1
|
Kechiche A, Al Shehimy S, Khrouz L, Monnereau C, Bucher C, Parola S, Bessmertnykh-Lemeune A, Rousselin Y, Cheprakov AV, Nasri H. Phosphonate-substituted porphyrins as efficient, cost-effective and reusable photocatalysts. Dalton Trans 2024; 53:7498-7516. [PMID: 38596893 DOI: 10.1039/d4dt00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Recent advances in visible light photocatalysis represent a significant stride towards sustainable catalytic chemistry. However, its successful implementation in fine chemical production remains challenging and requires careful optimization of available photocatalysts. Our work aims to structurally modify bioinspired porphyrin catalysts, addressing issues related to their laborious synthesis and low solubility, with the goal of increasing their efficiency and developing reusable catalytic systems. We have demonstrated the catalytic potential of readily available meso-tetrakis[4-(diethoxyphosphoryl)phenyl]porphyrins (M(TPPP)). Novel metal (Pd(II), Co(II) and In(III)) complexes with this ligand were prepared in good yields. These chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence) and electrochemical methods. The introduction of phosphonate groups on the phenyl substituents of meso-tetraphenylporphyrins (M(TPP)) improves solubility in polar organic solvents without significantly altering the photophysical properties and photostability of complexes. This structural modification also leads to easier reductions and harder oxidations of the macrocycle for all investigated complexes compared to the corresponding TPP derivatives. The free base porphyrin, zinc(II), palladium(II), and indium(III) complexes were studied as photocatalysts for oxidation of sulfides to sulfoxides using molecular oxygen as a terminal oxidant. Both dialkyl and alkyl aryl sulfides were quantitatively transformed into sulfoxides under blue LED irradiation in the acetonitrile-water mixture (10 : 1 v/v) with a low loading (0.005-0.05 mol%) of porphyrin photocatalysts, where H2(TPPP) and Pd(TPPP) were found to be the most efficient. The reaction mechanism was studied using photoluminescence and EPR spectroscopies. Then, to access reusable catalysts, water-soluble derivatives bearing phosphonic acid groups, H2(TPPP-A) and Pd(TPPP-A), were prepared in high yields. These compounds were characterized using spectroscopic methods. Single-crystal X-ray diffraction analysis of Pd(TPPP-A) reveals that the complex forms a 3D hydrogen-bonded organic framework (HOF) in the solid state. Both H2(TPPP-A) and Pd(TPPP-A) were found to catalyze the photooxidation of sulfides by molecular oxygen in the acetonitrile-water mixture (1 : 1 v/v), while only Pd(TPPP-A) resulted in selective production of sulfoxides. The complex Pd(TPPP-A) was easily recovered through extraction in the aqueous phase and successfully reused in five consecutive cycles of the sulfoxidation reaction.
Collapse
Affiliation(s)
- Azhar Kechiche
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Shaymaa Al Shehimy
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Lhoussain Khrouz
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Cyrille Monnereau
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Christophe Bucher
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Stephane Parola
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Alla Bessmertnykh-Lemeune
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21078 Dijon, France
| | - Andrey V Cheprakov
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia
| | - Habib Nasri
- University of Monastir, Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
2
|
Pucelik B, Barzowska A, Sułek A, Werłos M, Dąbrowski JM. Refining antimicrobial photodynamic therapy: effect of charge distribution and central metal ion in fluorinated porphyrins on effective control of planktonic and biofilm bacterial forms. Photochem Photobiol Sci 2024; 23:539-560. [PMID: 38457119 DOI: 10.1007/s43630-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
- Sano Centre for Computational Medicine, Kraków, Poland.
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Sano Centre for Computational Medicine, Kraków, Poland
| | - Mateusz Werłos
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
3
|
Pujari AK, Kaur R, Reddy YN, Paul S, Gogde K, Bhaumik J. Design and Synthesis of Metalloporphyrin Nanoconjugates for Dual Light-Responsive Antimicrobial Photodynamic Therapy. J Med Chem 2024; 67:2004-2018. [PMID: 38241140 DOI: 10.1021/acs.jmedchem.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Antimicrobial photodynamic therapy (APDT) utilizes photosensitizers (PSs) that eradicate a broad spectrum of bacteria in the presence of light and molecular oxygen. On the other hand, some light sources such as ultraviolet (UVB and UVC) have poor penetration and high cytotoxicity, leading to undesired PDT of the PSs. Herein, we have synthesized conjugatable mesosubstituted porphyrins and extensively characterized them. Time-dependent density functional theory (TD-DFT) calculations revealed that metalloporphyrin EP (5) is a suitable candidate for further applications. Subsequently, the metalloporphyrin was conjugated with lignin-based zinc oxide nanocomposites (ZnOAL and ZnOKL) to develop hydrophilic nanoconjugates (ZnOAL@EP and ZnOKL@EP). Upon dual light (UV + green light) exposure, nanoconjugates showed enhanced singlet oxygen generation ability and also demonstrated pH responsiveness. These nanoconjugates displayed significantly improved APDT efficiency (4-7 fold increase) to treat bacterial infection under dual light irradiation.
Collapse
Affiliation(s)
- Anil Kumar Pujari
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, S. A. S. Nagar, Mohali, Punjab 140306, India
| | - Ravneet Kaur
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
| | - Yeddula Nikhileshwar Reddy
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, S. A. S. Nagar, Mohali, Punjab 140306, India
| | - Shatabdi Paul
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Kunal Gogde
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Jayeeta Bhaumik
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
| |
Collapse
|
4
|
Pham TC, Hoang TTH, Tran DN, Kim G, Nguyen TV, Pham TV, Nandanwar S, Tran DL, Park M, Lee S. Imidazolium-Based Heavy-Atom-Free Photosensitizer for Nucleus-Targeted Fluorescence Bioimaging and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47969-47977. [PMID: 37812505 DOI: 10.1021/acsami.3c10200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The development of heavy-atom-free photosensitizers (PSs) for photodynamic therapy (PDT) has encountered significant challenges in achieving simultaneous high fluorescence emission and reactive oxygen species (ROS) generation. Moreover, the limited water solubility of these PSs imposes further limitations on their biomedical applications. To overcome these obstacles, this study presents a molecular design strategy employing hydrophilic heavy-atom-free PSs based on imidazolium salts. The photophysical properties of these PSs were comprehensively investigated through a combination of experimental and theoretical analyses. Notably, among the synthesized PSs, the ethylcarbazole-naphthoimidazolium (NI-Cz) conjugate exhibited efficient fluorescence emission (ΦF = 0.22) and generation of singlet oxygen (ΦΔ = 0.49), even in highly aqueous environments. The performance of NI-Cz was validated through its application in fluorescence bioimaging and PDT treatment in HeLa cells. Furthermore, NI-Cz holds promise for two-photon excitation and type I ROS generation, nucleus localization, and selective activity against Gram-positive bacteria, thereby expanding its scope for the design of heavy-atom-free PSs and phototheranostic applications.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | | | - Dung Ngoc Tran
- Faculty of Chemistry, Hanoi National University of Education, Hanoi 100000, Vietnam
| | - Gun Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Science and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Trang Van Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Thong Van Pham
- R&D Center, Vietnam Education and Technology Transfer JSC, Cau Giay, Hanoi 100000, Vietnam
| | - Sondavid Nandanwar
- Eco-friendly New Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon City 34141, Republic of Korea
| | - Dai Lam Tran
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Myeongkee Park
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
5
|
Abbas G, Alibrahim F, Kankouni R, Al-Belushi S, Al-Mutairi DA, Tovmasyan A, Batinic-Haberle I, Benov L. Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins. Free Radic Res 2023; 57:487-499. [PMID: 38035627 DOI: 10.1080/10715762.2023.2288997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
Coordination of metal ions by the tetrapyrrolic macrocyclic ring of porphyrin-based photosensitizers (PSs) affects their photophysical properties and consequently, their photodynamic activity. Diamagnetic metals increase the singlet oxygen quantum yield while paramagnetic metals have the opposite effect. Since singlet oxygen is considered the main cell-damaging species in photodynamic therapy (PDT), the nature of the chelated cation would directly affect PDT efficacy. This expectation, however, is not always supported by experimental results and numerous exceptions have been reported. Understanding the effect of the chelated metal is hindered because different chelators were used. The aim of this work was to investigate the effect of the nature of chelated cation on the photophysical and photodynamic properties of metalloporphyrins, using the same tetrapyrrole core as a chelator of Ag(II), Cu(II), Fe(III), In(III), Mn(III), or Zn(II). Results demonstrated that with the exception of Ag(II), all paramagnetic metalloporphyrins were inefficient as generators of singlet oxygen and did not act as PSs. In contrast, the coordination of diamagnetic ions produced highly efficient PSs. The unexpected photodynamic activity of the Ag(II)-containing porphyrin was attributed to reduction of the chelated Ag(II) to Ag(I) or to demetallation of the complex, caused by cellular reductants and/or by exposure to light. Our results indicate that in biological systems, where PSs localize to various organelles and are subjected to the action of enzymes, reactive metabolites, and reducing or oxidizing agents, their physicochemical and photosensitizing properties change. Consequently, the photophysical properties alone cannot predict the anticancer efficacy of a PS.
Collapse
Affiliation(s)
- Ghadeer Abbas
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fatemah Alibrahim
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Rawan Kankouni
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Sara Al-Belushi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Dalal A Al-Mutairi
- Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Artak Tovmasyan
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
6
|
Martin SM, Repa GM, Hamburger RC, Pointer CA, Ward K, Pham TN, Martin MI, Rosenthal J, Fredin LA, Young ER. Elucidation of complex triplet excited state dynamics in Pd(II) biladiene tetrapyrroles. Phys Chem Chem Phys 2023; 25:2179-2189. [PMID: 36594369 DOI: 10.1039/d2cp04572a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pd(II) biladienes have been developed over the last five years as non-aromatic oligotetrapyrrole complexes that support a rich triplet photochemistry. In this work, we have undertaken the first detailed photophysical interrogation of three homologous Pd(II) biladienes bearing different combinations of methyl- and phenyl-substituents on the frameworks' sp3-hybridized meso-carbon (i.e., the 10-position of the biladiene framework). These experiments have revealed unexpected excited-state dynamics that are dependent on the wavelength of light used to excite the biladiene. More specifically, transient absorption spectroscopy revealed that higher-energy excitation (λexc ∼ 350-500 nm) led to an additional lifetime (i.e., an extra photophysical process) compared to experiments carried out following excitation into the lowest-energy excited states (λexc = 550 nm). Each Pd(II) biladiene complex displayed an intersystem crossing lifetime on the order of tens of ps and a triplet lifetime of ∼20 μs, regardless of the excitation wavelength. However, when higher-energy light is used to excite the complexes, a new lifetime on the order of hundreds of ps is observed. The origin of the 'extra' lifetime observed upon higher energy excitation was revealed using density functional theory (DFT) and time-dependent DFT (TDDFT). These efforts demonstrated that excitation into higher-energy metal-mixed-charge-transfer excited states with high spin-orbit coupling to higher energy metal-mixed-charge-transfer triplet states leads to the additional excitation deactivation pathway. The results of this work demonstrate that Pd(II) biladienes support a unique triplet photochemistry that may be exploited for development of new photochemical schemes and applications.
Collapse
Affiliation(s)
- Shea M Martin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Gil M Repa
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Robert C Hamburger
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Craig A Pointer
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Kaytlin Ward
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Maxwell I Martin
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| |
Collapse
|
7
|
Ledwaba MM, Magaela NB, Ndlovu KS, Mack J, Nyokong T, Managa M. Photophysical and in vitro photoinactivation of Escherichia coli using cationic 5,10,15,20-tetra(pyridin-3-yl) porphyrin and Zn(II) derivative conjugated to graphene quantum dots. Photodiagnosis Photodyn Ther 2022; 40:103127. [PMID: 36162756 DOI: 10.1016/j.pdpdt.2022.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Pathogenic microorganisms may continue causing infection through the transfer of antibiotic resistance genes. As a result, the efficacy of pharmaceuticals in microbial inactivation is deteriorating. The present study was conducted to investigate the antimicrobial activity of neutral and quaternized free base and Zn 5,10,15,20-tetra(pyridin-3-yl) porphyrins on Escherichia coli (E. coli), a gram-negative bacterium that causes cholecystitis, pneumonia and urinary tract infections. Conjugation of the porphyrin to graphene quantum dots (GQDs) was implemented to enhance photocatalysis and reactive oxygen species generation. Density functional theory (DFT) geometry optimizations for free base and Zn porphyrin based on the B3LYP (Becke 3-Parameter (Exchange), Lee, Yang and Parr) functional of the Gaussian09 program package and Time-dependent density-functional theory (TD-DFT) calculations of the associated UV-visible absorption spectra are reported to analyse the electronic structure and optical properties of the porphyrins. The TD-DFT calculations showed that for both porphyrins the value of highest occupied molecular orbital (ΔHOMO) is greater than that of lowest unoccupied molecular orbital (ΔLUMO) which tells that there is no unusual splitting of (LUMO) orbitals which may be caused by systematic error in TD-DFT calculations. Due to the red shift in the spectrum of ZnT(3-Py)P and the ΔLUMO being higher, the HOMO-LUMO gap was expected to be lower than that of H2T(3-Py)P. The photophysical properties and Photodynamic antimicrobial chemotherapy activities of these nanoconjugates were investigated. The highest ΦΔ was that of Q-ZnT(3-Py)P- GDQs at 0.69 with the log reduction of 9.42.
Collapse
Affiliation(s)
| | | | - Knowledge Siyabonga Ndlovu
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa.
| |
Collapse
|
8
|
Roy P, Kundu S, Makri N, Fleming GR. Interference between Franck-Condon and Herzberg-Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives. J Phys Chem Lett 2022; 13:7413-7419. [PMID: 35929598 PMCID: PMC9393888 DOI: 10.1021/acs.jpclett.2c01963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The commonly used Franck-Condon (FC) approximation is inadequate for explaining the electronic spectra of compounds that possess vibrations with substantial Herzberg-Teller (HT) couplings. Metal-based tetrapyrrole derivatives, which are ubiquitous natural pigments, often exhibit prominent HT activity. In this paper, we compare the condensed phase spectra of zinc-tetraphenylporphyrin (ZnTPP) and zinc-phthalocyanine (ZnPc), which exhibit vastly different spectral features in spite of sharing a common tetrapyrrole backbone. The absorption and emission spectra of ZnTPP are characterized by a lack of mirror symmetry and nontrivial temperature dependence. In contrast, mirror symmetry is restored, and the nontrivial temperature-dependent features disappear in ZnPc. We attribute these differences to FC-HT interference, which is less pronounced in ZnPc because of a larger FC component in the dipole moment that leads to FC-dominated transitions. A single minimalistic FC-HT vibronic model reproduces all the experimental spectral features of these molecules. These observations suggest that FC-HT interference is highly susceptible to chemical modification.
Collapse
Affiliation(s)
- Partha
Pratim Roy
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Sohang Kundu
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois
Quantum Information Science & Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Graham R. Fleming
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group. Nat Commun 2022; 13:3614. [PMID: 35750661 PMCID: PMC9232598 DOI: 10.1038/s41467-022-31288-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Photoremovable protecting groups (PPGs) represent one of the main contemporary implementations of photochemistry in diverse fields of research and practical applications. For the past half century, organic and metal-complex PPGs were considered mutually exclusive classes, each of which provided unique sets of physical and chemical properties thanks to their distinctive structures. Here, we introduce the meso-methylporphyrin group as a prototype hybrid-class PPG that unites traditionally exclusive elements of organic and metal-complex PPGs within a single structure. We show that the porphyrin scaffold allows extensive modularity by functional separation of the metal-binding chromophore and up to four sites of leaving group release. The insertion of metal ions can be used to tune their spectroscopic, photochemical, and biological properties. We provide a detailed description of the photoreaction mechanism studied by steady-state and transient absorption spectroscopies and quantum-chemical calculations. Our approach applied herein could facilitate access to a hitherto untapped chemical space of potential PPG scaffolds.
Collapse
|
10
|
Magaela NB, Matshitse R, Nyokong T. The effect of charge on Zn tetra morpholine porphyrin conjugated to folic acid-nitrogen doped graphene quantum dots for photodynamic therapy studies. Photodiagnosis Photodyn Ther 2022; 39:102898. [PMID: 35525434 DOI: 10.1016/j.pdpdt.2022.102898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023]
Abstract
Zinc tetra morpholine porphyrin (complex 2), and its quaternized derivative (complex 3) were synthesized and conjugated to folic acid nitrogen doped graphene quantum dots (FA-NGQDs) through π-π stacking to study their photodynamic therapy (PDT) efficacy. Photophysiochemical properties of complexes 2, 3, and their conjugates (2-FA-NGQDs, 3-FA-NGQDs) were studied. It was found that complex 3 had higher ϕΔ of 0.56 compared to complex 2 with ϕΔ of 0.24, and respective composites: 3-FA-NGQDs had higher ϕΔ compared to 2-FA-NGQDs. The PDT studies were conducted for nanoparticles (FA-NGQDs), complexes (2, 3), and respective composites (2-FA-NGQDs, and 3-FA-NGQDs) using MCF-7 breast cancer cell. Dark toxicity of all compounds was above 90% which is negligible. At a highest concentration of 40 µg/mL, 3-FA-NGQDs gave the lowest cell viability of 28% compared to all other conjugates and porphyrins alone.
Collapse
Affiliation(s)
- N Bridged Magaela
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Refilwe Matshitse
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda, 6140, South Africa.
| |
Collapse
|
11
|
Kundu S, Roy PP, Fleming GR, Makri N. Franck-Condon and Herzberg-Teller Signatures in Molecular Absorption and Emission Spectra. J Phys Chem B 2022; 126:2899-2911. [PMID: 35389662 DOI: 10.1021/acs.jpcb.2c00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some molecules of chemical and biological significance possess vibrations with significant Herzberg-Teller (HT) couplings, which render the Franck-Condon (FC) approximation inadequate and cause the breakdown of the well-known mirror-image symmetry between linear absorption and emission spectra. Using a model two-state system with displaced harmonic potential surfaces, we show analytically that the FC-HT interference gives rise to asymmetric intensity modification, which has the same sign for all transitions on one side of the 0-0 absorption line and the opposite sign in the equivalent fluorescence transitions, while the trend is exactly reversed for all transitions on the other side the 0-0 line. We examine the dependence of the absorption-emission asymmetry on the mode frequency, Huang-Rhys factor, and dipole moment parameters to show the recovery of symmetry with particular combinations of parameters and a crossover from fluorescence to absorption dominance. We illustrate the analytical predictions through numerically exact calculations in models of one and two discrete vibrational modes and in the presence of a harmonic dissipative bath. In addition to homogeneous broadening effects, we identify large asymmetric shifts of absorption and emission band maxima, which can produce the illusion of unequal frequencies in the ground and excited potential surfaces as well as a nontrivial modulation of spectral asymmetry by temperature, which results from the enhancement of transitions on one side of the 0-0 line. These findings will aid the interpretation of experimental spectra in HT-active molecular systems.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Partha Pratim Roy
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois, Urbana, Illinois 61801, United States.,Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Magaela NB, Matshitse R, Babu B, Managa M, Prinsloo E, Nyokong T. Sn(IV) porphyrin-biotin decorated nitrogen doped graphene quantum dots nanohybrids for photodynamic therapy. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Lyubimenko R, Richards BS, Schäfer AI, Turshatov A. Noble-metal-free photosensitizers for continuous-flow photochemical oxidation of steroid hormone micropollutants under sunlight. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review is written to endow updated information on polypyrrole based photosensitizers for the treatment of deadly diseases such as cancer and microbial infection. Tetrapyrrolic macromolecules such as porphyrins and phthalocyanines hold unique photophysical properties which make them very useful compounds for various biomedical applications. Besides their properties, they also have some limitations such as low water solubility, bioavailability, biocompatibility and lack of specificity, etc. Researchers are trying to overcome these limitations by incorporating photosensitizers into the different types of nanoparticles and improve the quality of photodynamic therapy. We have contributed to this field by synthesizing and developing polypyrrolic photosensitizer based nanoparticles for potential applications in antimicrobial and anticancer photodynamic activity. Throughout this review, newly synthesized and existing PSs conjugated/encapsulated/doped/incorporated with nanoparticles are emphasized, which are essential for current and future research themes. Also in this review, we briefly summarized the research work carried over the past few years by considering the porphyrin based photosensitizers as alternative therapeutic entities for the treatment of microbial infections, cancers, and many other diseases.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector-81, S.A.S. Nagar-140306, Mohali, Punjab, India
| | - Uttam Chand Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
| |
Collapse
|
15
|
Smith CB, Days LC, Alajroush DR, Faye K, Khodour Y, Beebe SJ, Holder AA. Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer †. Photochem Photobiol 2021; 98:17-41. [PMID: 34121188 DOI: 10.1111/php.13467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a medicinal tool that uses a photosensitizer and a light source to treat several conditions, including cancer. PDT uses reactive oxygen species such as cytotoxic singlet oxygen (1 O2 ) to induce cell death in cancer cells. Chemotherapy has historically utilized the cytotoxic effects of many metals, especially transition metal complexes. However, chemotherapy is a systemic treatment so all cells in a patient's body are exposed to the same cytotoxic effects. Transition metal complexes have also shown high cytotoxicity as PDT agents. PDT is a potential localized method for treating several cancer types by using inorganic complexes as photosensitizing agents. This review covers several in vitro and in vivo studies, as well as clinical trials that reported on the anticancer properties of inorganic pharmaceuticals used in PDT against different types of cancer.
Collapse
Affiliation(s)
- Chloe B Smith
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Lindsay C Days
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Duaa R Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Khadija Faye
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Yara Khodour
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Stephen J Beebe
- Frank Reidy Research Centre for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| |
Collapse
|
16
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Collen Makola L, Nyokong T, Amuhaya EK. Impact of axial ligation on photophysical and photodynamic antimicrobial properties of indium (III) methylsulfanylphenyl porphyrin complexes linked to silver-capped copper ferrite magnetic nanoparticles. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Xu X, Huang X, Chang Y, Yu Y, Zhao J, Isahak N, Teng J, Qiao R, Peng H, Zhao CX, Davis TP, Fu C, Whittaker AK. Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules 2020; 22:330-339. [PMID: 33305948 DOI: 10.1021/acs.biomac.0c01193] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antifouling surfaces are important in a broad range of applications. An effective approach to antifouling surfaces is to covalently attach antifouling polymer brushes. This work reports the synthesis of a new class of antifouling polymer brushes based on highly hydrophilic sulfoxide polymers by surface-initiated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The sulfoxide polymer brushes are able to effectively reduce nonspecific adsorption of proteins and cells, demonstrating remarkable antifouling properties. Given the outstanding antifouling behavior of the sulfoxide polymers and versatility of surface-initiated PET-RAFT technology, this work presents a useful and general approach to engineering various material surfaces with antifouling properties, for potential biomedical applications in areas such as tissue engineering, medical implants, and regenerative medicine.
Collapse
Affiliation(s)
- Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ye Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naatasha Isahak
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jisi Teng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
19
|
Magdaong NCM, Taniguchi M, Diers JR, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Photophysical Properties and Electronic Structure of Zinc(II) Porphyrins Bearing 0-4 meso-Phenyl Substituents: Zinc Porphine to Zinc Tetraphenylporphyrin (ZnTPP). J Phys Chem A 2020; 124:7776-7794. [PMID: 32926787 DOI: 10.1021/acs.jpca.0c06841] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six zinc(II) porphyrins bearing 0-4 meso-phenyl substituents have been examined spectroscopically and theoretically. Comparisons with previously examined free base analogues afford a deep understanding of the electronic and photophysical effects of systematic addition of phenyl groups in porphyrins containing a central zinc(II) ion versus two hydrogen atoms. Trends in the wavelengths and relative intensities of the absorption bands are generally consistent with predictions from time-dependent density functional theory calculations and simulations from Gouterman's four-orbital model. These trends derive from a preferential effect of the meso-phenyl groups to raise the energy of the highest occupied molecular orbital. The calculations reveal additional insights, such as a progressive increase in oscillator strength in the violet-red (B-Q) absorption manifold with increasing number of phenyls. Progressive addition of 0-4 phenyl substituents to the zinc porphyrins in O2-free toluene engenders a reduction in the measured lifetime of the lowest singlet excited state (2.5-2.1 ns), an increase in the S1 → S0 fluorescence yield (0.022-0.030), a decrease in the yield of S1 → T1 intersystem crossing (0.93-0.88), and an increase in the yield of S1 → S0 internal conversion (0.048-0.090). The derived rate constants for S1 decay reveal significant differences in the photophysical properties of the zinc chelates versus free base forms. The unexpected finding of a larger rate constant for internal conversion for zinc chelates versus free bases is particularly exemplary. Collectively, the findings afford fundamental insights into the photophysical properties and electronic structure of meso-phenylporphyrins, which are widely used as benchmarks for tetrapyrrole-based architectures in solar energy and life sciences research.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, Missouri 63130-4889, United States.,Department of Energy, Environment and Chemical Engineering, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
20
|
Lopes JMS, Costa SN, Batista AA, Dinelli LR, Araujo PT, Neto NMB. Photophysics and visible light photodissociation of supramolecular meso-tetra(4-pyridyl) porphyrin/RuCl 2(CO)(PPh 3) 2 structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118351. [PMID: 32361521 DOI: 10.1016/j.saa.2020.118351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, supramolecular structures have been explored in many technological efforts. One example of such supramolecules is attained when ruthenium complexes are attached in the outer sites of a porphyrin. Ruthenium complexes act as modulators of the photophysical processes of macrocyclic molecules. Besides the investigation of the main changes introduced by the ruthenium complexes in the electronic and vibronic properties, and in the excited state deactivation processes of porphyrins, discussions concerning the photostability of these supramolecules are much needed. Here, we investigate the supramolecular free-base meso-tetra(4-pyridyl) porphyrin decorated with "RuCl2(CO)(PPh3)2" ruthenium species linked at each of its (4-pyridyl) moieties. The modifications in the photophysical processes introduced by the metallic outlying species are discussed and our results suggest an energy transfer process from the porphyrin B-band to the ruthenium complex MLCT-band. The demonstration of visible light photodissociation of the supramolecule, via both pulsed and continuous laser, is also addressed.
Collapse
Affiliation(s)
- J M S Lopes
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| | - S N Costa
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil
| | - A A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - L R Dinelli
- College of Sciences of Pontal, Federal University of Uberlândia, Ituiutaba, MG, Brazil
| | - P T Araujo
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil; Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States.
| | - N M Barbosa Neto
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
21
|
Liu S, Wang X, Liu H, Xiao Z, Zhou C, Chen Y, Li X. An Activatable Triplet Sensitizer Based on Triplet Electron Transfer and Its Application for Triplet-Triplet Annihilation Upconversion. J Phys Chem B 2020; 124:6389-6397. [PMID: 32609515 DOI: 10.1021/acs.jpcb.0c05234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activatable triplet photosensitization refers to a photosentization process which can be turned on/off easily by external stimulus. Activatable triplet photosensitizations are normally achieved by interfering with the singlet excited state before the intersystem cross process (ISC), i.e., the formation process of triplet states of sensitizer. To achieve novel activatable triplet photosensitization, a disulfide-bridged porphyrin zinc(II) dyad (ZnPor-S-S-ZnPor) is prepared. Although fast ISC can be conducted in this dyad, an extremely low efficiency is obtained when employing this dyad as a triplet donor in triplet-triplet annihilation upconversion (TTA-UC) for sensitizing perylene. This is because of the presence of electron transfer from the triplet state of the porphyrin zinc(II) unit to the disulfide bond, which quickly quenches the triplet state of the porphyrin zinc(II) unit. This electron transfer process can be stopped by the cleavage of the disulfide bond in the presence of thiol, and TTA-UC efficiency can be enhanced significantly. Our result demonstrates for the first time that the disulfide bond can act as not only an easy cleavage linker but also a triplet electron acceptor. Furthermore, quenching the triplet states of sensitizer by triplet electron transfer provides an alternative protocol for designing activatable triplet sensitizers except controlling the singlet excited state before the ISC process.
Collapse
Affiliation(s)
- Shanshan Liu
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiangyang Wang
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Heyuan Liu
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zuoxu Xiao
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Changjing Zhou
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yanli Chen
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiyou Li
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
22
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
23
|
Chandna S, Thakur NS, Kaur R, Bhaumik J. Lignin–Bimetallic Nanoconjugate Doped pH-Responsive Hydrogels for Laser-Assisted Antimicrobial Photodynamic Therapy. Biomacromolecules 2020; 21:3216-3230. [DOI: 10.1021/acs.biomac.0c00695] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sanjam Chandna
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector 25, Chandigarh 160036, India
| | - Neeraj S. Thakur
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Ravneet Kaur
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector 25, Chandigarh 160036, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| |
Collapse
|
24
|
Galstyan A, Maurya YK, Zhylitskaya H, Bae YJ, Wu YL, Wasielewski MR, Lis T, Dobrindt U, Stępień M. π-Extended Donor-Acceptor Porphyrins and Metalloporphyrins for Antimicrobial Photodynamic Inactivation. Chemistry 2020; 26:8262-8266. [PMID: 31968144 PMCID: PMC7384002 DOI: 10.1002/chem.201905372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/26/2022]
Abstract
Free base, zinc and palladium π‐extended porphyrins containing fused naphthalenediamide units were employed as photosensitizers in antimicrobial photodynamic therapy (aPDT). Their efficacy, assessed by photophysical and in vitro photobiological studies on Gram‐positive bacteria, was found to depend on metal coordination, showing a dramatic enhancement of photosensitizing activity for the palladium complex.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Yogesh Kumar Maurya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Halina Zhylitskaya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA
| | - Yi-Lin Wu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA.,Current address: School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Ulrich Dobrindt
- Institute of Hygiene, Westfälische Wilhelms-Universität Münster, Mendelstraße 7, 48149, Münster, Germany
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| |
Collapse
|
25
|
Enhancement of photodynamic antimicrobialtherapy through the use of cationic indium porphyrin conjugated to Ag/CuFe2O4 nanoparticles. Photodiagnosis Photodyn Ther 2020; 30:101736. [PMID: 32171876 DOI: 10.1016/j.pdpdt.2020.101736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
|
26
|
Tyulyaeva EY. Modern Approaches in the Synthesis of Noble Metal Porphyrins for Their Practical Application (Review). RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023619140110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Laube C, Taut JA, Kretzschmar J, Zahn S, Knolle W, Ullman S, Kahnt A, Kersting B, Abel B. Light controlled oxidation by supramolecular Zn( ii) Schiff-base complexes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00980f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Application of Schiff-base ligands for the controlled zinc ion induced formation of electronic triplet states and the initialisation of photoreactivity.
Collapse
Affiliation(s)
- Christian Laube
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Department of Chemistry
| | - Josef Anton Taut
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Jonas Kretzschmar
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Stefan Zahn
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Wolfgang Knolle
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Steve Ullman
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Axel Kahnt
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Berthold Kersting
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Bernd Abel
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institute of Physical und Theoretical Chemistry
| |
Collapse
|
28
|
Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Lopes JMS, Sampaio RN, Ito AS, Batista AA, Machado AEH, Araujo PT, Neto NMB. Evolution of electronic and vibronic transitions in metal(II) meso-tetra(4-pyridyl)porphyrins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:327-333. [PMID: 30852279 DOI: 10.1016/j.saa.2019.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/18/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
The changing of the electronic and vibronic states due to the insertion of Zn(II), Cu(II), Ni(II) or Co(II) ions in the meso-tetrakis(4-pyridyl)porphyrin ring center is investigated. The combination of absorption, photoluminescence, Raman and infrared spectroscopies with second-derivative-based spectral deconvolution analysis reveals that the structuration of both B- and Q-bands is very sensitive to the decorating ion. Similar to free base porphyrins, metal(II) meso-tetra(4-pyridyl)porphyrins also present their Q-band constituted of multiple electronic transitions, where the central ion plays an important role in the selection of vibration modes that mediate the vibronic transitions. Our novel results will expand and reinterpret current assignments for metal(II) meso-tetra(4-pyridyl)porphyrins vibrational modes available in the literature.
Collapse
Affiliation(s)
- J M S Lopes
- Instituto de Ciências Exatas e Naturais, Programa de Pos-Graduação em Fisica, Universidade Federal do Pará, Belém, PA, Brazil
| | - R N Sampaio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall, Chapel Hill, NC, United States
| | - A S Ito
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - A A Batista
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - A E H Machado
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - P T Araujo
- Instituto de Ciências Exatas e Naturais, Programa de Pos-Graduação em Fisica, Universidade Federal do Pará, Belém, PA, Brazil; Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States; Center for Materials for Information Technology (MINT Center), University of Alabama, Tuscaloosa, AL, United States.
| | - N M Barbosa Neto
- Instituto de Ciências Exatas e Naturais, Programa de Pos-Graduação em Fisica, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
30
|
Lopes JMS, Sharma K, Sampaio RN, Batista AA, Ito AS, Machado AEH, Araújo PT, Barbosa Neto NM. Novel insights on the vibronic transitions in free base meso-tetrapyridyl porphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:274-279. [PMID: 30414576 DOI: 10.1016/j.saa.2018.10.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
We present novel results on the free base 5,10,15,20-meso-tetra(pyridyl)-21H,23H-porphyrin (H2TPyP). This molecule presents complex electronic and vibrational properties and despite the vast literature reporting the transitions observed in its absorption and fluorescence spectra, a more accurate interpretation has been kept elusive. In particular, we show that the molecule's Q-band develops into many electronic and vibronic transitions, whose the well-known "four orbital model" finds it difficult to reconcile. Using distinct spectroscopy techniques, we conclude that both Qx- and Qy-bands comprise, in fact, two quasi-degenerated electronic states together with their respective vibronic progressions each. The analysis of the Huang-Rhys factors and complementary time- and polarization-resolved measurements reinforce the need for the proposed Q-band multi features remodeling.
Collapse
Affiliation(s)
- J M S Lopes
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| | - K Sharma
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States; Center of Materials for Information Technology (MINT Center) University of Alabama, Tuscaloosa, AL, United States
| | - R N Sampaio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall, Chapel Hill, NC, United States
| | - A A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A S Ito
- College of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - A E H Machado
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil; Special Academic Unit of Physics, Graduate Program in Exact and Technological Sciences, Federal University of Catalão, Catalão, Goiás, Brazil
| | - P T Araújo
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil; Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States; Center of Materials for Information Technology (MINT Center) University of Alabama, Tuscaloosa, AL, United States.
| | - N M Barbosa Neto
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
31
|
Colomban C, Fuertes-Espinosa C, Goeb S, Sallé M, Costas M, Blancafort L, Ribas X. Self-Assembled Cofacial Zinc-Porphyrin Supramolecular Nanocapsules as Tuneable 1 O 2 Photosensitizers. Chemistry 2018; 24:4371-4381. [PMID: 29315876 DOI: 10.1002/chem.201705531] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/11/2022]
Abstract
We demonstrate the benefits of using cofacial Zn-porphyrins as structural synthons in coordination-driven self-assembled prisms to produce cage-like singlet oxygen (1 O2 ) photosensitizers with tunable properties. In particular, we describe the photosensitizing and emission properties of palladium- and copper-based supramolecular capsules, and demonstrate that the nature of the bridging metal nodes in these discrete self-assembled prisms strongly influences 1 O2 generation at the Zn-porphyrin centers. The PdII -based prism is a particularly robust photosensitizer, whereas the CuII self-assembled prism is a dormant photosensitizer that could be switched to a ON state upon disassembly of the suprastructure. Furthermore, the well-defined cavity within the prisms allowed encapsulation of pyridine-based ligands and fullerene derivatives, which led to a remarkable guest tuning of the 1 O2 production.
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Química Computatcional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E17003, Catalonia, Spain
| | - Carles Fuertes-Espinosa
- Institut de Química Computatcional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E17003, Catalonia, Spain
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou, Université d'Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045, Angers Cedex, France
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou, Université d'Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045, Angers Cedex, France
| | - Miquel Costas
- Institut de Química Computatcional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E17003, Catalonia, Spain
| | - Lluís Blancafort
- Institut de Química Computatcional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computatcional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E17003, Catalonia, Spain
| |
Collapse
|
32
|
Colomban C, Martin-Diaconescu V, Parella T, Goeb S, García-Simón C, Lloret-Fillol J, Costas M, Ribas X. Design of Zn-, Cu-, and Fe-Coordination Complexes Confined in a Self-Assembled Nanocage. Inorg Chem 2018; 57:3529-3539. [PMID: 29293325 DOI: 10.1021/acs.inorgchem.7b02852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The encapsulation of coordination complexes in a tetragonal prismatic nanocage (1·(BArF)8) built from Zn-porphyrin and macrocyclic Pd-clip-based synthons is described. The functional duality of the guest ligand L1 allows for its encapsulation inside the cage 1·(BArF)8, along with the simultaneous coordination of ZnII, CuII, or FeIII metal ions. Remarkably, the coordination chemistry inside the host-guest adduct L1⊂1·(BArF)8 occurs in both solution solution and solid state. The resulting confined metallocomplexes have been characterized by means of UV-vis, ESI-HRMS, NMR, and EPR techniques. Furthermore, the emission of the Zn-porphyrin fluorophores of 1·(BArF)8 is strongly quenched by the encapsulation of paramagnetic complexes, representing a remarkable example of guest-dependent tuning of the host fluorescence.
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Química Computacional i Catàlisi , Universitat de Girona, Campus Montilivi , 17003 Girona , Catalonia , Spain
| | - Vlad Martin-Diaconescu
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Paisos Catalans 16 , 43007 Tarragona , Catalonia , Spain
| | - Teodor Parella
- Servei de RMN, Facultat de Ciències , Universitat Autònoma de Barcelona, Campus UAB , E-08193 Bellaterra , Catalonia , Spain
| | - Sébastien Goeb
- Université d'Angers, CNRS UMR 6200 , Laboratoire MOLTECH-Anjou , 2 bd Lavoisier , 49045 Angers Cedex , France
| | - Cristina García-Simón
- Institut de Química Computacional i Catàlisi , Universitat de Girona, Campus Montilivi , 17003 Girona , Catalonia , Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Paisos Catalans 16 , 43007 Tarragona , Catalonia , Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi , Universitat de Girona, Campus Montilivi , 17003 Girona , Catalonia , Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi , Universitat de Girona, Campus Montilivi , 17003 Girona , Catalonia , Spain
| |
Collapse
|
33
|
Durandin NA, Isokuortti J, Efimov A, Vuorimaa-Laukkanen E, Tkachenko NV, Laaksonen T. Efficient photon upconversion at remarkably low annihilator concentrations in a liquid polymer matrix: when less is more. Chem Commun (Camb) 2018; 54:14029-14032. [DOI: 10.1039/c8cc07592a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A triplet–triplet annihilation upconversion of 24.5% was achieved at a remarkably low 600 μM annihilator concentration in a viscous polymer matrix.
Collapse
Affiliation(s)
- Nikita A. Durandin
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- Tampere
- Finland
| | - Jussi Isokuortti
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- Tampere
- Finland
| | - Alexander Efimov
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- Tampere
- Finland
| | | | - Nikolai V. Tkachenko
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- Tampere
- Finland
| | - Timo Laaksonen
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- Tampere
- Finland
| |
Collapse
|
34
|
Mandal AK, Taniguchi M, Diers JR, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four meso-Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. J Phys Chem A 2016; 120:9719-9731. [DOI: 10.1021/acs.jpca.6b09483] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amit Kumar Mandal
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Masahiko Taniguchi
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James R. Diers
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dariusz M. Niedzwiedzki
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
- Photosynthetic
Antenna Research Center, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Christine Kirmaier
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Jonathan S. Lindsey
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David F. Bocian
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
35
|
Dąbrowski JM, Pucelik B, Regiel-Futyra A, Brindell M, Mazuryk O, Kyzioł A, Stochel G, Macyk W, Arnaut LG. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Frühbeißer S, Mariani G, Gröhn F. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution. Polymers (Basel) 2016; 8:E180. [PMID: 30979275 PMCID: PMC6431837 DOI: 10.3390/polym8050180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π⁻π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.
Collapse
Affiliation(s)
- Sabine Frühbeißer
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, Erlangen 91058, Germany.
| | - Giacomo Mariani
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, Erlangen 91058, Germany.
- Institut Laue-Langevin DS/LSS, 71 Avenue des Martyrs, Grenoble F-38000, France.
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, Erlangen 91058, Germany.
| |
Collapse
|
37
|
Obondi CO, Lim GN, Churchill B, Poddutoori PK, van der Est A, D'Souza F. Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates. NANOSCALE 2016; 8:8333-8344. [PMID: 27043704 DOI: 10.1039/c6nr01083k] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state. By tuning the rate of intersystem crossing (ISC) and the donor-acceptor distance, electron transfer can be made to occur exclusively from the triplet excited state of the electron donor resulting in long-lived charge separation. To achieve this, three new palladium porphyrin-fullerene donor-acceptor systems were synthesized. The heavy Pd atom enhances the rate of ISC in the porphyrin and the rates of electron and energy transfer are modulated by varying the redox potential of the porphyrin and the porphyrin-fullerene distance. In the case of the meso-tris(tolyl)porphyrinato palladium(ii)-fulleropyrrolidine, the donor-acceptor distance is relatively long (13.1 Å) and the driving force for electron transfer is low. As a result, excitation of the porphyrin leads to rapid ISC followed by triplet-triplet energy transfer to fullerene. When the fullerene is bound directly to the porphyrin shortening the donor-acceptor distance to 2.6 Å electron transfer from the singlet excited palladium porphyrin leading to the generation of a short-lived charge separated state is the main process. Finally, when the palladium porphyrin is substituted with three electron rich triphenylamine entities, the lower oxidation potential of the porphyrin and appropriate donor-acceptor distance (∼13 Å), lead to electron transfer exclusively from the triplet excited state of palladium porphyrin with high quantum yield. The results show that when electron transfer occurs from the triplet state, its increased lifetime allows the distance between the donor and acceptor to be increased which results in a longer lifetime for the charge separated state.
Collapse
Affiliation(s)
- Christopher O Obondi
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| | - Gary N Lim
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| | - Brittani Churchill
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| | - Prashanth K Poddutoori
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada.
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada. and Freiburg Institute of Advanced Studies (FRIAS) Albert-Ludwigs-Universität Freiburg, Albertstr. 19, D-19104 Freiburg, Germany
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| |
Collapse
|
38
|
Jäger P, Brendle K, Schwarz U, Himmelsbach M, Armbruster MK, Fink K, Weis P, Kappes MM. Q and Soret Band Photoexcitation of Isolated Palladium Porphyrin Tetraanions Leads to Delayed Emission of Nonthermal Electrons over Microsecond Time Scales. J Phys Chem Lett 2016; 7:1167-72. [PMID: 26963821 DOI: 10.1021/acs.jpclett.6b00407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have used both action and photoelectron spectroscopy to study the response of isolated Pd(II) meso-tetra(4-sulfonatophenyl)porphyrin tetraanions ([PdTPPS](4-)) to electronic excitation over the 2.22-2.98 eV photon energy range. The action spectrum obtained by recording the wavelength-dependent intensity of charged decay products closely resembles the absorption spectrum of PdTPPS in aqueous solution (which shows pronounced Q and Soret absorption bands). The two main decay channels observed are sulfonate group loss and, predominantly, electron emission. To better understand the electron emission channel, we have also acquired photoelectron spectra at multiple detachment photon energies covering the range probed in action spectroscopy. Upon both Q and Soret band excitation, we find that electrons are emitted in three characteristic kinetic energy ranges. The corresponding detachment processes are identified as (delayed) tunneling emission from both excited singlet and triplet states (each of which is accessed by/after one-photon absorption) as well as resonant two-photon detachment. The first triplet state lifetime of isolated [PdTPPS](4-) is significantly longer than 10 μs, possibly on the 100 μs time scale. We estimate that more than 50% of the electron emission observed upon photoexcitation occurs by way of this triplet state.
Collapse
Affiliation(s)
- Patrick Jäger
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Postfach 3630, 76021 Karlsruhe, Germany
| | - Katrina Brendle
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Ulrike Schwarz
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Miriam Himmelsbach
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Markus K Armbruster
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Postfach 3630, 76021 Karlsruhe, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Postfach 3630, 76021 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
39
|
Feng C, Latimer E, Spence D, Al Hindawi AMAA, Bullen S, Boatwright A, Ellis AM, Yang S. Formation of Au and tetrapyridyl porphyrin complexes in superfluid helium. Phys Chem Chem Phys 2016; 17:16699-704. [PMID: 26059415 DOI: 10.1039/c5cp01844g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Binary clusters containing a large organic molecule and metal atoms have been formed by the co-addition of 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) molecules and gold atoms to superfluid helium nanodroplets, and the resulting complexes were then investigated by electron impact mass spectrometry. In addition to the parent ion H2TPyP yields fragments mainly from pyrrole, pyridine and methylpyridine ions because of the stability of their ring structures. When Au is co-added to the droplets the mass spectra are dominated by H2TPyP fragment ions with one or more Au atoms attached. We also show that by switching the order in which Au and H2TPyP are added to the helium droplets, different types of H2TPyP-Au complexes are clearly evident from the mass spectra. This study suggests a new route for the control over the growth of metal-organic compounds inside superfluid helium nanodroplets.
Collapse
Affiliation(s)
- Cheng Feng
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bhaumik J, Gogia G, Kirar S, Vijay L, Thakur NS, Banerjee UC, Laha JK. Bioinspired nanophotosensitizers: synthesis and characterization of porphyrin–noble metal nanoparticle conjugates. NEW J CHEM 2016. [DOI: 10.1039/c5nj02056e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Conjugatable and compact porphyrinic photosensitizer nanoparticle conjugates were developed through rational synthesis followed by conjugation with noble metal nanoparticles.
Collapse
Affiliation(s)
- Jayeeta Bhaumik
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Gitanjali Gogia
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Seema Kirar
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Lekshmi Vijay
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Neeraj S. Thakur
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Uttam C. Banerjee
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| |
Collapse
|
41
|
Mandal AK, Sahin T, Liu M, Lindsey JS, Bocian DF, Holten D. Photophysical comparisons of PEGylated porphyrins, chlorins and bacteriochlorins in water. NEW J CHEM 2016. [DOI: 10.1039/c6nj02091g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis of a bioconjugatable water-soluble (PEGylated) trans-AB-porphyrin enables photophysical comparisons (τS, kf, kic, kisc, Φf, Φic, Φisc) with analogous chlorins and bacteriochlorins in DMF and water.
Collapse
Affiliation(s)
| | - Tuba Sahin
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Mengran Liu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| |
Collapse
|
42
|
Chen J, Zhang T, Wang S, Hu R, Li S, Ma JS, Yang G. Intramolecular aggregation and optical limiting properties of triazine-linked mono-, bis- and tris-phthalocyanines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:426-433. [PMID: 25974676 DOI: 10.1016/j.saa.2015.04.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
A series of triazine-linked mono-, bis- and tris-phthalocyanines are synthesized, intramolecular aggregation is found in bis- and tris-phthalocyanines via π-π stacking interaction. Theoretical and experimental studies reveal the formation of the intramolecular aggregation. The spectrographic, photophysical and nonlinear optical properties of these compounds are adjusted for the formation of the intramolecular aggregation. The bis-phthalocyanine dimer presents smaller fluorescence quantum yield, lower triplet formation yield and the triplet-minus-ground state extinction coefficient, which causes poorer optical limiting performance. It is interesting that the tris-phthalocyanine is composed of a mono-phthalocyanine part and a bis-phthalocyanine part, the optical limiting property of the tris-phthalocyanine is similar to that of mono-phthalocyanine.
Collapse
Affiliation(s)
- Jun Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Tao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuangqing Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Rui Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shayu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jin Shi Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
43
|
Baldea I, Olteanu DE, Bolfa P, Ion RM, Decea N, Cenariu M, Banciu M, Sesarman AV, Filip AG. Efficiency of photodynamic therapy on WM35 melanoma with synthetic porphyrins: Role of chemical structure, intracellular targeting and antioxidant defense. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:142-52. [DOI: 10.1016/j.jphotobiol.2015.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023]
|
44
|
Socoteanu R, Manda G, Boscencu R, Vasiliu G, Oliveira AS. Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions. Molecules 2015; 20:15488-99. [PMID: 26343614 PMCID: PMC6331937 DOI: 10.3390/molecules200915488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 11/16/2022] Open
Abstract
In this paper, two tetrapyrrolic complexes, Zn(II)-5-(3-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin and Cu(II)-5-(3-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM) showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II) complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells.
Collapse
Affiliation(s)
- Radu Socoteanu
- Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 77208 Bucharest, Romania.
| | - Gina Manda
- Victor Babeş" National Institute for Pathology and Biomedical Sciences, 99-101 Splaiul Independenţei, 050096 Bucharest, Romania.
| | - Rica Boscencu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania.
| | - Georgiana Vasiliu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania.
| | - Anabela Sousa Oliveira
- Molecular Physical Chemistry Center and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
- Interdisciplinary Coordination for Research and Innovation, School of Technology and Management, Polytechnic Institute of Portalegre, Lugar da Abadessa, Apartado 148, Portalegre 7301-901, Portugal.
| |
Collapse
|
45
|
Perchanova M, Kurreck H, Berg A. Time-Resolved Electron Paramagnetic Resonance Study of Photoinduced Electron Transfer in Pd Porphyrin–Quinone and Zn Porphyrin–Quinone Dyads with a Cyclohexylene Spacer. J Phys Chem A 2015; 119:8117-24. [DOI: 10.1021/acs.jpca.5b04760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maya Perchanova
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Harry Kurreck
- Institute of Chemistry and Biochemistry-Organic
Chemistry, Free University Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Alexander Berg
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
46
|
Bhaumik J, Thakur NS, Aili PK, Ghanghoriya A, Mittal AK, Banerjee UC. Bioinspired Nanotheranostic Agents: Synthesis, Surface Functionalization, and Antioxidant Potential. ACS Biomater Sci Eng 2015; 1:382-392. [DOI: 10.1021/ab500171a] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jayeeta Bhaumik
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Neeraj S. Thakur
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Pavan K. Aili
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Amit Ghanghoriya
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Amit K. Mittal
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Uttam C. Banerjee
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
47
|
Viana OS, Ribeiro MS, Rodas ACD, Rebouças JS, Fontes A, Santos BS. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers. Molecules 2015; 20:8893-912. [PMID: 25993419 PMCID: PMC6272384 DOI: 10.3390/molecules20058893] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/17/2022] Open
Abstract
The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS) and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90%) in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90%) depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10) compared to bare ZnP which showed a high microbicidal activity (~3 log10) when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.
Collapse
Affiliation(s)
- Osnir S Viana
- Pharmaceutical Sciences Department, Pernambuco Federal University, Recife 50670-901, Brazil.
| | - Martha S Ribeiro
- Center for Lasers and Applications, IPEN-CNEN-SP, São Paulo 05508-000, Brazil.
| | - Andréa C D Rodas
- Center for Lasers and Applications, IPEN-CNEN-SP, São Paulo 05508-000, Brazil.
| | - Júlio S Rebouças
- Chemistry Department, CCEN Universidade Federal da Paraiba, João Pessoa 58051-900, Brazil.
| | - Adriana Fontes
- Biophysics and Radiobiology Department, Pernambuco Federal University, Recife 50670-901, Brazil.
| | - Beate S Santos
- Pharmaceutical Sciences Department, Pernambuco Federal University, Recife 50670-901, Brazil.
| |
Collapse
|
48
|
Pogonin AE, Tverdova NV, Ischenko AA, Rumyantseva VD, Koifman OI, Giricheva NI, Girichev GV. Conformation analysis of copper(II) etioporphyrin-II by combined gas electron diffraction/mass-spectrometry methods and DFT calculations. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.12.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Vairaprakash P, Yang E, Sahin T, Taniguchi M, Krayer M, Diers JR, Wang A, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Extending the Short and Long Wavelength Limits of Bacteriochlorin Near-Infrared Absorption via Dioxo- and Bisimide-Functionalization. J Phys Chem B 2015; 119:4382-95. [DOI: 10.1021/jp512818g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pothiappan Vairaprakash
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Eunkyung Yang
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Tuba Sahin
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Masahiko Taniguchi
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael Krayer
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James R. Diers
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Alfred Wang
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Dariusz M. Niedzwiedzki
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
- Photosynthetic
Antenna Research Center, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Christine Kirmaier
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Jonathan S. Lindsey
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David F. Bocian
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
50
|
Electron-transfer sensitization of H2 oxidation and CO2 reduction catalysts using a single chromophore. Proc Natl Acad Sci U S A 2014; 111:9745-50. [PMID: 24961370 DOI: 10.1073/pnas.1321375111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Energy-storing artificial-photosynthetic systems for CO2 reduction must derive the reducing equivalents from a renewable source rather than from sacrificial donors. To this end, a homogeneous, integrated chromophore/two-catalyst system is described that is thermodynamically capable of photochemically driving the energy-storing reverse water-gas shift reaction (CO2 + H2 → CO + H2O), where the reducing equivalents are provided by renewable H2. The system consists of the chromophore zinc tetraphenylporphyrin (ZnTPP), H2 oxidation catalysts of the form [Cp(R)Cr(CO)3](-), and CO2 reduction catalysts of the type Re(bpy-4,4'-R2)(CO)3Cl. Using time-resolved spectroscopic methods, a comprehensive mechanistic and kinetic picture of the photoinitiated reactions of mixtures of these compounds has been developed. It has been found that absorption of a single photon by broadly absorbing ZnTPP sensitizes intercatalyst electron transfer to produce the substrate-active forms of each. The initial photochemical step is the heretofore unobserved reductive quenching of the low-energy T1 state of ZnTPP. Under the experimental conditions, the catalytically competent state decays with a second-order half-life of ∼15 μs, which is of the right magnitude for substrate trapping of sensitized catalyst intermediates.
Collapse
|