1
|
Meky AI, Hassaan MA, El-Nemr MA, Fetouh HA, Ismail AM, El Nemr A. Kinetics, central composite design and artificial neural network modelling of ciprofloxacin antibiotic photodegradation using fabricated cobalt-doped zinc oxide nanoparticles. Sci Rep 2025; 15:1610. [PMID: 39794370 PMCID: PMC11724027 DOI: 10.1038/s41598-024-84568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Cobalt-doped zinc oxide nanoparticles were fabricated and examined in this study as a potential photocatalyst for the antibiotic ciprofloxacin (CIPF) degradation when exposed to visible LED light. The Co-precipitation technique created Cobalt-doped zinc oxide nanoparticles that were 5, 10, and 15% Co-loaded. Different known techniques have been used to characterize the synthesized ZnO and cobalt-doped ZnO nanoparticles. Compared to ZnO and other Cobalt-doped ZnO nanoparticles, the experiments showed that 10% Cobalt-doped ZnO nanoparticles were a very effective catalyst for CIPF photodegradation. According to XRD, these NPs have a hexagonal Wurtzite structure with an average size of between 38.47 and 48.06 nm. Tauc plot displayed that the optical energy band-gap of ZnO NPs (3.21) slowly declines with Co doping (2.75 eV). The enhanced photocatalytic activity of Cobalt-doped ZnO nanoparticles, which avoids electron-hole recombination, is brought on by the implantation of Co. Within 90 min, a 30 mg/L solution of ciprofloxacin was destroyed (> 99%). The kinetics studies demonstrated that the first-order model, with R2 = 0.9703, is appropriate for illuminating the pace of reaction and quantity of CIPF elimination. The recycled Cobalt-doped zinc oxide nanoparticles enhanced photocatalytic performance toward CIPF for 3 cycles with the same efficiency. Furthermore, optimization of the 10% Cobalt-doped zinc oxide nanoparticles using a Central composite design (CCD) was also studied. The optimal parameters of pH 6.486, 134.39 rpm shaking speed, 54.071 mg catalyst dose, and 31.04 ppm CIPF initial concentration resulted in the highest CIPF degradation efficiency (93.99%). Artificial neural networks (ANN) were used to simulate the experimental data. The backpropagation technique was used to train the networks with 152 input-output patterns. After experimenting with various configurations, the best results with a correlation value (R2) of 0.9780 for data validation were obtained using a three-hidden layered network that included five, five, and eight neurons, respectively.
Collapse
Affiliation(s)
- Asmaa I Meky
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
| | - Howida A Fetouh
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amel M Ismail
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
2
|
Abid M, Iatsunskyi I, Coy E, Lesage G, Ben Haj Amara A, Bechelany M. Ag-BN/HNT-TiO 2 nanofibers produced by electrospinning as catalysts to remove acetaminophen. Heliyon 2024; 10:e24740. [PMID: 38312622 PMCID: PMC10834824 DOI: 10.1016/j.heliyon.2024.e24740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
In this study, we present a novel approach to enhancing the degradation of acetaminophen (ACT) using nanostructured hybrid nanofibers. The hybrid nanofibers were produced by employing both sol-gel and electrospinning methodologies, integrating precise quantities of silver (Ag) and boron nitride (BN) nanosheets into titanium oxide (TiO2) nanofibers and halloysite nanotubes (HNT). We extensively examined the morphology, structure, and optical properties of these materials by employing scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy in our analysis. In the case of the HNT-TiO2 composite, the introduction of Ag nanoparticles at concentrations of 0.5%, 1.5%, and 3% led to a significant improvement in photocatalytic activity. Under visible light exposure for 4 h, the photocatalytic activity increased from 63% (HNT-TiO2) to 78.92%, 91.21%, and 92.90%, respectively. This enhancement can be attributed to the role of Ag nanoparticles as co-catalysts, facilitating the separation of electrons and holes generated during the photocatalytic process. Furthermore, BN nanosheets served as co-catalysts, capitalizing on their distinct attributes, including exceptional thermal conductivity, chemical stability, and electrical insulation. The incorporation of BN nanosheets into the Ag (3%)/HNT-TiO2 composite at a concentration of 5% resulted in a remarkable increase in ACT degradation efficiency. The degradation efficiency improved from 59.47% to an impressive 99.29% within a 2-h irradiation period due to the presence of BN nanosheets. Toxicity and scavenging assays revealed that OH•-, O2•-, and h+ were the major contributors to ACT degradation. Moreover, across five consecutive cycles, the Ag-BN/HNT-TiO2 composite exhibited consistent and stable performance, underscoring the significant contributions of Ag and BN in augmenting the photocatalytic capabilities of the composite. Overall, our findings suggest that this novel hybrid nanofiber composite holds great promise for practical applications in environmental remediation due to its improved photocatalytic activity and stability.
Collapse
Affiliation(s)
- Mahmoud Abid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, 34730, Montpellier, France
- Laboratory of Resources, Materials & Ecosystem (RME), University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021, Tunisia
- CNRS, Grenoble INP, LMGP, Institute of Engineering, Université Grenoble Alpes, 38000, Grenoble, France
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznan, Poland
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, 34730, Montpellier, France
| | - Abdesslem Ben Haj Amara
- Laboratory of Resources, Materials & Ecosystem (RME), University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021, Tunisia
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, 34730, Montpellier, France
- Gulf University for Science and Technology, GUST, Kuwait
| |
Collapse
|
3
|
Hamzaoui S, Salah BB, Bouguerra S, Hamden K, Alghamdi OA, Miled N, Kossentini M. Design, synthesis and biological evaluation of new 1,ω-Bis-(5-alkyl-3-tosyl-1,3,4,2-triazaphospholino)alkanes as in vitro α-amylase and lipase inhibitors. Int J Biol Macromol 2023; 253:127195. [PMID: 37793521 DOI: 10.1016/j.ijbiomac.2023.127195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
A series of new 1,ω-bis-(5-alkyl-3-tosyl-1,3,4,2-triazaphospholino)alkanes 2 and 3 were obtained in excellent yields by the condensation of 1,ω-bis-(1-tosylamidrazone)alkanes 1 with two equivalent molars of Lawesson's Reagent (LR) and trisdimethylaminophosphine, respectively. All synthesized compounds were characterized by various spectroscopic techniques including IR, 1H NMR, 13C NMR and 31P NMR and elemental analysis. The newly synthesized compounds were evaluated against key enzymes related to diabetes and obesity such as α-amylase and lipase. This study showed that the compounds 3a and 2b are an excellent inhibitor of α-amylase (with IC50 = 18.8 mM) and lipase (with IC50 = 19 mM) respectively, as compared with standard, orlistat (IC50 = 22 mM). Among this series, compounds 3a and 2b with the CH3 or C2H5 group at position 6 were identified as the most potent inhibitors against α-amylase, and lipase enzymes. The remaining compounds were found to be moderately active. Further, molecular docking simulation studies were done to identify the interactions and binding mode of synthesized analogs at binding site of α-amylase and lipase enzymes.
Collapse
Affiliation(s)
- Salwa Hamzaoui
- Laboratory of Medicinal and Environnemental Chemistry, Higher Institute of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia
| | - Bochra Ben Salah
- Laboratory of Medicinal and Environnemental Chemistry, Higher Institute of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia.
| | - Soumaya Bouguerra
- Laboratory of Electrochimistry and Environmental, Higher Institute of Ingenirous of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia
| | - Othman A Alghamdi
- University of Jeddah, College of Science, Department of Biological Sciences, Jeddah, Saudi Arabia
| | - Nabil Miled
- University of Jeddah, College of Science, Department of Biological Sciences, Jeddah, Saudi Arabia; Functional Genomics and Plant Physiology Unit, Higher Institute of Biotechnology of Sfax, 3038 Sfax, Tunisia
| | - Mohamed Kossentini
- Laboratory of Medicinal and Environnemental Chemistry, Higher Institute of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia
| |
Collapse
|
4
|
Patel J, Singh KR, Singh AK, Singh J, Singh AK. Multifunctional Cu:ZnS quantum dots for degradation of Amoxicillin and Dye Sulphon Fast Black-F and efficient determination of urea for assessing environmental aspects. ENVIRONMENTAL RESEARCH 2023; 235:116674. [PMID: 37459950 DOI: 10.1016/j.envres.2023.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
This work is particularly aimed at the preparation of ZnS and Cu doped ZnS (Cu:ZnS) QDs by facile and easy technique, chemical precipitation method for the degradation of water pollutants and a simple scheme was proposed to prepare the urea-sensing system. The morphological and optical properties of the synthesized QDs was studied using high resolution transmission and scanning electron microscopes, X-ray diffraction, energy dispersive X-ray analysis, fluorescence and ultraviolet-visible spectroscopy, differential thermal and thermogravimetric analyses, Brunauer-Emmett-Teller analysis. The photocatalytic performance was systematically assessed by the photodegradation of an important pharmaceutical water pollutant, Amoxicillin (AMX) and a dye Fast Sulphon Black F (SFBF) in aqueous medium under UV light irradiation. Also, a very sensitive system was prepared by depositing the dots over an indium-tin-oxide (ITO) glass substrate for the sensing of biologically active molecule urea as it is an important monitor of public health in water and soil productivity. The results illustrated excellent photocatalytic efficiency (86.46% for AMX and 99.41% for SFBF) with stability up to four cycles of degradation reaction. The optimal photocatalyst dosage for achieving maximum removal of AMX was found to be 70 mg at a pH of 9.5, with a treatment time of 40 min. Similarly, for SFBF, the optimal photocatalyst dosage was determined to be 60 mg at pH 9, with a treatment time of 60 min. Further, the electrochemical analysis was done by fabricating Urease enzyme (UR)/Cu:ZnS QDs/ITO bioelectrode and then the fabricated bioelectrode, was utilized to determine the different concentrations of urea by cyclic voltammetry. Thus, the obtained limit of detection and sensitivity of the fabricated biosensing device for urea detection was obtained to be 0.0092 μM and 12 μA μM-1cm-2, respectively; under the optimized experimental conditions. Hence, it is anticipated that Cu:ZnS QDs can also successfully be applied as a promising material for fabrication of novel bioelectrode for urea determination and the biosensing platform is desirable and viable.
Collapse
Affiliation(s)
- Jyoti Patel
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Kshitij Rb Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India; Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Akhilesh Kumar Singh
- School of Material Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ajaya K Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India; School of Chemistry & Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
5
|
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1410. [PMID: 37895881 PMCID: PMC10610223 DOI: 10.3390/ph16101410] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Metal nanoparticles (NPs) have garnered considerable attention, due to their unique physicochemical properties, that render them promising candidates for various applications in medicine and industry. This article offers a comprehensive overview of the most recent advancements in the manufacturing, characterization, and biomedical utilization of metal NPs, with a primary focus on silver and gold NPs. Their potential as effective anticancer, anti-inflammatory, and antimicrobial agents, drug delivery systems, and imaging agents in the diagnosis and treatment of a variety of disorders is reviewed. Moreover, their translation to therapeutic settings, and the issue of their inclusion in clinical trials, are assessed in light of over 30 clinical investigations that concentrate on administering either silver or gold NPs in conditions ranging from nosocomial infections to different types of cancers. This paper aims not only to examine the biocompatibility of nanomaterials but also to emphasize potential challenges that may limit their safe integration into healthcare practices. More than 100 nanomedicines are currently on the market, which justifies ongoing study into the use of nanomaterials in medicine. Overall, the present review aims to highlight the potential of silver and gold NPs as innovative and effective therapeutics in the field of biomedicine, citing some of their most relevant current applications.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Monica Boev
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Denisa Batir-Marin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Gabriela Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Marius Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Anca Florentina Bucur
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| |
Collapse
|
6
|
Singh K, Dixit U, Lata M. Surface activity, kinetics, thermodynamics and comparative study of adsorption of selected cationic and anionic dyes onto H 3PO 4-functionalized bagasse from aqueous stream. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105927-105943. [PMID: 37718364 DOI: 10.1007/s11356-023-29870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
The discharge of dyes into the water body creates toxicity to aquatic organisms because of their aromatic structure and difficult degradation. So, the treatment of dye-contaminated wastewater is required before releasing it. In the present study, thermally treated (600 °C) and H3PO4 (55%)-functionalized bagasse, henceforth called thermochemically activated bagasse (TCAB), was synthesized as potential adsorbent for the effective removal of selected cationic and anionic dyes from their aqueous stream. TCAB characterization was done employing FT-IR, SEM, XRD, zeta potential, BET, and PZC techniques. The comparative study shows that the relative adsorption on TCAB followed the sequence, methyl red (185 mg/g) > safranin (178 mg/g) > congo red (146 mg/g) > brilliant green (139 mg/g) > malachite green (130 mg/g) > bromocresol green (94 mg/g). The adsorption efficiency was investigated concerning the effect of change in TCAB dose (0.05-0.3 g/100 mL), initial dye concentration (20-200 mg/L), pH (4.0-10.0), ionic strength (0.1-0.5 M KCl), urea concentration (0.1-0.5 M) and temperature (25-45 °C). The representative adsorption isotherms belong to typical L-type. The time-dependent dye removal was best explained by the pseudo-second-order (PSO) kinetic model (R2 = 0.9859-0.9991), while equilibrium data were best explained by the Freundlich model (R2 = 0.9881-0.9961). Thermodynamic study showed the spontaneous (ΔG0 <0) and exothermic nature (ΔH0 <0) of the adsorption of different cationic and anionic dyes. The cyclic adsorption ability of TCAB for different dyes was checked up to three cycles (185 to 168 mg/L for MR, 178 to 165 mg/L for SF, 146 to 130 mg/L for CR, 139 to 127 mg/L for BG, 130 to 114 mg/L for MG and 94 to 80 mg/L for BCG), and no significant decrease in the adsorption capacity was noticed. So, the present study provides valuable insights into the adsorption of cationic and anionic dyes onto H3PO4-functionalized bagasse. Addressing the adsorptive aspects enhances the clarity, reliability and applicability of the study's findings and contributes to its overall scientific impact.
Collapse
Affiliation(s)
- Kaman Singh
- Surface Science Laboratory, Department of Chemistry, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India.
| | - Utkarsh Dixit
- Surface Science Laboratory, Department of Chemistry, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Madhu Lata
- Surface Science Laboratory, Department of Chemistry, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
7
|
Reena VN, Kumar KS, Shilpa T, Aswati Nair R, Bhagyasree GS, Nithyaja B. Photocatalytic and Enhanced Biological Activities of Schiff Base Capped Fluorescent CdS Nanoparticles. J Fluoresc 2023; 33:1927-1940. [PMID: 36913162 DOI: 10.1007/s10895-023-03193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
In the present work, biocompatible CdS nanoparticles were synthesized using Schiff base ligand, 3-((2-(-(1-(2hydroxyphenyl)ethylidene)amino)ethyl)imino)-2-pentone, by a simple ultrasonic irradiation method. The structural, morphological, and optical properties were studied using XRD, SEM, TEM, UV-visible absorption, and photoluminescence (PL) spectra. The quantum confinement effect of the Schiff base capped CdS nanoparticles was confirmed by using UV-visible and PL spectrum analysis. This CdS nanoparticles were an effective photocatalyst for degrading rhodamine 6G and methylene blue with a 70% and 98% degradation capacity, respectively. Furthermore, the disc-diffusion method demonstrated that CdS nanoparticles inhibit G-positive bacteria and G-negative bacteria more effectively. These Schiff base capped CdS nanoparticles were taken for an in-vitro experiment with HeLa cells to exhibit the possibility of providing optical probes in biological applications and observed under a fluorescence microscope. In addition, MTT cell viability assays were carried out to investigate the cytotoxicity for 24 h. As a result of this study, 2.5 µg/ml doses of CdS nanoparticles are suitable for imaging and are effective in destroying HeLa cells. The present study suggests that the synthesized Schiff base capped CdS nanoparticles could be a potential photocatalyst, antibacterial agent, and biocompatible nanoparticle for bioimaging applications.
Collapse
Affiliation(s)
- V N Reena
- Photonic Materials Research Laboratory, Department of Physics, Government College Madappally, Vadakara, Kozhikode, 673102, Kerala, India.
- University of Calicut, Malappuram, 673635, Kerala, India.
| | - K Subin Kumar
- University of Calicut, Malappuram, 673635, Kerala, India
- Department of Chemistry, Government Arts and Science College Kozhikode, Kozhikode, 673018, Kerala, India
| | - T Shilpa
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - R Aswati Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - G S Bhagyasree
- Photonic Materials Research Laboratory, Department of Physics, Government College Madappally, Vadakara, Kozhikode, 673102, Kerala, India
- University of Calicut, Malappuram, 673635, Kerala, India
| | - B Nithyaja
- Photonic Materials Research Laboratory, Department of Physics, Government College Madappally, Vadakara, Kozhikode, 673102, Kerala, India
- University of Calicut, Malappuram, 673635, Kerala, India
| |
Collapse
|
8
|
Zong X, Huang M, Wen L, Li Y, Li L. Immobilized glucoamylase based on ZIF-8: Preparation, response surface optimization, characterization. J Food Sci 2023. [PMID: 37326335 DOI: 10.1111/1750-3841.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
The glucoamylase@ZIF-8 was prepared using ZIF-8 material as the carrier in this study. The preparation process was optimized by response surface methodology, and the stability of glucoamylase@ZIF-8 was determined. The material was characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the optimum preparation process of glucoamylase@ZIF-8 was 1.65 mol 2-methylimidazole, 5.85 mL glucoamylase, 33°C stirring temperature, 90 min stirring time, and 84.0230% ± 0.6006% embedding rate. At 100°C, the free glucoamylase completely lost its activity, whereas the glucoamylase@ZIF-8 still had a retained enzyme activity of 12.0123% ± 0.86158%; at pH 3-6, the highest activity of glucoamylase@ZIF-8 was 95.9531% ± 0.96181%, and about 80% of glucoamylase activity could be retained under alkaline conditions. When the ethanol concentration was 13%, the retained enzyme activity was 7.9316% ± 0.19805%, significantly higher than free enzymes. The Km of glucoamylase@ZIF-8 and free enzyme were 1235.6825 and 80.317 mg/mL, respectively. Vmax was 0.2453 and 0.149 mg/(mL min), respectively. The appearance, crystal strength, and thermal stability of glucoamylase@ZIF-8 were improved after optimization, and they had high reusability.
Collapse
Affiliation(s)
- Xuyan Zong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Min Huang
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Lei Wen
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Yuanyi Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Li Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| |
Collapse
|
9
|
El Sharkawy HM, Shawky AM, Elshypany R, Selim H. Efficient photocatalytic degradation of organic pollutants over TiO 2 nanoparticles modified with nitrogen and MoS 2 under visible light irradiation. Sci Rep 2023; 13:8845. [PMID: 37258591 DOI: 10.1038/s41598-023-35265-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Investigate the use of visible light to improve photocatalytic degradation of organic pollutants in wastewater. Nitrogen-doped titania and molybdenum sulfide nanocomposites (NTM NCs) with different weight ratios of MoS2 (1, 2, and 3 wt.%) synthesized by a solid state method applied to the photodegradation of methylene blue(MB) under visible light irradiation. The synthesized NTM composites were characterized by SEM, TEM, XRD, FT-IR, UV-Vis, DRS and PL spectroscopy. The results showed enhanced activity of NTM hybrid nanocrystals in oxidizing MB in water under visible light irradiation compared to pure TiO2. The photocatalytic performance of NTM samples increased with MoS2 content. The results show that the photodegradation efficiency of the TiO2 compound improved from 13 to 82% in the presence of N-TiO2 and to 99% in the presence of MoS2 containing N-TiO2, which is 7.61 times higher than that of TiO2. Optical characterization results show enhanced nanocomposite absorption in the visible region with long lifetimes between e/h+ at optimal N-TiO2/MoS2 (NTM2) ratio. Reusable experiments indicated that the prepared NTM NCs photocatalysts were stable during MB photodegradation and had practical applications for environmental remediation.
Collapse
Affiliation(s)
- Heba M El Sharkawy
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Amira M Shawky
- Sanitary and Environmental Institute (SEI), Housing and Building National Research Center (HBRC), Giza, 1770, Egypt
| | - Rania Elshypany
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Hanaa Selim
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| |
Collapse
|
10
|
Luo X, Du H, Zhang X, Tang B, Zhang M, Kang H, Ma Y. Enhanced adsorption and co-adsorption of heavy metals using highly hydrophilicity amine-functionalized magnetic hydrochar supported MIL-53(Fe)-NH 2: performance, kinetics, and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27740-5. [PMID: 37233931 DOI: 10.1007/s11356-023-27740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
It is a "kill two birds with one stone" method to convert invasive plants into hydrochar via hydrothermal carbonization as well as coinciding with 3R rules (reduction, recycling, and reuse). In this work, a series of hydrochars (pristine, modified, and composite) derived from invasive plants Alternanthera philoxeroides (AP) were prepared and applied to the adsorption and co-adsorption of heavy metals (HMs) such as Pb(II), Cr(VI), Cu(II), Cd(II), Zn(II), and Ni(II). The results show that MIL-53(Fe)-NH2- magnetic hydrochar composite (M-HBAP) displayed a strong affinity for HMs, which the maximum adsorption capacities for HMs were 153.80 (Pb(II)), 144.77 (Cr(VI)), 80.58 (Cd(II)), 78.62 (Cu(II)), 50.39 (Zn(II)), and 52.83(Ni(II)) mg/g (c0 = 200 mg/L, t = 24 h, T = 25 ℃, pH = 5,2,6,4,6,5). This may be because the doping of MIL-53(Fe)-NH2 enhanced the surface hydrophilicity of hydrochar, which allows hydrochar to disperse in the water within 0.12 s and possessed excellent dispersibility compared with pristine hydrochar (BAP) and amine-functionalized magnetic modified hydrochar (HBAP). Furthermore, the BET surface area of BAP was improved from 5.63 to 64.10 m2/g after doing MIL-53(Fe)-NH2. M-HBAP shows a strong adsorption effect on the single HMs system (52-153 mg/g), while it decreased significantly (17-62 mg/g) in the mixed HMs system due to the competitive adsorption. Cr(VI) can produce strong electrostatic interaction with M-HBAP, Pb(II) can react with CaC2O4 on the surface of M-HBAP for chemical precipitation, and other HMs can react with functional groups on the surface of M-HBAP for complexation and ion exchange. In addition, five adsorption-desorption cycle experiments and vibrating sample magnetometry (VSM) curves also proved the feasibility of the M-HBAP application.
Collapse
Affiliation(s)
- Xin Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Haiying Du
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
- Chengdu Yike Science and Technology Company Limited, Chengdu, Sichuan, China.
- Sichuan Keshengxin Environmental Technology Company, Chengdu, Sichuan, China.
| | - Xiaochao Zhang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Bo Tang
- Chengdu Yike Science and Technology Company Limited, Chengdu, Sichuan, China
| | - Meichen Zhang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Heng Kang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Yanqi Ma
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| |
Collapse
|
11
|
Liu J, Lu J, Li Z, Fan Y, Liu S. An ultra-small fluorescence zero-valent iron nanoclusters selectively kill gram-positive bacteria by promoting reactive oxygen species generation. Colloids Surf B Biointerfaces 2023; 227:113343. [PMID: 37182379 DOI: 10.1016/j.colsurfb.2023.113343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
A list of the most dangerous bacteria that are multiple-drug resistance has been published by WHO, among which are various Gram-positive bacteria related with serious healthcare and community-associated infection. An effort is called for developing new strategies to combat the resistance, and nanomaterial-based approaches provide an ideal potential to mitigate the antimicrobial resistance as an alternative to antibiotics. Nanoscale zero-valent iron particles exhibited a good antimicrobial activity by triggering Fenton reaction, however, no zero-valent iron nanoclusters are developed as antimicrobial medical materials. In this work, a novel ultra-small zero-valent iron nanoclusters (usZVIN) was synthesized by one-step reduction in aqueous solutions, which exhibited bright red fluorescence at 616 nm. Interestingly, the usZVIN displayed an excellent selectively antibacterial activity against Gram-positive bacteria, and little effects on Gram-negative bacteria. The killing efficiency of usZVIN against S. aureus can reach 100 % with a concentration of 40 μg mL-1 after 1 h incubation, whereas there is no killing effect of usZVIN against E.coli even with a concentration of 900 μg mL-1 for 4 h. The antimicrobial mechanism of usZVIN was demonstrated to be the intracellular reactive oxygen species (ROS) production triggered by usZVIN due to its excellent peroxidase-like activity. Collectively, our findings suggested that usZVIN is a good medical-material candidate for fighting against Gram-positive bacterial infections, especially when we need leave beneficial Gram-negative bacteria intact.
Collapse
Affiliation(s)
- Jidong Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Jia Lu
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Zhuang Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China.
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China.
| |
Collapse
|
12
|
Kumari T, Shukla V. Exploring the multipotentiality of plant extracts for the green synthesis of iron nanoparticles: A study of adsorption capacity and dye degradation efficiency. ENVIRONMENTAL RESEARCH 2023; 229:116025. [PMID: 37127105 DOI: 10.1016/j.envres.2023.116025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
The goal of the project was to create environmentally friendly and economically viable materials for thoroughly purifying contaminated water. An affordable, phytogenic, and multifunctional plant-based nanomaterial was prepared in this context. The work demonstrates an effective green synthesis method for producing iron nanoparticles (FeNPs) using six different plant extracts as a reducing agent. The characterization of green synthesized catalysts was concluded via Spectroscopy (tauc plot), XRD, FE-SEM, and FT-IR. The produced nanomaterial, which had an X-ray diffractogram (XRD) peak at 43.33⁰ and a size range of 1.82-63.63 nm, functioned as a highly effective nano-photocatalyst for the degradation of cationic dye. Due to the presence of a lower overall secondary metabolites quota, Ocimum sanctum plant extract reduced iron precursor produced the highest yield of dried NPs, followed by Azadirachta indica, Prosopis cineraria, Syzygium cumini, Citrus limon, and Salvadora oleoides. Further, the synthesized catalyst was tested for its effectiveness against gentian violet dye degradation. Ocimum sanctum plant extract reduced iron precursor produced the highest yield of dried NPs, followed by Azadirachta indica, Prosopis cineraria, Syzygium cumini, Citrus limon, and Salvadora oleoides, in that order. The dye removal efficiency of nanoparticles was 51% (Azadirachta indica), 83% (Ocimum sanctum), 59% (Syzygium cumini), 40% (Salvadora oleoides), 59% (Prosopis cineraria), and 63% (Citrus limon) after 12 h of visible light irradiation. The key factor in the process of deterioration is •O2-. As a result, the nanoparticles can be used in antibacterial and photocatalytic processes. The reduced band gap was responsible for the increased photocatalytic quantity. The maximum adsorption capacity at the time of equilibrium was obtained in order as Ocimum sanctum > Citrus limon > Prosopis cineraria > Syzygium cumini > Azadirachta indica > Salvadora oleoides. The simplicity of production, low cost, magnetic property, and high adsorption capacity will increase the efficacy of the water treatment method. This article reports on the creation of unique iron nanoparticles and their use in the purification of water.
Collapse
|
13
|
Refaat Z, Saied ME, Naga AOAE, Shaban SA, Hassan HB, Shehata MR, Kady FYE. Mesoporous carbon nitride supported MgO for enhanced CO 2 capture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53817-53832. [PMID: 36864335 PMCID: PMC10119236 DOI: 10.1007/s11356-023-26013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The growing concern about the environmental consequences of anthropogenic CO2 emissions significantly stimulated the research of low-cost, efficient, and recyclable solid adsorbents for CO2 capture. In this work, a series of MgO-supported mesoporous carbon nitride adsorbents with different MgO contents (xMgO/MCN) was prepared using a facile process. The obtained materials were tested for CO2 capture from 10 vol% CO2 mixture gas with N2 using a fixed bed adsorber at atmospheric pressure. At 25 ºC, the bare MCN support and unsupported MgO samples demonstrated CO2 capture capacities of 0.99, and 0.74 mmol g-1, respectively, which were lower than those of the xMgO/MCN composites.The incorporation of MgO into the MCN improved the CO2 uptake, and the 20MgO/MCN exhibited the highest CO2 capture capacity of 1.15 mmol g-1 at 25 °C. The improved performance of the 20MgO/MCN nanohybrid can be possibly assigned to the presence of high content of highly dispersed MgO NPs along with its improved textural properties in terms of high specific surface area (215 m2g-1), large pore volume (0.22 cm3g-1), and abundant mesoporous structure. The efffects of temperature and CO2 flow rate were also investigated on the CO2 capture performance of 20MgO/MCN. Temperature was found to have a negative influence on the CO2 capture capacity of the 20MgO/MCN, which decreased from 1.15 to 0.65 mmol g-1with temperature rise from 25 C to 150º C, due to the endothermicity of the process. Similarly, the capture capacity decreased from 1.15 to 0.54 mmol g-1 with the increase of the flow rate from 50 to 200 ml minute-1 respectively. Importantly, 20MgO/MCN showed excellent reusability with consistent CO2 capture capacity over five sequential sorption-desorption cycles, suggesting its suitability for the practical capture of CO2.
Collapse
Affiliation(s)
- Zakaria Refaat
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed El Saied
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Ahmed O Abo El Naga
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Seham A Shaban
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Hanaa B Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Fathy Y El Kady
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
14
|
Meshkini F, Moradi A, Hosseinkhani S. Upregulation of RIPK1 implicates in HEK 293T cell death upon transient transfection of A53T-α-synuclein. Int J Biol Macromol 2023; 230:123216. [PMID: 36634793 DOI: 10.1016/j.ijbiomac.2023.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SN) is the central protein in synucleinopathies including Parkinson's disease. Nevertheless, the molecular mechanisms through which α-SN leads to neuronal death remain unclear. METHODS To elucidate the relationship between α-SN and apoptosis, some indicators of the intrinsic and extrinsic apoptotic cell death were assessed in normal and a stable HEK293T cell line expressing firefly luciferase after transfection with the wild-type (WT) and A53T mutant α-SN. RESULTS Opposite to WT-α-SN, overexpression of A53T-α-SN resulted in enhanced expression of almost two fold for RIPK1 (93.0 %), FADD (45 %), Caspase-8, and Casp-9 activity (52.0 %) in measured time. Transfection of both WT-α-SN and A53T-α-SN showed an increase in the Casp-3/Procasp-3 ratio (WT: 60.5 %; A53T: 41.0 %), Casp-3 activity (WT: 65.0 %; A53T: 20.5 %), and a decrease in luciferase activity (WT: 50 %; A53T: 34.8 %). Overexpression of A53T-α-SN brought about with more cell death percentage compared to WT-α-SN within 36 h. No significant alteration in cytochrome c and reactive oxygen species release into cytosol were observed for both WT-α-SN and A53T-α-SN. CONCLUSION Altogether, these findings highlight the link between disease related mutants of α-SN (like A53T-α-SN) in triggering of RIPK1-dependent extrinsic apoptotic pathway in cell death during neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Silver/graphene oxide nanocomposite: process optimization of mercury sensing and investigation of crystal violet removal. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
16
|
Multipurpose properties the Z-scheme dimanganese copper oxide/cadmium sulfide nanocomposites for photo- or photoelectro-catalytic, antibacterial applications, and thiamine detection process. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Synthesis of biologically active tungsten nanoparticles stabilized by toluene soluble Vitex negundo extracts and evaluation of their antimicrobial, antioxidant and anticancer properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Bioinspired Green Synthesis of Bimetallic Iron and Zinc Oxide Nanoparticles Using Mushroom Extract and Use against Aspergillus niger; The Most Devastating Fungi of the Green World. Catalysts 2023. [DOI: 10.3390/catal13020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
In the current study, a macro fungus was collected and identified by using morphological and molecular tools to study the ITS region, which has been described as a universal barcode marker during molecular investigation for the identification of fungi. Based on morphology and molecular evidence, the collected fungus was identified as Daedalea Mushroom. The identified fungus was used for the synthesis of Iron and ZnO nanoparticles as an eco-friendly agent for nanoparticle synthesis. The synthesized nanoparticles were confirmed by, Fourier transfer infrared spectroscopy analysis (FTIR), X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), and scanning electron microscopy analysis (SEM). All these characterizations revealed the synthesis of Iron and ZnO NPs with an irregular shape and a size of 16.8 nm. The zinc oxide nanoparticles had a size in the range of 18.53 nm. Daedalea Mushroom was used for the first time to synthesize Iron and zinc nanoparticles. The mycosynthesized Iron and ZnO NPs were assessed as control agents at various dosage rates against the pathogenic fungus Aspergillus niger, which was isolated from an apple and identified using its morphology. At higher concentrations (0.75 mg/mL), the iron nanoparticles inhibited fungal growth by 72%, whereas at lower concentrations (0.25 mg/mL), they inhibited fungal growth by 60%. ZnO NPs showed good antifungal activity at different concentrations including growth inhibition at 0.25 mg/mL (88%), 1.0 mg/mL (68%), 0.75 mg/mL (75%), and 0.5 mg/mL (70%) concentrations of ZnO NPs. However, the maximum growth inhibition of ZnO NPs was observed at 0.25 mg/mL (88%) concentration and minimum growth inhibition at 0.1 mg/mL (22%). The current study concludes that Daedalea Mushroom works as a novel and eco-friendly source for the synthesis of Iron and ZnO NPs with prominent antifungal activities that can be further applied in different fields.
Collapse
|
19
|
A novel BN/TiO2/HNT nanocomposite for photocatalytic applications fabricated by electrospinning. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Lei C, Sun N, Wu H, Zhao Y, Yu C, Janani BJ, Fakhri A. Bio-photoelectrochemical degradation, and photocatalysis process by the fabrication of copper oxide/zinc cadmium sulfide heterojunction nanocomposites: Mechanism, microbial community and antifungal analysis. CHEMOSPHERE 2022; 308:136375. [PMID: 36088970 DOI: 10.1016/j.chemosphere.2022.136375] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, the fabrication of the CuO on ZnCdS as a heterojunction nanocomposites were conducted by hydrothermal method and the synthesis method was confirmed by the XRD, XPS, EDS, UV-vis spectrum analysis. The CuO/ZnCdS was used as a photocathode in the bio-photoelectrochemical system (BPES) for tetracycline (TC) degradation under solar irradiation. The CuO/ZnCdS photocathode indicated substantial photocatalytic efficiency for TC degradation, due to the fast separation and transfer of photogenerated carriers. The ESR test evaluates the mechanism of degradation, and shows that ·OH, and ·O2- were contributed to TC degradation. The TC degradation was 1.59 times higher than the unilluminated process (98.72% vs 61.71). The photocatalysis test shows that the TC was degraded about 90.5% in 1.5 h. Then, the synthesized CuO/ZnCdS nanocomposites were studied for the biological application such as antifungal activities. CuO/ZnCdS nanocomposites depicted substantial antimicrobial activity versus Candida-albicans by in vitro process. Therefore, this study suggests the novel system for the antibiotics degradation, and as antifungal application.
Collapse
Affiliation(s)
- Chao Lei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Nabo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Huizhen Wu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yonggang Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Cun Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | | | - Ali Fakhri
- Department of Chemistry, Academy of Materials Science, Navi Mumbai, India
| |
Collapse
|
21
|
Liu Z, Hadi MA, Aljuboory DS, Ali FA, Jawad MA, Al-Alwany A, Hadrawi SK, Mundher T, Riadi Y, Amer RF, Fakhri A. High efficiency of Ag 0 decorated Cu 2MoO 4 nanoparticles for heterogeneous photocatalytic activation, bactericidal system, and detection of glucose from blood sample. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112571. [PMID: 36215792 DOI: 10.1016/j.jphotobiol.2022.112571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The novel Ag0/Cu2MoO4 nanoparticles was simply synthesized via chemical method. Ag/Cu2MoO4 nanoparticles was characterized by FESEM image, XRD curve, UV-vis spectroscopy, BET analysis, and XPS spectrum. XRD pattern depicts that the cubic crystalline phase of particles. The band gap of Ag/Cu2MoO4 nanoparticles was achieved to 2.04 eV, which that depicted the best activity under visible light irradiation. Ag/Cu2MoO4 nanoparticles exhibits 99.74% degradation under light and persulfate ion which was higher response than Cu2MoO4 nanoparticles (83.56%) under this condition. The scavenging test indicates the important reactive species in removal process were •OH, and •SO4-. The Ag/Cu2MoO4 nanoparticles was indicated highly photo-stability for the MG degradation after 5th cycle. Ag/Cu2MoO4 exhibits substantial antibacterial properties against P. aeruginosa and S. pneumoniae. Moreover, Ag/Cu2MoO4 nanoparticles was experimented to peroxidase-like performance for the colorimetric detection of glucose with the Limit of Detection about 52.23 nM.
Collapse
Affiliation(s)
- Zhiming Liu
- Department of Stomatology, RENMIN Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | | | - Dhuha Salman Aljuboory
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Fattma A Ali
- Medical Microbiology Department, Hawler Medical University, College of Health Sciences
| | | | | | - Salema K Hadrawi
- Refrigeration and Air-conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq; Computer Engineering Department, Imam Reza University, Mashhad, Iran
| | - Tabark Mundher
- Medical laboratory technology, Ashur University College, Baghdad, Iraq
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Ali Fakhri
- Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| |
Collapse
|