1
|
Brinza I, Boiangiu RS, Honceriu I, Abd-Alkhalek AM, Eldahshan OA, Dumitru G, Hritcu L, Todirascu-Ciornea E. Investigating the Potential of Essential Oils from Citrus reticulata Leaves in Mitigating Memory Decline and Oxidative Stress in the Scopolamine-Treated Zebrafish Model. PLANTS (BASEL, SWITZERLAND) 2024; 13:1648. [PMID: 38931080 PMCID: PMC11207389 DOI: 10.3390/plants13121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Petitgrain essential oil (PGEO) is derived from the water distillation process on mandarin (Citrus reticulata) leaves. The chemical constituents of PGEO were analyzed by gas chromatography/mass spectrometry (GC/MS) method which revealed the presence of six compounds (100%). The major peaks were for methyl-N-methyl anthranilate (89.93%) and γ-terpinene (6.25%). Over 19 days, zebrafish (Tubingen strain) received PGEO (25, 150, and 300 μL/L) before induction of cognitive impairment with scopolamine immersion (SCOP, 100 μM). Anxiety-like behavior and memory of the zebrafish were assessed by a novel tank diving test (NTT), Y-maze test, and novel object recognition test (NOR). Additionally, the activity of acetylcholinesterase (AChE) and the extent of the brain's oxidative stress were explored. In conjunction, in silico forecasts were used to determine the pharmacokinetic properties of the principal compounds discovered in PGEO, employing platforms such as SwissADME, Molininspiration, and pKCSM. The findings provided evidence that PGEO possesses the capability to enhance memory by AChE inhibition, alleviate SCOP-induced anxiety during behavioral tasks, and diminish brain oxidative stress.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Iasmina Honceriu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | | | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt;
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| |
Collapse
|
2
|
Sacchetto J, Gutierrez E, Reta GF, Gatica E, Miskoski S, Montaña MP, Natera J, Massad WA. A novel eco-friendly polymeric photosensitizer based on chitosan and flavin mononucleotide. Photochem Photobiol Sci 2023; 22:2827-2837. [PMID: 37839053 DOI: 10.1007/s43630-023-00489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Flavin mononucleotide (FMN) is a dye belonging to the flavin family. These dyes produce photosensitized degradation of organic compounds via reaction with the excited states of the dye or with reactive oxygen species photogenerated from the triplet of the dye. This article presents a new polymeric dye (FMN-CS) composed of the photosensitizer FMN covalently bonded to chitosan polysaccharide (CS). FMN-CS obtained has a molecular weight of 230 × 103 g mol-1 and a deacetylation degree of 74.8%. The polymeric dye is an environmentally friendly polymer with spectroscopic and physicochemical properties similar to those of FMN and CS, respectively. Moreover, under sunlight, it is capable of generating 1O2 with a quantum yield of 0.31. FMN-CS, like CS, is insoluble in basic media. This allows easy recovery of the polymeric dye once the photosensitized process has been carried out and makes FMN-CS a suitable photosensitizer for the degradation of pollutants in contaminated waters. To evaluate whether FMN-CS may be used for pollutant degradation, the photosensitized degradation of two trihydroxybenzenes by FMN-CS was studied.
Collapse
Affiliation(s)
- Julieta Sacchetto
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Depto. De Química-FCEF-QyN, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Eduardo Gutierrez
- Instituto de Química de San Luis "Dr. Roberto Antonio Olsina" (INQUISAL) Centro Científico Tecnológico CONICET-UNSL, San Luis, Argentina
| | - Guillermo F Reta
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, CP 5700, San Luis, Argentina
| | - Eduardo Gatica
- Depto. de Estudios Básicos y Agropecuarios, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Sandra Miskoski
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Depto. De Química-FCEF-QyN, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
- Depto. de Estudios Básicos y Agropecuarios, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - María P Montaña
- Instituto de Química de San Luis "Dr. Roberto Antonio Olsina" (INQUISAL) Centro Científico Tecnológico CONICET-UNSL, San Luis, Argentina
| | - José Natera
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Depto. De Química-FCEF-QyN, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
- Depto. de Estudios Básicos y Agropecuarios, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Walter A Massad
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Depto. De Química-FCEF-QyN, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.
| |
Collapse
|
3
|
Ghazwani M, Hani U, Alqarni MH, Alam A. Development and Characterization of Methyl-Anthranilate-Loaded Silver Nanoparticles: A Phytocosmetic Sunscreen Gel for UV Protection. Pharmaceutics 2023; 15:pharmaceutics15051434. [PMID: 37242676 DOI: 10.3390/pharmaceutics15051434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Methyl anthranilate (MA) is a naturally derived compound commonly used in cosmetic products, such as skin care products, fine perfumes, etc. The goal of this research was to develop a UV-protective sunscreen gel using methyl-anthranilate-loaded silver nanoparticles (MA-AgNPs). The microwave approach was used to develop the MA-AgNPs, which were then optimized using Box-Behnken Design (BBD). Particle size (Y1) and absorbance (Y2) were chosen as the response variables, while AgNO3 (X1), methyl anthranilate concentration (X2), and microwave power (X3) were chosen as the independent variables. Additionally, the prepared AgNPs were approximated for investigations on in vitro active ingredient release, dermatokinetics, and confocal laser scanning microscopy (CLSM). The study's findings showed that the optimal MA-loaded AgNPs formulation had a particle size, polydispersity index, zeta potential, and percentage entrapment efficiency (EE) of 200 nm, 0.296 mV, -25.34 mV, and 87.88%, respectively. The image from transmission electron microscopy (TEM) demonstrated the spherical shape of the nanoparticles. According to an in vitro investigation on active ingredient release, MA-AgNPs and MA suspension released the active ingredient at rates of 81.83% and 41.62%, respectively. The developed MA-AgNPs formulation was converted into a gel by using Carbopol 934 as a gelling agent. The spreadability and extrudability of MA-AgNPs gel were found to be 16.20 and 15.190, respectively, demonstrating that the gel may spread very easily across the skin's surface. The MA-AgNPs formulation demonstrated improved antioxidant activity in comparison to pure MA. The MA-AgNPs sunscreen gel formulation displayed non-Newtonian pseudoplastic behaviour, which is typical of skin-care products, and was found to be stable during the stability studies. The sun protection factor (SPF) value of MA-AgNPG was found to be 35.75. In contrast to the hydroalcoholic Rhodamine B solution (5.0 µm), the CLSM of rat skin treated with the Rhodamine B-loaded AgNPs formulation showed a deeper penetration of 35.0 µm, indicating the AgNPs formulation was able to pass the barrier and reach the skin's deeper layers for more efficient delivery of the active ingredient. This can help with skin conditions where deeper penetration is necessary for efficacy. Overall, the results indicated that the BBD-optimized MA-AgNPs provided some of the most important benefits over conventional MA formulations for the topical delivery of methyl anthranilate.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Shaili E, Romero MJ, Salassa L, Woods JA, Butler JS, Romero-Canelón I, Clarkson G, Habtemariam A, Sadler PJ, Farrer NJ. Platinum(IV)-azido monocarboxylato complexes are photocytotoxic under irradiation with visible light. Dalton Trans 2021; 50:10593-10607. [PMID: 34278398 PMCID: PMC8335519 DOI: 10.1039/d1dt01730f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
Complexes trans,trans,trans-[Pt(N3)2(OH)(OCOR)(py)2] where py = pyridine and where OCOR = succinate (1); 4-oxo-4-propoxybutanoate (2) and N-methylisatoate (3) have been synthesized by derivation of trans,trans,trans-[Pt(OH)2(N3)2(py)2] (4) and characterised by NMR and EPR spectroscopy, ESI-MS and X-ray crystallography. Irradiation of 1-3 with green (517 nm) light initiated photoreduction to Pt(ii) and release of the axial ligands at a 3-fold faster rate than for 4. TD-DFT calculations showed dissociative transitions at longer wavelengths for 1 compared to 4. Complexes 1 and 2 showed greater photocytotoxicity than 4 when irradiated with 420 nm light (A2780 cell line IC50 values: 2.7 and 3.7 μM) and complex 2 was particularly active towards the cisplatin-resistant cell line A2780cis (IC50 3.7 μM). Unlike 4, complexes 1-3 were phototoxic under green light irradiation (517 nm), with minimal toxicity in the dark. A pKa(H2O) of 5.13 for the free carboxylate group was determined for 1, corresponding to an overall negative charge during biological experiments, which crucially, did not appear to impede cellular accumulation and photocytotoxicity.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Marίa J Romero
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Departamento de Didácticas Aplicadas, Facultade de Formación do Profesorado, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Luca Salassa
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain and Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology and Photobiology, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Jennifer S Butler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, Sir Robert Aitken Institute for Medical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Guy Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Nicola J Farrer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
5
|
Gambetta C, Reynoso A, Natera J, Sancho MI, Montaña P, Massad WA. Riboflavin sensitized photodegradation of Furaneol in a β-cyclodextrin complex. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Bacardit A, Cartoixà X. Revisiting the Role of Irradiance in the Determination of Sunscreens' Sun Protection Factor. J Phys Chem Lett 2020; 11:1209-1214. [PMID: 32075378 DOI: 10.1021/acs.jpclett.9b03437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The efficacy of a sunscreen tends to be associated with its sun protection factor (SPF) value, a figure determined in a test that relies on the independence of the SPF value to both UV radiation dose and irradiance. We probe these assumptions when photoinduced product degradation is present, and we estimate that the theoretical limit for their validity is when the sunfilter active molecule relaxation time is faster than ∼10 ns. While such threshold relaxation time should be compatible with the expected ultrafast relaxation mechanisms of sunfilter molecules (picoseconds), recent research on sunfilter photodynamics has identified the existence of much longer-lived molecular states. Such long lifetimes could compromise sunscreen performance and make the SPF value very different in natural sun irradiance conditions than in the solar simulated conditions typically used in SPF determination tests.
Collapse
Affiliation(s)
| | - Xavier Cartoixà
- Departament d'Enginyeria Electrònica , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| |
Collapse
|
7
|
Two phenothiazine dyes as photosensitizers for the production of singlet oxygen. Photophysics, photochemistry and effects of aggregation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Rodrigues N, Cole-Filipiak N, Horbury M, Staniforth M, Karsili T, Peperstraete Y, Stavros V. Photophysics of the sunscreen ingredient menthyl anthranilate and its precursor methyl anthranilate: A bottom-up approach to photoprotection. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Liu C, Hayashi K. Visualization of controlled fragrance release from cyclodextrin inclusion complexes by fluorescence imaging. FLAVOUR FRAG J 2014. [DOI: 10.1002/ffj.3213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chuanjun Liu
- Department of Electronics, Graduate School of Information Science and Electrical Engineering; Kyushu University; 744, Motooka Nishiku Fukuoka 819-0395 Japan
| | - Kenshi Hayashi
- Department of Electronics, Graduate School of Information Science and Electrical Engineering; Kyushu University; 744, Motooka Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|