|
Phan LMT, Vo TAT, Hoang TX, Cho S. Graphene Integrated Hydrogels Based Biomaterials in Photothermal Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:906. [PMID: 33918204 PMCID: PMC8065877 DOI: 10.3390/nano11040906] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022]
Abstract
Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea; (T.A.T.V.); (T.X.H.)
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea; (T.A.T.V.); (T.X.H.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
21
|
Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Dehshahri A, Kumar A, Madamsetty VS, Uzieliene I, Tavakol S, Azedi F, Fekri HS, Zarrabi A, Mohammadinejad R, Thakur VK. New Horizons in Hydrogels for Methotrexate Delivery. Gels 2020; 7:2. [PMID: 33396629 PMCID: PMC7839000 DOI: 10.3390/gels7010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Since its first clinical application, methotrexate (MTX) has been widely used for the treatment of human diseases. Despite great advantages, some properties such as poor absorption, short plasma half-life and unpredictable bioavailability have led researchers to seek novel delivery systems to improve its characteristics for parenteral and oral administration. Recently, great attention has been directed to hydrogels for the preparation of MTX formulations. This review describes the potential of hydrogels for the formulation of MTX to treat cancer, rheumatoid arthritis, psoriasis and central nervous system diseases. We will delineate the state-of-the-art and promising potential of hydrogels for systemic MTX delivery as well as transdermal delivery of the drug-using hydrogel-based formulations.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA;
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; (S.T.); (F.A.)
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; (S.T.); (F.A.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hojjat Samareh Fekri
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Reza Mohammadinejad
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| |
Collapse
|