1
|
Ali O, Okumura B, Shintani Y, Sugiura S, Shibata A, Higashi SL, Ikeda M. Oxidation-Responsive Supramolecular Hydrogels Based on Glucosamine Derivatives with an Aryl Sulfide Group. Chembiochem 2024; 25:e202400459. [PMID: 38924281 DOI: 10.1002/cbic.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular hydrogels can be obtained via self-assembly of small molecules in aqueous environments. In this study, we describe the development of oxidation-responsive supramolecular hydrogels comprising glucosamine derivatives with an aryl sulfide group. We demonstrate that hydrogen peroxide can induce a gel-sol transition through the oxidation of the sulfide group to the corresponding sulfoxide. Furthermore, we show that this oxidation responsiveness can be extended to photo-responsiveness with the aid of a photosensitizer.
Collapse
Affiliation(s)
- Onaza Ali
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Bioru Okumura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuki Shintani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shintaro Sugiura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
2
|
Wojnárovits L, Takács E. Rate constants of dichloride radical anion reactions with molecules of environmental interest in aqueous solution: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41552-41575. [PMID: 34086177 PMCID: PMC8354983 DOI: 10.1007/s11356-021-14453-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/13/2021] [Indexed: 05/14/2023]
Abstract
Natural waters, water droplets in the air at coastal regions and wastewaters usually contain chloride ions (Cl-) in relatively high concentrations in the milimolar range. In the reactions of highly oxidizing radicals (e.g., •OH, •NO3, or SO4•-) in the nature or during wastewater treatment in advanced oxidation processes the chloride ions easily transform to chlorine containing radicals, such as Cl•, Cl2•-, and ClO•. This transformation basically affects the degradation of organic molecules. In this review about 400 rate constants of the dichloride radical anion (Cl2•-) with about 300 organic molecules is discussed together with the reaction mechanisms. The reactions with phenols, anilines, sulfur compounds (with sulfur atom in lower oxidation state), and molecules with conjugated electron systems are suggested to take place with electron transfer mechanism. The rate constant is high (107-109 M-1 s-1) when the reduction potential the one-electron oxidized species/molecule couple is well below that of the Cl2•-/2Cl- couple.
Collapse
Affiliation(s)
- László Wojnárovits
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121 Konkoly-Thege Miklós út, Budapest, 29-33, Hungary
| | - Erzsébet Takács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121 Konkoly-Thege Miklós út, Budapest, 29-33, Hungary.
| |
Collapse
|
3
|
Menachery SPM, Nguyen TP, Gopinathan P, Aravind UK, Aravindakumar CT. Exploring the mechanism of diphenylmethanol oxidation: A combined experimental and theoretical approach. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Menachery SPM, Nair SR, Nair PG, Aravind UK, Aravindakumar CT. Transformation Reactions of Radicals from the Oxidation of Diphenhydramine: Pulse Radiolysis and Mass Spectrometric Studies. ChemistrySelect 2016. [DOI: 10.1002/slct.201600103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sunil Paul M. Menachery
- School of Environmental Sciences; Mahatma Gandhi University; Priyadarsini Hills Kottayam, Kerala India
| | - Sreekanth R. Nair
- School of Chemical Sciences; Mahatma Gandhi University; Priyadarsini Hills Kottayam, Kerala India
| | - Pramod G. Nair
- Department of Chemistry; N.S.S. Hindu College; Changanachery Kerala India
| | - Usha K. Aravind
- Advanced Centre of Environmental Studies and Sustainable Development (ACESSD); Mahatma Gandhi University; Priyadarsini Hills Kottayam, Kerala India
| | - Charuvila T. Aravindakumar
- School of Environmental Sciences; Mahatma Gandhi University; Priyadarsini Hills Kottayam, Kerala India
- Inter University Instrumentation Centre (IUIC); Mahatma Gandhi University; Priyadarsini Hills Kottayam, Kerala India
| |
Collapse
|
5
|
Osiewała L, Socha A, Wolszczak M, Rynkowski J. Radiolysis of sodium p-cumenesulfonate in aqueous solution. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2013.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Sunil Paul MM, Aravind UK, Pramod G, Aravindakumar CT. Oxidative degradation of fensulfothion by hydroxyl radical in aqueous medium. CHEMOSPHERE 2013; 91:295-301. [PMID: 23273737 DOI: 10.1016/j.chemosphere.2012.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 06/01/2023]
Abstract
Oxidative degradation of fensulfothion, a model organophosphorus compound, has been investigated by pulse radiolysis and H2O2/UV photolysis. A nearly complete transformation of fensulfothion was observed within 4min of irradiation. Very little Total Organic Carbon (TOC) reduction was obtained at this time scale. When the product studies at this stage were conducted using LC-MS/MS analyses, nearly 20 transformation products were obtained. The entire products were identified as from the reaction of OH with fensulfothion or with some of its initially transformed products. Nearly 80% reduction in TOC was observed when photolysis was conducted using higher concentrations of H2O2 at longer time scale. A reaction rate constant (bimolecular) of 1.10×10(10)dm(3)mol(-1)s(-1) was obtained for the reaction of OH with fensulfothion using pulse radiolysis technique. The transient absorption spectrum obtained from the reaction of OH has a maximum at 280nm and a weak, broad maximum around 500nm along with a small shoulder around 340nm. The intermediate spectrum is assigned to the radical cation of fensulfothion (3) and the hydroxyl radical adducts (1 and 2). This assignment is supported by the intermediate spectrum (λmax at 280nm) from the reaction of sulfate radical anion (SO4(-)) (k2=3.20×10(9)dm(3)mol(-1)s(-1)) which is a one electron oxidant. It is thus demonstrated that the combination of both pulse radiolysis and the product estimation using LC-MS/MS is ideal in probing the complete mechanism which is very important in the mineralization reactions using Advanced Oxidation Processes.
Collapse
Affiliation(s)
- M M Sunil Paul
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India.
| | | | | | | |
Collapse
|
7
|
Lanzalunga O, Lapi A. Recent photo- and radiation chemical studies of sulfur radical cations. J Sulphur Chem 2011. [DOI: 10.1080/17415993.2011.619536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Osvaldo Lanzalunga
- a Dipartimento di Chimica and IMC-CNR, Sezione Meccanismi di Reazione , Università “La Sapienza” , P.le A. Moro, 5 I-00185 , Rome , Italy
| | - Andrea Lapi
- a Dipartimento di Chimica and IMC-CNR, Sezione Meccanismi di Reazione , Università “La Sapienza” , P.le A. Moro, 5 I-00185 , Rome , Italy
| |
Collapse
|
8
|
Gaikwad P, Priyadarsini KI, Naumov S, Rao BSM. Radiation and quantum chemical studies of chalcone derivatives. J Phys Chem A 2010; 114:7877-85. [PMID: 20617801 DOI: 10.1021/jp103382x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of oxidizing radicals ((*)OH, Br(2)(*-), and SO(4)(*-)) with -OH-, -CH(3)-, or -NH(2)-substituted indole chalcones and hydroxy benzenoid chalcones were studied by radiation and quantum chemical methods. The (*)OH radical was found to react by addition at diffusion-controlled rates (k = 1.1-1.7 x 10(10) dm(3) mol(-1) s(-1)), but Br(2)(*-) radical reacted by 2 orders of magnitude lower. Quantum chemical calculations at the B3LYP/6-31+G(d,p) level of theory have shown that the (C2-OH)(*), (C11-OH)(*), and (C10-OH)(*) adducts of the indole chalcones and the (C7-OH)(*) and (C8-OH)(*) adducts of the hydroxy benzenoid chalcones are more stable with DeltaH = -39 to -28 kcal mol(-1) and DeltaG = -32 to -19 kcal mol(-1). This suggests that (*)OH addition to the alpha,beta-unsaturated bond is a major reaction channel in both types of chalcones and is barrierless. The stability and lack of dehydration of the (*)OH adducts arise from two factors: strong frontier orbital interaction due to the low energy gap between interacting orbitals and the negligible Coulombic repulsion due to small absolute values of Mulliken charges. The transient absorption spectrum measured in the (*)OH radical reaction with all the indole chalcone derivatives exhibited a maximum at 390 nm, which is in excellent agreement with the computed value (394 nm). The formation of three phenolic products under steady-state radiolysis is in line with the three stable (*)OH adducts predicted by theory. Independent of the substituent, identical spectra (lambda(max) = 330-360 and approximately 580 nm) were obtained on one-electron oxidation of the three indole chalcones. MO calculations predict the deprotonation from the -NH group is more efficient than from the substituent due to the larger electron density on the N1 atom forming the chalcone indolyl radical. Its reduction potential was determined to be 0.56 V from the ABTS(*-)/ABTS(2-) couple. In benzenoid chalcones, the (*)OH adduct spectrum is characterized by a peak at 270 nm and a broad maximum centered in the range 430-450 nm with an intense bleaching at 340 nm. The spectrum formed by electron transfer in these derivatives with lambda(max) = 280 and 380 nm (epsilon(280) = 5000 dm(3) mol(-1) cm(-1) and epsilon(380) = 700 dm(3) mol(-1) cm(-1)) was assigned to its phenoxyl radical. Our pulse radiolysis experiments in combination with quantum chemical calculations demonstrate that chalcones are efficient scavengers of damaging oxyl radicals.
Collapse
Affiliation(s)
- P Gaikwad
- National Centre for Free Radical Research, Department of Chemistry, University of Pune, Pune 411 007, India
| | | | | | | |
Collapse
|
9
|
Shirdhonkar M, Mohan H, Maity D, Rao B. Oxidation of phenyl vinyl sulphide and phenyl vinyl sulphoxide in aqueous solution: A pulse radiolysis and theoretical study. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.07.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|