1
|
Bayaumy FEA, Rizk SA, Darwish AS. Superb bio-effectiveness of Cobalt (II) phthalocyanine and Ag NPs adorned Sm-doped ZnO nanorods/cuttlefish bone to annihilate Trichinella spiralis muscle larvae and adult worms: In-vitro evaluation. Parasitol Int 2024; 101:102899. [PMID: 38663799 DOI: 10.1016/j.parint.2024.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Herein, innovative biocides are designed for the treatment of Trichinella spiralis muscle larvae (ML) and adult worms. Samarium-doped ZnO nanorods (Sm-doped ZnO) are stabilized onto the laminar structure of cuttlefish bone (CB) matrix and adorned by either Ag NPs or cobalt phthalocyanine (CoPc) species. Physicochemical characteristics of such nanocomposites are scrutinised. Adorning of Sm-doped ZnO/CB with Ag NPs shortens rod-like shaped Sm-doped ZnO nanoparticles and accrues them, developing large-sized detached patches over CB moiety. Meanwhile, adorning of Sm-doped ZnO/CB by CoPc species degenerates CB lamellae forming semi-rounded platelets and encourages invading of Sm-doped ZnO nanorods deeply inside gallery spacings of CB. Both nanocomposites possess advanced parasiticidal activity, displaying quite intoxication for ML and adult worms (≥88% mortality) within an incubation period of <48 h at concentrations around 200 μg/ml. CoPc@Sm-doped ZnO/CB nanocomposite exhibits faster killing efficiency of adult worms than that of Ag@Sm-doped ZnO/CB at a concentration of ∼75 μg/ml showing entire destruction of parasite after 24 h incubation with the former nanocomposite and just 60% worm mortality after 36 h exposure to the later one. Morphological studies of the treated ML and adult worms show that CoPc@Sm-doped ZnO/CB exhibits a destructive impact on the parasite body, creating featureless and sloughed fragments enriched with intensive vacuoles. Hybridization of cuttlefish bone lamellae by CoPc species is considered a springboard for fabrication of futuristic aggressive drugs against various food- and water-borne parasites.
Collapse
Affiliation(s)
- Fatma E A Bayaumy
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Sameh A Rizk
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Atef S Darwish
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
2
|
Zhao K, Hu Z, Chen X, Chen Y, Zhou M, Ye X, Zhou F, Zhu B, Ding Z. Bletilla striata Polysaccharide-/Chitosan-Based Self-Healing Hydrogel with Enhanced Photothermal Effect for Rapid Healing of Diabetic Infected Wounds via the Regulation of Microenvironment. Biomacromolecules 2024; 25:3345-3359. [PMID: 38700942 DOI: 10.1021/acs.biomac.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The management of diabetic ulcers poses a significant challenge worldwide, and persistent hyperglycemia makes patients susceptible to bacterial infections. Unfortunately, the overuse of antibiotics may lead to drug resistance and prolonged infections, contributing to chronic inflammation and hindering the healing process. To address these issues, a photothermal therapy technique was incorporated in the preparation of wound dressings. This innovative solution involved the formulation of a self-healing and injectable hydrogel matrix based on the Schiff base structure formed between the oxidized Bletilla striata polysaccharide (BSP) and hydroxypropyltrimethylammonium chloride chitosan. Furthermore, the introduction of CuO nanoparticles encapsulated in polydopamine imparted excellent photothermal properties to the hydrogel, which promoted the release of berberine (BER) loaded on the nanoparticles and boosted the antibacterial performance. In addition to providing a reliable physical protection to the wound, the developed hydrogel, which integrated the herbal components of BSP and BER, effectively accelerated wound closure via microenvironment regulation, including alleviated inflammatory reaction, stimulated re-epithelialization, and reduced oxidative stress based on the promising results from cell and animal experiments. These impressive outcomes highlighted their clinical potential in safeguarding the wound against bacterial intrusion and managing diabetic ulcers.
Collapse
Affiliation(s)
- Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Xingcan Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| |
Collapse
|
3
|
Zhang B, Huang Y, Huang Y. Advances in Nanodynamic Therapy for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:648. [PMID: 38607182 PMCID: PMC11013863 DOI: 10.3390/nano14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Nanodynamic therapy (NDT) exerts its anti-tumor effect by activating nanosensitizers to generate large amounts of reactive oxygen species (ROS) in tumor cells. NDT enhances tumor-specific targeting and selectivity by leveraging the tumor microenvironment (TME) and mechanisms that boost anti-tumor immune responses. It also minimizes damage to surrounding healthy tissues and enhances cytotoxicity in tumor cells, showing promise in cancer treatment, with significant potential. This review covers the research progress in five major nanodynamic therapies: photodynamic therapy (PDT), electrodynamic therapy (EDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT), and chemodynamic therapy (CDT), emphasizing the significant role of advanced nanotechnology in the development of NDT for anti-tumor purposes. The mechanisms, effects, and challenges faced by these NDTs are discussed, along with their respective solutions for enhancing anti-tumor efficacy, such as pH response, oxygen delivery, and combined immunotherapy. Finally, this review briefly addresses challenges in the clinical translation of NDT.
Collapse
Affiliation(s)
| | | | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (B.Z.); (Y.H.)
| |
Collapse
|
4
|
Zagami R, Rubin Pedrazzo A, Franco D, Caldera F, De Plano LM, Trapani M, Patanè S, Trotta F, Mazzaglia A. Supramolecular Assemblies based on Polymeric Cyclodextrin Nanosponges and a Cationic Porphyrin with Antimicrobial Photodynamic Therapy Action. Int J Pharm 2023; 637:122883. [PMID: 36972777 DOI: 10.1016/j.ijpharm.2023.122883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Within of the increasing requirement of alternative approaches to fight emerging infections, nano-photosensitisers (nanoPS) are currently designed with the aim to optimize the antimicrobial photodynamic (aPDT) efficacy. The utilize of less expensive nanocarriers prepared by simple and eco-friendly methodologies and commercial photosensitisers are highly desiderable. In this direction, here we propose a novel nanoassembly composed of water soluble anionic polyester β-CD nanosponges (β-CD-PYRO hereafter named βNS) and the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4- yl)porphine (TMPyP). Nanoassemblies were prepared in ultrapure water by mixing PS and βNS, by exploiting their mutual electrostatic interaction, and characterized by various spectroscopic techniques such as UV/Vis, Steady-State and Time Resolved Fluorescence, Dynamic Light Scattering and ζ-potential. NanoPS produce appreciable amount of single oxygen similar to free porphyrin and a prolonged stability after 6 days of incubations in physiological conditions and following photoirradiation. Antimicrobial photodynamic action against fatal hospital-acquired infections such as P. aeruginosa and S. aureus was investigated by pointing out the ability of cationic porphyrin loaded- CD nanosponges to photo-kill bacterial cells at prolonged time of incubation and following irradiation (MBC99 = 3.75 µM, light dose = 54.82 J/cm2).
Collapse
Affiliation(s)
- Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | | | - Domenico Franco
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Fabrizio Caldera
- Dipartimento di Chimica, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Laura M De Plano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Francesco Trotta
- Dipartimento di Chimica, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| |
Collapse
|
5
|
Can Karanlık C, Karanlık G, Erdoğmuş A. Water-Soluble Meso-Thienyl BODIPY Therapeutics: Synthesis, Characterization, Exploring Photophysicochemical and DNA/BSA Binding Properties. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Sindelo A, Nene L, Nyokong T. Photodynamic antimicrobial chemotherapy with asymmetrical cationic or neutral metallophthalocyanines conjugated to amino-functionalized zinc oxide nanoparticles (spherical or pyramidal) against planktonic and biofilm microbial cultures. Photodiagnosis Photodyn Ther 2022; 40:103160. [PMID: 36244683 DOI: 10.1016/j.pdpdt.2022.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The synthesis and characterization of neutral zinc and indium substituted mercaptobenzothiazole substituted phthalocyanines (Pcs) and their respective cationic derivatives are presented. The phthalocyanines were further covalently linked to two differently shaped amino-functionalized ZnO nanoparticles (ZnONPs): namely nanospheres (NH2-ZnONSp), and nanopyramids (NH2-ZnONPy), to form corresponding nanoconjugates. The photophysicochemical properties of each nanocomposite were determined, and the Pc-ZnONPs produced high singlet oxygen quantum yields. The photodynamic antimicrobial chemotherapy activity was determined using planktonic and biofilm cells of Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Candida albicans (C. albicans). The conjugates of the cationic Pc derivatives with ZnONPy produced the highest log reduction values (∼ 8 and above) with the complete elimination of all planktonic cells at 0.45 kJ/cm2 for S. aureus and at 0.9 kJ/cm2 for E. coli, and C. albicans. For biofilms log reduction values >3 for both S. aureus and E. coli were obtained. The conjugates of the cationic Pc derivatives with NH2-ZnONPy showed great potential in eradicating mixed microbial biofilms.
Collapse
Affiliation(s)
- Azole Sindelo
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda 6140, South Africa
| | - Lindokuhle Nene
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda 6140, South Africa.
| |
Collapse
|
7
|
Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy. Colloids Surf B Biointerfaces 2022; 220:112895. [PMID: 36242941 DOI: 10.1016/j.colsurfb.2022.112895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Non-invasive phototherapy includes photodynamic therapy (PDT) and photothermal therapy (PTT), and has garnered special interest in anti-tumor therapy. However, traditional photosensitizers or photothermal agents are faced with major challenges, including easy recognition by immune system, rapid clearance from blood circulation, and low accumulation in target sites. Combining the characteristics of natural cell membrane with the characteristics of photosensitizer or photothermal agent is an important technology to achieve the ideal therapeutic effect of cancer. Red cell membrane (RBMs) coated can disguise phototherapy agents as endogenous substances, thus constructing a new nano bionic therapeutic platform, resisting blood clearance and prolonging circulation time. At present, a variety of phototherapy agents based on Nano-RBMs have been isolated or designed. In this review, firstly, the basic principles of Nano-RBMs and phototherapy are expounded respectively. Then, the latest progress of Nano-RBMs for PDT, PTT and PDT/PTT applications in recent five years has been introduced respectively. Finally, the problems and challenges of Nano-RBMs in the field of phototherapy are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
8
|
Nene LC, Buthelezi K, Prinsloo E, Nyokong T. The in vitro photo-sonodynamic combinatorial therapy activity of cationic and zwitterionic phthalocyanines on MCF-7 and HeLa cancer cell lines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Bostancı HE, Bilgiçli AT, Güzel E, Günsel A, Hepokur C, Çimen B, Yarasir MN. Evaluation of the effects of newly synthesized metallophthalocyanines on breast cancer cell lines with photodynamic therapy. Dalton Trans 2022; 51:15996-16008. [PMID: 36200447 DOI: 10.1039/d2dt01912d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the new phthalonitrile derivative 3-(4-(3-oxobutyl)phenoxy)phthalonitrile (1) and its non-peripheral metallophthalocyanine derivatives [zinc (2), copper (3), cobalt (4), manganese (5), gallium (6), and indium (7)] were synthesized. The newly synthesized phthalocyanines were characterized by standard spectroscopic methods, such as FT-IR, 1H NMR, UV-Vis, fluorescence spectroscopies, and MALDI-TOF spectrometry. Aggregation behaviors of the novel phthalocyanines were investigated by UV-Vis spectroscopy. The effect of pH change on the electronic and emission spectra of the newly synthesized phthalocyanine derivatives was studied in THF media. The electronic spectra of the new zinc (2), copper (3), and cobalt (4) phthalocyanines exhibited bathochromic shifts in acidic pH values due to the presence of monoprotonated forms. Surprisingly, the same effect was not observed for manganese (5) and indium (7) phthalocyanines. On the other hand, gallium (6) showed a slight red-shifted band with the addition of HCl to the medium. Also, it was determined that the synthesized zinc (2) and gallium (6) phthalocyanines had a selective phototoxic effect on the MCF-7 breast cancer cell line compared to the MCF-10A healthy breast cell line. The IC50 values of zinc (2) and gallium (6) phthalocyanines were determined for MCF-7 and MCF-10A cell lines. The IC50 values of MCF-7 for compounds 2 and 6 were found to be 1.721 ± 0.4 μg mL-1 and 7.406 ± 0.32 μg mL-1, respectively. The IC50 values of MCF-10A for phthalocyanines 2 and 6 were found to be 48.90 ± 0.69 μg mL-1 and 14.77 ± 1.09 μg mL-1, respectively. In the LDH (lactate dehydrogenase)-ELISA study, the LDH levels that formed on a cellular basis after the application were measured, and it was observed that the cells were directed towards apoptosis. In addition, it was observed that cancer cells underwent more apoptosis than healthy cells as a result of this application with cell-cycle and dead cell kits performed by flow cytometry. This research shows that non-peripheral substituted gallium and zinc phthalocyanine derivatives (2 and 6) can be suitable photosensitizers for the photodynamic treatment of breast cancers.
Collapse
Affiliation(s)
- Hayrani Eren Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | | | - Emre Güzel
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Armağan Günsel
- Department of Chemistry, Sakarya University, Sakarya, Turkey.
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Behzat Çimen
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
10
|
Nene LC, Magadla A, Nyokong T. Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112553. [PMID: 36084362 DOI: 10.1016/j.jphotobiol.2022.112553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
This work reports on the reactive oxygen species (ROS) generation and the therapeutic activities of new triphenyl-phosphonium-labelled phthalocyanines (Pcs), the 2,9,16,23-tetrakis(N-(N-butyl-4-triphenyl-phosphonium)- pyridine-4-yloxy) Zn(II) Pc (3) and 2,9,16,23-tetrakis-(N-(N-butyl-4-triphenyl-phosphonium)-morpholino) Zn(II) Pc (4) upon exposure to light, ultrasound and the combination of light and ultrasound. Two types of ROS were detected: the singlet oxygen (1O2) and hydroxyl radicals. For light irradiations, only the 1O2 was detected. An increase in the ROS generation was observed for samples treated with the combination of light and ultrasound compared to the light and ultrasound mono-treatments. The in vitro anticancer activity through photodynamic (PDT) and sonodynamic (SDT) therapy for the Pcs were also determined and compared to the photo-sonodynamic combination therapy (PSDT). The two cancer cell lines used for the in vitro studies included the Michigan Cancer Foundation-7 (MCF-7) breast cancer and Henrietta Lacks (HeLa) cervical cancer cell lines. The SDT treatments showed improved therapeutic efficacy on the cancer cells for both the Pcs compared to PDT. PSDT showed better therapeutic efficacy compared to both the PDT and SDT mono-treatments.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Aviwe Magadla
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
11
|
Ağırtaş MS, Cabir B, Gonca S, Ozdemir S. Antioxidant, Antimicrobial, DNA Cleavage, Fluorescence Properties and Synthesis of 4- (3,4,5-Trimethoxybenzyloxy) Phenoxy) Substituted Zinc Phthalocyanine. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1922469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mehmet Salih Ağırtaş
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Beyza Cabir
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Serpil Gonca
- Department of Textile, Clothing, Footwear and Leather, Van Vocational School, Van Yüzüncü Yıl University, Van, Turkey
| | - Sadin Ozdemir
- Department of Medical Laboratory Services, Health Services Vocational School, Mersin University, Yenisehir, Mersin, Turkey
- Food Processing Programme, Technical Science Vocational School, Mersin University, Yenisehir, Mersin, Turkey
| |
Collapse
|
12
|
Aroso RT, Dias LD, Blanco KC, Soares JM, Alves F, da Silva GJ, Arnaut LG, Bagnato VS, Pereira MM. Synergic dual phototherapy: Cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112499. [PMID: 35689931 DOI: 10.1016/j.jphotobiol.2022.112499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The emergence of new microorganisms with resistance to current antimicrobials is one of the key issues of modern healthcare that must be urgently addressed with the development of new molecules and therapies. Photodynamic inactivation (PDI) in combination with antibiotics has been recently regarded as a promising wide-spectrum therapy for the treatment of localized topical infections. However, further studies are required regarding the selection of the best photosensitizer structures and protocol optimization, in order to maximize the efficiency of this synergic interaction. In this paper, we present results that demonstrate the influence of the structure of cationic imidazolyl-substituted photosensitizers and light on the enhancement of ciprofloxacin (CIP) activity, for the inactivation of Escherichia coli. Structure-activity studies have highlighted the tetra cationic imidazolyl porphyrin IP-H-Me4+ at sub-bactericide concentrations (4-16 nM) as the most promising photosensitizer for combination with sub-inhibitory CIP concentration (<0.25 mg/L). An optimized dual phototherapy protocol using this photosensitizer was translated to in vivo studies in mice wounds infected with E. coli. This synergic combination reduced the amount of photosensitizer and ciprofloxacin required for full E. coli inactivation and, in both in vitro and in vivo studies, the combination therapy was clearly superior to each monotherapy (PDI or ciprofloxacin alone). Overall, these findings highlight the potential of cationic imidazolyl porphyrins in boosting the activity of antibiotics and lowering the probability of resistance development, which is essential for a sustainable long-term treatment of infectious diseases.
Collapse
Affiliation(s)
- Rafael T Aroso
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Lucas D Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Kate C Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Jennifer M Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Fernanda Alves
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Gabriela J da Silva
- Faculdade de Farmácia e Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Luís G Arnaut
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil,; Hagler Fellows, Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Mariette M Pereira
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
13
|
Magadla A, Openda YI, Nyokong T. The implications of Ortho-, Meta- and Para- Directors on the In-Vitro Photodynamic Antimicrobial Chemotherapy Activity of Cationic Pyridyl-dihydrothiazole Phthalocyanines. Photodiagnosis Photodyn Ther 2022; 39:103029. [PMID: 35872353 DOI: 10.1016/j.pdpdt.2022.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Cationic Zn phthalocyanine complexes derived by alkylation reaction of tetra-(pyridinyloxy) phthalocyanines at the ortho, meta, and para positions to form Zn (II) Tetrakis 3-(4-(2-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (2), Zn (II) Tetrakis 3-(4-(3-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (4) and Zn (II) Tetrakis 3-(4-(4-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (6). The photophysicochemical behaviours of the Pc complexes are assessed. The meta and para-substituted complexes demonstrate high singlet oxygen quantum yields. The cationic Pcs demonstrate good planktonic antibacterial activity towards Staphylococcus aureus and Escherichia coli with the highest log reduction values of 9.29 and 8.55, respectively. The cationic complexes also demonstrate a significant decrease in the viability of in vitro biofilms after photo-antimicrobial chemotherapy at 100 µM for both Staphylococcus aureus and Escherichia coli biofilms.
Collapse
Affiliation(s)
- Aviwe Magadla
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa
| | - Yolande Ikala Openda
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
14
|
Zhao D, Ouyang A, Wang X, Zhang W, Cheng G, Lv B, Liu W. Synthesis, crystal structure and biological evaluation of thyroid cancer targeting photosensitizer for photodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Gümüşgöz Çelik G, Gonca S, Şahin B, Özdemir S, Atilla D, Gürek AG. Novel axially symmetric and unsymmetric silicon(IV) phthalocyanines having anti-inflammatory groups: synthesis, characterization and their biological properties. Dalton Trans 2022; 51:7517-7529. [PMID: 35506506 DOI: 10.1039/d2dt00652a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New asymmetric Si(IV)Pc (1), monomeloxicammonotriethyleneglycolmonomethylether (phthalocyaninano)silicone, axially ligated with meloxicam as a non-steroidal anti-inflammatory drug (NSAID), or triethylene glycol monomethyl ether and symmetric Si(IV)Pc (2), diclofenac(phthalocyaninano)silicone, axially ligated with two diclofenac as NSAID, were synthesized and characterized as antioxidant and antimicrobial agents together with polyoxo-SiPc (3), ditriethyleneglycolmonomethylether(phthalocyaninano)silicone, and SiPc(OH)2 (4), dihydroxy(phthalocyaninano)silicone. The photophysical and photochemical properties of these compounds were investigated. Then, antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferrous ion chelating activities, were performed for these Si(IV) phthalocyanine derivatives (1, 2, 3 and 4). The highest DPPH scavenging activity of 73.48% was achieved with compound 2 and the highest ferrous chelating ability of 66.42% was obtained with compound 3. The results of the antioxidant assays indicated that Pc derivatives 1, 2 and 3 have remarkable superoxide radical scavenging activities, and moderate 2,2-diphenyl-1-picrylhydrazyl activities and metal chelating activities. The antimicrobial effects of the Si(IV) phthalocyanine compounds were studied against six pathogenic bacteria and two pathogenic microfungi. The results for the antimicrobial activity of these compounds indicated that Enterococcus faecalis (ATCC 29212) was the most sensitive microorganism and Pseudomonas aeruginosa (ATCC 27853) and Legionella pneumophila subsp. pneumophila (ATCC 33152) were the most resistant microorganisms against the tested compounds. The DNA cleavage ability and microbial cell viability of these compounds were studied. The studied compounds demonstrated excellent DNA nuclease activity and exhibited 100% cell viability inhibition at 500 mg L-1. Also, the antimicrobial photodynamic therapy of the compounds was tested against Escherichia coli (ATCC 25922) and significant photodynamic antimicrobial activity was observed. In addition, the effect of phthalocyanines on biofilm inhibition produced by Staphylococcus aureus (ATCC 25923) was also tested and 3 showed excellent biofilm inhibition of 82.14%.
Collapse
Affiliation(s)
- Gizem Gümüşgöz Çelik
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Turkey, TR-33343 Yenisehir, Mersin, Turkey
| | - Belgin Şahin
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey.
| | - Devrim Atilla
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| |
Collapse
|
16
|
Polyelectrolyte wrapped methylation morpholine-phthalocyanine@gold nanorod for synergistic photodynamic therapy and photothermal therapy photodegradation of DNA. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Castro KADF, Prandini JA, Biazzotto JC, Tomé JPC, da Silva RS, Lourenço LMO. The Surprisingly Positive Effect of Zinc-Phthalocyanines With High Photodynamic Therapy Efficacy of Melanoma Cancer. Front Chem 2022; 10:825716. [PMID: 35360535 PMCID: PMC8964275 DOI: 10.3389/fchem.2022.825716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Phthalocyanine (Pc) dyes are photoactive molecules that can absorb and emit light in the visible spectrum, especially in the red region of the spectrum, with great potential for biological scopes. For this target, it is important to guarantee a high Pc solubility, and the use of suitable pyridinium units on their structure can be a good strategy to use effective photosensitizers (PSs) for photodynamic therapy (PDT) against cancer cells. Zn(II) phthalocyanines (ZnPcs) conjugated with thiopyridinium units (1–3) were evaluated as PS drugs against B16F10 melanoma cells, and their photophysical, photochemical, and in vitro photobiological properties were determined. The photodynamic efficiency of the tetra- and octa-cationic ZnPcs 1–3 was studied and compared at 1, 2, 5, 10, and 20 µM. The different number of charge units, and the presence/absence of a-F atoms on the Pc structure, contributes for their PDT efficacy. The 3-(4′,5′-dimethylthiazol-2′-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays on B16F10 melanoma cells show a moderate to high capacity to be photoinactivated by ZnPcs 1–3 (ZnPc 1 > ZnPc 2 > ZnPc 3). The best PDT conditions were found at a Pc concentration of 20 μM, under red light (λ = 660 ± 20 nm) at an irradiance of 4.5 mW/cm2 for 667 s (light dose of 3 J/cm2). In these conditions, it is noteworthy that the cationic ZnPc 1 shows a promising photoinactivation ratio, reaching the detection limit of the MTT method. Moreover, these results are comparable to the better ones in the literature.
Collapse
Affiliation(s)
- Kelly A. D. F. Castro
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana A. Prandini
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Cristina Biazzotto
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João P. C. Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Roberto S. da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Roberto S. da Silva, ; Leandro M. O. Lourenço,
| | - Leandro M. O. Lourenço
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
- *Correspondence: Roberto S. da Silva, ; Leandro M. O. Lourenço,
| |
Collapse
|
18
|
Synthesis of 29H,31H-phthalocyanine and chloro (29H,31H-phthalocyaninato) aluminum derivatives showed anti-cancer and anti-bacterial actions. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Zheng BD, Ye J, Huang YY, Xiao MT. Phthalocyanine-based photoacoustic contrast agents for imaging and theranostics. Biomater Sci 2021; 9:7811-7825. [PMID: 34755723 DOI: 10.1039/d1bm01435h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phthalocyanine, as an organic dye, has attracted much attention due to its high molar absorption coefficient in the near-infrared region (NIR). It is precisely because of this advantage that phthalocyanine is very beneficial to photoacoustic imaging (PAI). At present, many different strategies have been adopted to design phthalocyanine-based contrast agents with photoacoustic (PA) effect, including increasing water solubility, changing spectral properties, prolonging the circulation time, constructing activatable supramolecular nanoparticles, increasing targeting, etc. Based on this, this minireview highlighted the above ways to enhance the PA effect of phthalocyanine. What's more, the application of phthalocyanine-based PA contrast agents in biomedical imaging and image-guided phototherapy has been discussed. Finally, this minireview also provides the prospects and challenges of phthalocyanine-based PA contrast agents in order to provide some reference for the application of phthalocyanine-based PA contrast agents in biomedical imaging and guiding tumor treatment.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
20
|
Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
The antibacterial and antifungal properties of neutral, octacationic and hexadecacationic Zn phthalocyanines when conjugated to silver nanoparticles. Photodiagnosis Photodyn Ther 2021; 35:102361. [PMID: 34052420 DOI: 10.1016/j.pdpdt.2021.102361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/27/2022]
Abstract
The syntheses and characterization of novel octacationic and hexadecacationic Pcs is reported. With the aim of enhancing singlet oxygen generation efficiencies and hence antimicrobial activities, these Pcs (including their neutral counterpart) are conjugated to Ag nanoparticles (AgNPs). The obtained results show that the conjugate composed of the neutral Pc has a higher loading of Pcs as well as a greater singlet oxygen quantum yield enhancement (in the presence of AgNPs) in DMSO. The antimicrobial efficiencies of the Pcs and their conjugates were evaluated and compared on S. aureus, E. coli and C. albicans. The cationic Pcs possess better activity than the neutral Pc against all the microorganisms with the hexadecacationic Pc being the best. This work therefore demonstrates that increase in the number of cationic charges on the reported Pcs results in enhanced antimicrobial activities, which is maintained even when conjugated to Ag nanoparticles. The high activity and lack of selectivity of the cationic Pcs when conjugated to Ag NPs against different microorganisms make them good candidates for real life antimicrobial treatments.
Collapse
|
22
|
Kirar S, Chaudhari D, Thakur NS, Jain S, Bhaumik J, Laha JK, Banerjee UC. Light-assisted anticancer photodynamic therapy using porphyrin-doped nanoencapsulates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 220:112209. [PMID: 34049179 DOI: 10.1016/j.jphotobiol.2021.112209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Light activatable porphyrinic photosensitizers (PSs) are essential components of anticancer and antimicrobial therapy and diagnostic imaging. However, their biological applications are quite challenging due to the lack of hydrophilicity and biocompatibility. To overcome such drawbacks, photosensitizers can be doped into a biocompatible polymer such as gelatin and further can be used for biomedical applications. Herein, first, a novel A4 type porphyrin PS [5,10,15,20-tetrakis(4-pyridylamidephenyl)porphyrin; TPyAPP] was synthesized via a rational route with good yield. Further, this porphyrin was encapsulated into the gelatin nanoparticles (GNPs) to develop hydrophilic phototherapeutic nanoagents (PTNAs, A4por-GNPs). Notably, the synthesis of such porphyrin-doped GNPs avoids the use of any toxic chemicals or solvents. The nanoprobes have also shown good fluorescence quantum yield demonstrating their applicability in bioimaging. Further, the mechanistic aspects of the anticancer and antimicrobial efficacy of the developed A4por-GNPs were evaluated via singlet oxygen generation studies. Overall, our results indicated porphyrin-doped biodegradable polymeric nanoparticles act as effective phototherapeutic agents against a broad range of cancer cell lines and microbes upon activation by the low-cost LED light.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Dasharath Chaudhari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Neeraj S Thakur
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Sanyog Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
23
|
Türkan F, Taslimi P, Cabir B, Ağırtaş MS, Erden Y, Celebioglu HU, Tuzun B, Bursal E, Gulcin I. Co and Zn Metal Phthalocyanines with Bulky Substituents: Anticancer, Antibacterial Activities and Their Inhibitory Effects on Some Metabolic Enzymes with Molecular Docking Studies. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1893194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Beyza Cabir
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yıl University, Van, Turkey
| | - Mehmet Salih Ağırtaş
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yıl University, Van, Turkey
| | - Yavuz Erden
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey
| | | | - Burak Tuzun
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Turkey
| | - Ercan Bursal
- Department of Nursing, Faculty of Health, Muş Alparslan University, Muş, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
24
|
Pekbelgin Karaoğlu H, Sağlam Ö, Özdemir S, Gonca S, Koçak MB. Novel symmetrical and unsymmetrical fluorine-containing metallophthalocyanines: synthesis, characterization and investigation of their biological properties. Dalton Trans 2021; 50:9700-9708. [PMID: 33950057 DOI: 10.1039/d1dt00991e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a new fluorinated phthalonitrile compound namely 5-bis[4-(trifluoromethoxy)-thiophenyl] phthalonitrile was synthesized. In addition, peripherally substituted symmetric metallated phthalocyanine derivatives [M = Co (2) and M = Zn (3)] and unsymmetrically substituted zinc phthalocyanine (ZnPc) complex (4) were synthesized by cyclotetramerization of this phthalonitrile compound. Characterization of all new compounds was carried out using FT-IR, NMR, UV-Vis, and mass spectroscopy. Additionally, antioxidant activity, DNA cleavage activity, antimicrobial activity, biofilm inhibition activity, and bacterial viability inhibition test of the compounds (1-4) were investigated. The antioxidant activities of the new phthalocyanine complexes were studied by performing two different methods. The results indicated that the highest DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity was determined to be 67.85% for 2 and also 3 showed the highest activity with 31.65% for chelating activity at 200 mg L-1 concentration. Phthalocyanine compounds demonstrated effective DNA cleavage and antimicrobial activities. The highest percentage of cell vitality inhibition was found for compound 4, 56.92%. Also, test compounds exhibited good biofilm inhibition activity.
Collapse
Affiliation(s)
| | - Özgül Sağlam
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Turkey, TR-33343 Yenisehir, Mersin, Turkey
| | - Makbule Burkut Koçak
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Turkey.
| |
Collapse
|