1
|
Mahesha P, Shetty NS, Kulkarni SD, Sinha RK. A selective bis-thiophene chalcone-based spectrofluorimetric sensor for Fe 3. LUMINESCENCE 2024; 39:e4823. [PMID: 38965884 DOI: 10.1002/bio.4823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024]
Abstract
A highly selective bis thiophene-based chalcone as a chemosensor for detecting Fe3+ metal ions in DMF: H2O (9:1). This sensor was selective toward ferric ions over other metal ions with a detection limit in micromolar range.
Collapse
Affiliation(s)
- Priyanka Mahesha
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitinkumar S Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Suresh D Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajeev K Sinha
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
2
|
Liu M, Zhu H, Fang Y, Liu C, Li X, Zhang X, Ma L, Wang K, Yu M, Sheng W, Zhu B. An ultra-sensitive fluorescent probe for recognition of aluminum ions and its application in environment, food, and living organisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123578. [PMID: 37984115 DOI: 10.1016/j.saa.2023.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The concentration of aluminum ions (Al3+) is closely related to the ecological environment, food safety, and human health, with excessive accumulation of Al3+ causing irreversible damage to both the ecological balance and human health. Therefore, a fluorescent probe ABHS, based on aminobenzoylhydrazide Schiff-base, was designed and synthesized in one step with a high yield. ABHS can form a 1:1 coordination complex with Al3+ in a pure water system. It exhibits ultra-sensitive and accurate detection of Al3+ even at low concentration of Al3+, with the detection limit of 6.7 nM. Furthermore, ABHS demonstrated significant enhancement of specific fluorescence for Al3+, with rapid response speed, good stability, and robust resistance to interference. Importantly, ABHS has shown excellent detection and imaging capabilities even in complex real environmental samples, food samples, and living organisms.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yikun Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Gungor O, Köse M. Hydrazide Schiff base Compound Containing Triphenylphosphonium Units for Fluorescence Sensing of Al 3+ and its real Sample Applications. J Fluoresc 2023:10.1007/s10895-023-03476-w. [PMID: 37924382 DOI: 10.1007/s10895-023-03476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
Al3+ excess in the body can cause many diseases. The development of chemosensors for the detection of Al3+ is therefore highly desirable. A hydrazide Schiff base compound containing triphenylphosphonium units (ER) was prepared and used as fluorescence turn-on sensor for the sensing of Al3+. Detection of Al3+ among various metals has been achieved successfully through the formation of Al3+-ligand coordination complexes. To detect Al3+, the "turn on" property of the fluorogenic chemosensor was investigated. Fluorescence sensing studies were carried out in CH3OH-Water (v/v, 9/1, pH 7.0) at λem = 528 nm. The LOD for sensing of Al3+ was found to be 0.129 µM. Using Job's graph, the stoichiometric ratio of ER- Al3+ was determined to be 1:1. The binding constant was determined to be 1.7 × 107 M-1 between Al3 + and the chemosensor ER. Finally, the determination of Al3+ in real herbal teas was carried out by using the sensing function of the chemosensor ER.
Collapse
Affiliation(s)
- Ozge Gungor
- Science Faculty, Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46050, Turkey
| | - Muhammet Köse
- Science Faculty, Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46050, Turkey.
| |
Collapse
|
4
|
Giri PK, Samanta SS, Mudi N, Mandal U, Misra A. Synthesis of Fluorophore Based Functional Material for Selective Detection of Al 3+ Ion in Water and Decoding the AIEE Property of Its Hydrosol. J Fluoresc 2023; 33:2131-2144. [PMID: 37060429 DOI: 10.1007/s10895-023-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
A designed aggregation-induced emission enhancement (AIEE) active fluorescence probe 2,3-Bis-[(2-hydroxy-napthalen-1-ylmethylene)-amino]-but-2-enedinitrile (L) was synthesized via one step condensation method. The probe shows swift sensitivity and selectivity toward Al3+over other relevant metal ions and also exhibits significant AIEE phenomena in methanol/water mixture. Significant enhancement of fluorescence intensity is triggered via chelation-enhanced fluorescence through complex (Al3+-L) formation. A 2:1 metal to ligand ratio is observed from Job's plot based on UV - Vis absorption titration and detection limit (LOD) is found as low as 31.14 nM. Moreover, 1H NMR titrations and fluorescence reversibility by adding Al3+ and EDTA sequentially had been performed to establish the binding site of sensor complex (Al3+-L). Time-resolved photoluminescence, dynamic light scattering, optical microscopy, and on-site visualization studies have been performed to understand the AIEE mechanism of L in different volume percentage of water and methanol mixture. An INHIBIT molecular logic gate has been constructed utilizing the fluorescence behavior of the probe, L in presence of Al3+ and strong chelating ligand EDTA.
Collapse
Affiliation(s)
- Prabhat Kumar Giri
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | | | - Naren Mudi
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Usha Mandal
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Ajay Misra
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
5
|
Sun G, Fang H. Computational Insights into Sensing Mechanism for Al 3+ in a New Acylhydrazone Fluorescent Probe Based on Excited-State Intramolecular Proton Transfer (ESIPT) and Twisted Intramolecular Charge Transfer (TICT). J Phys Chem A 2023; 127:1857-1865. [PMID: 36802568 DOI: 10.1021/acs.jpca.2c08469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The work explored the fluorescent properties of probe N'-(2, 4-dihydroxy-benzylidene)pyridine-3-carbohydrazide (HL) and its sensing mechanism for the Al3+ ion in detail. HL has two competing deactivation processes: ESIPT and TICT. Upon light-excitation, only one proton can transfer, and the SPT1 structure is generated. The SPT1 form is highly emissive, which is inconsistent with the colorless emission observed in the experiment. Then a nonemissive TICT state was obtained by rotating the C-N single bond. The energy barrier of the TICT process is lower than that of the ESIPT process, which indicates that probe HL will decay to the TICT state and quench the fluorescence. When Al3+ is recognized by probe HL, strong coordinate bonds are formed between HL and Al3+, and then the TICT state is prohibited, and the fluorescence of HL is turned on. Al3+ as a coordinated ion can effectively remove the TICT state but cannot influence the photoinduced electron transfer (PET) process of HL.
Collapse
Affiliation(s)
- Guotao Sun
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, People's Republic of China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, People's Republic of China
| |
Collapse
|
6
|
Mudi N, Shyamal M, Giri PK, Samanta SS, Ramirtz-Tagle R, Misra A. Anthracene scaffold as highly selective chemosensor for Al 3+ and its AIEE activity. Photochem Photobiol Sci 2023:10.1007/s43630-023-00392-7. [PMID: 36805447 DOI: 10.1007/s43630-023-00392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/05/2023] [Indexed: 02/21/2023]
Abstract
Fluorescent chemosensor, 3-(Anthracen-2-yliminomethyl)-benzene-1,2-diol (ANB) has been synthesized by one-step condensation of 2-aminoanthracene and 2,3-dihydroxybenzaldehyde and characterized using 1H-NMR, FT-IR and Mass spectroscopic techniques. The probe ANB was found to be an efficient 'turn-on' fluorescence chemosensor for the selective detection of Al3+ ion over other metal ions in an aqueous solution. The chemosensor exhibits ~ 27-fold enhancement of emission intensity in presence of Al3+ ion. Fluorescence quantum values for ANB and (Al3+-ANB)-complex are 0.004 and 0.097, respectively. In addition, the binding constant and the limit of detection were found to be 1.22 × 104 M-1 and 0.391 µM, respectively. The chemosensor ANB binds to Al3+ ions in 2:1 stoichiometric ratio which was supported by Job's plot, 1H-NMR titration and florescence titration. Fluorescence reversibility of the sensor complex was well established by adding EDTA in the same condition and a molecular INHIBIT logic gate was fabricated using this reversible nature of the sensor complex. Additionally, the chemosensor ANB shows a novel aggregation-induced enhanced emission phenomenon, where the aggregate hydrosol of ANB shows enhance emission intensity.
Collapse
Affiliation(s)
- Naren Mudi
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, WB, India
| | - Milan Shyamal
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, WB, India
| | - Prabhat Kumar Giri
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, WB, India
| | | | | | - Ajay Misra
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, WB, India.
| |
Collapse
|
7
|
Liu Y, Zhang Y, Sheng M, Kang Y, Jia B, Li W, Fu Y. A novel pyrene-based fluorescent probe for Al 3+ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122085. [PMID: 36379088 DOI: 10.1016/j.saa.2022.122085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Based on the classical Schiff base reaction, fluorescent probe dimethyl 5-((pyren-1-ylmethylene)amino)isophthalate (PAI) is designed and synthesized through introducing Schiff base structure to pyrene unit for structural modification. The structure of the synthesized probe PAI is determined and characterized by FT-IR, 1H NMR, 13C NMR and HRMS. PAI is a type of "turn-on" probe which can specifically recognize Al3+ ion with high selectivity. The limit of detection is calculated to be 3.07 × 10-8 M, which proves the probe's high sensitivity and is lower than that of many efficient reported probes. The probe PAI is intrinsically non-fluorescent due to the photoinduced electron transfer (PET) process. However, the addition of Al3+ ion leads to the breakage of the carbon-nitrogen double bond of Schiff base in PAI resulting in the product without PET property, which shows a typical localized state with enhanced fluorescence and blue color. In addition, PAI can recognize Al3+ ion through test papers, which is in favor of the future research regarding to Al3+ ion sensing.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yeqi Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ming Sheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yihan Kang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Binbin Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Wenbo Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
8
|
Yan Q, Wang Y, Wang Z, Zhang G, Shi D, Xu H. A novel water-soluble flavonol-based fluorescent probe for highly specific and sensitive detection of Al 3+ and its application in onion and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121384. [PMID: 35636134 DOI: 10.1016/j.saa.2022.121384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A novel and simple turn-on fluorescence probe (HD) for Al3+ detection was successfully developed based on flavonol derivatives. This probe exhibited a significantly enhanced fluorescence response toward Al3+ in aqueous solution which could be observed by naked-eye from poor fluorescence to strong light green emission. The probe HD displays highly specific detection for Al3+ over other competitive metal ions, and the detection limit of probe HD for Al3+ was determined to be 2.57 × 10-8 M, which are much lower than the World Health Organization (WHO) guideline value for drinking food/water. The binding stoichiometry of probe HD with Al3+ was determined to be 1:1 according to Job's plot and ESI-HRMS analysis, and the binding constant was calculated to be 2.01 × 104 M-1. The probe HD exhibited high selectivity, high sensitivity, good anti-interface ability, and wide pH application range as well as the quantitative determination in the detection of Al3+. The coordination mechanism of probe HD with Al3+ was supported by density functional theory (DFT) calculations and HRMS analysis. In addition, the probe HD was found to have good cell permeability and could be applied for live-cell imaging to detect Al3+ in onions and zebrafish.
Collapse
Affiliation(s)
- Qi Yan
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gang Zhang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Donghai Shi
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China.
| |
Collapse
|
9
|
Basha SB, Charles ID, Raju N, Manokaran S, Kuzhandaivel H. An efficient 2-aminothiazolesalicylaldehyde fluorescent chemosensor for Fe2+ ion detection and a potential inhibitor of NUDT5 signaling hormone for breast cancer cell and molecular keypad lock application. CHEMICAL PAPERS 2022; 76:7061-7073. [PMID: 35966345 PMCID: PMC9362492 DOI: 10.1007/s11696-022-02373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
A novel thiazole phenol conjugate, 2-aminothiazolesalicylaldehyde (receptor1) was designed and synthesized for the first time through a single step process via Schiff base condensation reaction. The formation of receptor1 was confirmed by FTIR, 13C NMR, and 1H NMR. The IR spectra confirmed the presence of the aldimine formation. It is further supported by the proton NMR, showing the disappearance of aldehyde peaks and the formation of a new imine peak. This is further corroborated by the 13C NMR. The receptor1 complexing with various metal ions were studied through fluorescence spectroscopy showed its selectivity toward Fe2+ ion following a reverse photoinduced electron transfer (PET) process compared to all other potentially competing ions. The receptor1 was applied as a sensor to sense Fe2+ ion in water samples. The detection limit for Fe2+ ion in drinking water was substantially lower (0.003 µM) than the EPA (environmental protection agency) recommendation (5.37 M). The capability of receptor1 in recovering Fe2+ ion in bore water, tap water, and drinking water was up to 99.5%. The receptor1 was also used as a chelating ligand (receptor1) in molecular docking and it was assessed as a potential inhibitor of NUDT5, a silence hormone signaling for breast cancer. The test compound (PDB: 5NWH) showed good affinity toward the target receptor1 with the binding energy of – 5.23 kcal mol−1. Furthermore, the receptor1 showed excellent reversibility property on adding EDTA solution. Due to the marvelous reversible property, a molecular-scale sequential information processing circuit is designed for the multi-task behavior such as ‘Writing-Reading-Erasing-Reading’ in the form of binary logic gate. The consecutive addition of Fe2+ ion and EDTA solution to receptor1 paves a way for the construction of INHIBIT logic gate. Additionally, the receptor1 showed the mimicking behavior of molecular keypad lock.
Collapse
|
10
|
A simple "turn-on" fluorescent sensor for reversible recognition of aluminum ion in living cell. ANAL SCI 2022; 38:1163-1169. [PMID: 35861911 DOI: 10.1007/s44211-022-00154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/26/2022] [Indexed: 11/01/2022]
Abstract
A simple and reliable "turn-on" fluorescent sensor (E)-1-[((2-hydroxyethyl)imino) methyl] naphthalen-2-ol (HNP) has been designed, synthesized, and characterized by 1H-NMR, 13C-NMR, FT-IR, and EI-MS analysis. The binding property of HNP was examined employing UV-Vis and fluorescence spectroscopy. HNP exhibited high selectivity towards Al3+ among other cations and anions. The fluorescence titration experiment has established binding stoichiometry of HNP with Al3+ is 2:1, which can be further verified by HR-MS. The detection limit of HNP is 2.9 μM, and it can be reversible five-to-seven times to detect Al3+ without losing much efficiency which indicates that it can be a reliable probe for Al3+. Additionally, HNP was successfully applied for the detection of Al3+ in living cells. To achieve the detection of aluminum ion across a simple, reliable, and precise method, we have investigated the reversible detection (which can reversible response to Al3+ for five-to-seven times) of Al3+ through an extremely simple (requires only one-step reaction) "turn-on" fluorescent probe which enables us to visualize and analyze Al3+ with low detection limit (2.9 μM) and high selectivity in living cell without interference from the high abundant small biological molecules.
Collapse
|
11
|
Karuppusamy A, Sharma A, Thomas KRJ, Kannan P. Experimental and Theoretical Investigations on Chalcones Containing Pyrene. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Yin P, Ma W, Liu J, Hu T, Wei T, Chen J, Li T, Niu Q. Dual functional chemosensor for nano-level detection of Al3+ and Cu2+: Application to real samples analysis, colorimetric test strips and molecular logic gates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Mellado M, Roldán N, Miranda R, Aguilar LF, Bravo MA, Quiroz W. Sensitive fluorescent chemosensor for Hg(II) in aqueous solution using 4'-dimethylaminochalcone. J Fluoresc 2022; 32:1449-1456. [PMID: 35441925 DOI: 10.1007/s10895-022-02941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Mercury (Hg) is an element with high toxicity, especially to the nervous system, and fluorescent pigments are used to visualize dynamic processes in living cells. A little explored fluorescent core is chalcone. Herein, we synthesized chalcone (2E)-3-(4-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one (8) and assessed its photophysical properties. Moreover, the application of this chemosensor in aqueous media shows a selective fluorescence quenching effect with Hg(II). The figures of merit for the chemosensor were calculated to be LOD = 136 nM and LOQ = 454 nM, as well as a stoichiometry of 1:1. Furthermore, the association constant (Ka) and fluorescence quenching constant (KSV) were calculated using the Benesi-Hildebrand and Stern-Volmer equations to be Ka= 9.08 × 104 and KSV= 1.60 × 105, respectively. Finally, by using a computational approach, we explain the interaction between chalcone (8) and Hg(II) and propose a potential quenching mechanism based on the blocking of photoinduced electron transfer.
Collapse
Affiliation(s)
- Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.
| | - Nicole Roldán
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Rodrigo Miranda
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Luis F Aguilar
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Manuel A Bravo
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Waldo Quiroz
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile.
| |
Collapse
|
14
|
A single carbazole based chemosensor for multiple targets: Sensing of Fe3+ and arginine by fluorimetry and its applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Kumar M, Kumar A, Kishor S, Kumar S, Kumar A, Manav N, Bhagi A, Kumar S, John RP. N-diethylaminosalicylidene based “turn-on” fluorescent Schiff base chemosensor for Al3+ ion: Synthesis, characterisation and DFT/TD-DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Immanuel David C, Prabakaran G, Nandhakumar R. Recent approaches of 2HN derived fluorophores on recognition of Al3+ ions: A review for future outlook. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
1′-hydroxy-2′-acetonaphthone: A simple fluorescence turn-on signaling probe with high selectivity and sensitivity for Al3+ in pure water. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Golcs Á, Kovács K, Vezse P, Tóth T, Huszthy P. Acridino-Diaza-20-Crown-6 Ethers: New Macrocyclic Hosts for Optochemical Metal Ion Sensing. Molecules 2021; 26:4043. [PMID: 34279381 PMCID: PMC8272042 DOI: 10.3390/molecules26134043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022] Open
Abstract
Acridino-diaza-20-crown-6 ether derivatives as new turn-on type fluorescent chemosensors with an excellent functionality and photophysical properties have been designed and synthesized for metal ion-selective optochemical sensing applications. Spectroscopic studies revealed that in an acetonitrile-based semi-aqueous medium, the sensor molecules exhibited a remarkable fluorescence enhancement with high sensitivity only toward Zn2+, Al3+ and Bi3+, among 23 different metal ions. Studies on complexation showed a great coordinating ability of logK > 4.7 with a 1:1 complex stoichiometry in each case. The detection limits were found to be from 59 nM to micromoles. The new ionophores enabled an optical response without being affected either by the pH in the range of 5.5-7.5, or the presence of various anions or competing metal ions. Varying the N-substituents of the new host-backbone provides diverse opportunities in both immobilization and practical applications without influencing the molecular recognition abilities.
Collapse
Affiliation(s)
- Ádám Golcs
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Korinna Kovács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Panna Vezse
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Tünde Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly-Thege Miklós út 29-33., H-1121 Budapest, Hungary
| | - Péter Huszthy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| |
Collapse
|
19
|
Abstract
Detection of Al3+ has become important as it is related to several health issues and other problems. Different fluorophoric platforms, such as naphthalene, benzene, rhodamine, etc., have been explored to sense Al3+ and a good number of research articles are being published. This article focuses on the synthesis of recently reported aluminum sensors constructed from 2-hydroxy-1-naphthaldehyde, salicylaldehyde, rhodamine, coumarin and different metal based-MOFs.
Collapse
Affiliation(s)
- Partha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, India.
| |
Collapse
|
20
|
Xu H, Chen W, Ju L, Lu H. A purine based fluorescent chemosensor for the selective and sole detection of Al 3+ and its practical applications in test strips and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119074. [PMID: 33120119 DOI: 10.1016/j.saa.2020.119074] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
A novel purine Schiff base fluorescent probe (WYW), (E)-4-methyl-2-((2-(9-(naphthalen-1-yl)-8-(thiophen-2-yl)-9H-purin-6-yl)hydrazono)methyl)phenol, was designed and prepared as an excellent reversible fluorescent chemosensor for monitoring Al3+. The fluorogenic "turn-on" sensor WYW exhibited high selectivity towards Al3+ over other coexistent metal ions, accompanying with an obvious visual color change in DMSO/H2O (9/1, v/v, pH = 7.4) media. The enhancement fluorescence of WYW could be attributed to the inhibition of PET and ESIPT process induced by Al3+. Notably, the WYW-Al3+ complex exhibited a fluorescence "turn-off" response towards F- with exceptional selectivity via the displacement approach. The detection limit of WYW for Al3+ was calculated to be as low as 82 nM. The formation of complex WYW-Al3+ (1:1 stoichiometry) was confirmed by Job's methods and further verified by density functional theory (DFT) calculations. Furthermore, the probe WYW with low cytotoxicity and excellent membrane-permeable property has also been successfully applied for detecting low concertation Al3+ in living HeLa cells.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Wei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Lixin Ju
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
21
|
Shanmugam Suresh, Bhuvanesh N, Prabhu J, Nandhakumar R. Application of Imidazole Derivative for Fluorescent Detection and Determination of Cu(II) in Aqueous and Biological Media. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Zuo Z, Tang Y, Lei F, Jin R, Yin P, Li Y, Niu Q. New thiophene hydrazide dual-functional chemosensor: Colorimetric sensor for Cu 2+ & fluorescent sensor for Al 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118712. [PMID: 32717524 DOI: 10.1016/j.saa.2020.118712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
A new thiophene hydrazide derivative TSB was synthesized and utilized as naked-eye colorimetric sensor for Cu2+ by the color changed from colorless to yellow as well as green fluorescent turn on sensor for Al3+ in DMSO/H2O (1/1, V/V) solution. The dual-functional chemosensor TSB for Cu2+/Al3+ sensing displayed excellent properties of special selectivity, superior sensitivity, outstanding anti-interference performance, instantaneous response, wide pH working range and good reversibility. The detection limits of TSB for Cu2+/Al3+ were determined as low as 46.5 nM and 32.7 nM, respectively. The 1:1 binding mode of TSB with Cu2+/Al3+ was proved by spectrometric titrations, Job's plots, FTIR, 1H NMR and HRMS analysis. Moreover, chemosensor TSB was successfully utilized for detection of Cu2+ and Al3+ in real environmental water and food samples with high reliability, demonstrating its practical applicability.
Collapse
Affiliation(s)
- Zhenyu Zuo
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China.
| | - Yuping Tang
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - Ruyi Jin
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China
| | - Pengcheng Yin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Yang Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| |
Collapse
|
23
|
Gupta A, Garg S, Singh H. Development of chalcone-based derivatives for sensing applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5022-5045. [PMID: 33103673 DOI: 10.1039/d0ay01603a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensing of various analytes including metal ions and anions is at an incredible speed due to their widespread use in biological processes. Various small molecular species have been reported for the detection of various analytes, with the advantage of low cost and high sensitivity. Among various classes of organic molecules, chalcones are suitable candidates for the design of new chemosensors for targeted ions. In this review, using extensive examples of chalcone-based chemosensors, we explore the design, mechanism, and performance of various chemosensors for the detection of different ions. We believe that this review will provide new insight for researchers in related areas to develop chemosensors for various targeted ions.
Collapse
Affiliation(s)
- Ankush Gupta
- Department of Chemistry, DAV University, Jalandhar-144012, Punjab, India.
| | | | | |
Collapse
|
24
|
Saravanan A, Shyamsivappan S, Kalagatur NK, Suresh T, Maroli N, Bhuvanesh N, Kolandaivel P, Mohan PS. Application of real sample analysis and biosensing: Synthesis of new naphthyl derived chemosensor for detection of Al 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118684. [PMID: 32659705 DOI: 10.1016/j.saa.2020.118684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
A new chemosensor (NANH) based on naphthyl moiety was synthesized with good selectivity and sensitivity towards Al3+ ions via the inhibition by operating through dual mechanisms like photo-induced electron transfer (PET) and excited-state intramolecular proton transfer (ESIPT). The synthesized NANH was validated by various techniques such as 1H, 13C NMR and mass spectrum. While prominent fluorescent enhancement was observed from the NANH upon binding with Al3+ ions, however, other metal ions have not responded in the emission spectrum. Detection limit and association constant of NANH for Al3+ were calculated as 1.2 × 10-7 M and 4.09 × 104 M-1 by using fluorescence titration method. Binding ratio (1:1) of NANH with Al3+ ions were proved by Job's plot and DFT studies. Furthermore, aluminium in variety of water samples was determined, and NANH could be used for biosensing of Al3+ in living cells.
Collapse
Affiliation(s)
- Arjunan Saravanan
- DRDO-BU CLS, Bharathiar University campus, Coimbatore 641 046, Tamil Nadu, India; School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Selvaraj Shyamsivappan
- School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | | - Thangaraj Suresh
- School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Nikhil Maroli
- DRDO-BU CLS, Bharathiar University campus, Coimbatore 641 046, Tamil Nadu, India
| | - Nanjan Bhuvanesh
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India
| | | | - Palathurai Subramaniam Mohan
- DRDO-BU CLS, Bharathiar University campus, Coimbatore 641 046, Tamil Nadu, India; School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
25
|
Mishra S, Hossain SM, Singh AK. TICT fluorescent probe for Al 3+: Sequential detection of PPi, ATP and ADP in semi-aqueous medium and real-life applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118600. [PMID: 32563911 DOI: 10.1016/j.saa.2020.118600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
A ditopic Schiff base ligand, H2L has been synthesized and characterized by all spectroscopic techniques. It is highly selective and specific towards Al3+ in semi aqueous medium (DMF/H2O mixture) by exhibiting a drastic increase in the fluorescence intensity. The emission studies, spectroscopic data, life time and quantum yield results have been used to understand its binding mode, explore its specificity and establish its efficacy. The intensity difference is remarkable in physiological pH range. Due to its reversible behavior this ditopic fluorescent chemosensor can be used multiple times to make it cost effective. Detection limit for this chemosensor was found to be 0.65 μM. Experiments with TLC plates show that it can be used as a practical and portable sensor for studying environmental samples in real life. The L-Al3+ complex generated in the solution acts as a sensor to sequentially detect pyrophosphate groups present in inorganic pyrophosphates, ATP and ADP among other anions by turning off the fluorescence. Inhibit logic gate and its corresponding truth table has been developed to aid in further exploiting its multidimensional applications.
Collapse
Affiliation(s)
- Sagarika Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| | - Sayed Muktar Hossain
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India.
| |
Collapse
|
26
|
Liu Y, Gao S, Yang L, Liu YL, Liang XM, Ye F, Fu Y. A Highly Selective Perylenediimide-Based Chemosensor: "Naked-Eye" Colorimetric and Fluorescent Turn-On Recognition for Al 3. Front Chem 2020; 8:702. [PMID: 33024742 PMCID: PMC7516037 DOI: 10.3389/fchem.2020.00702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022] Open
Abstract
A novel “turn-on” fluorescent probe (PCN) was designed, synthesized, and characterized with perylene tetracarboxylic disimide as the fluorophore and Schiff base subunit as the metal ion receptor. The probe demonstrated a considerable fluorescence enhancement in the presence of Al3+ in DMF with high selectivity and sensitivity. Furthermore, the considerably “off–on” fluorescence response simultaneously led to the apparent color change from colorless to brilliant yellow, which could also be identified by naked eye easily. The sensing capability of PCN to Al3+ was evaluated by the changes in ultraviolet–visible, fluorescence, Fourier transform–infrared, proton nuclear magnetic resonance, and high-resolution mass spectrometry spectroscopies. The linear concentration range for Al3+ was 0–63 μM with a detection limit of 0.16 μM, which allowed for the quantitative determination of Al3+.
Collapse
Affiliation(s)
- Yan Liu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Liu Yang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yu-Long Liu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Xiao-Min Liang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
27
|
A novel phenolphthalein-based fluorescent sensor for Al 3+ sensing in drinking water and herbal tea samples. Food Chem 2020; 337:127659. [PMID: 32781355 DOI: 10.1016/j.foodchem.2020.127659] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
In this study, 3,3-bis(4-hydroxy-3-((E)-((4-hydroxyphenyl)imino)methyl) phenyl)isobenzofuran-1(3H)-one (HMBP) was designed as a ''turn-on″ fluorogenic chemosensor to detect Al3+. Studies were performed in C2H5OH-HEPES (v/v, 9/1, pH 7.0) media at λem = 475 nm. The LOD value was found to be 0.113 µM. The stoichiometric ratio of HMBP-Al3+ was determined as 1:2 by Job's plot and ESI-MS as well as 1H NMR titration. The binding constant of chemosensor HMBP with Al3+ from the Benesi-Hildebrand equation was determined to be 1.21 × 108 M-1. The quantum (Φ) yields were obtained as 0.040 and 0.775 for the chemosensor HMBP and HMBP-Al3+, respectively. The response of the chemosensor HMBP towards Al3+ was attributed to the strategies of blocking the photo-induced electron transfer (PET) and CN isomerisation mechanisms. Finally, the sensing of the chemosensor HMBP for the determination of Al3+ in real food samples, drinking waters and herbal teas, were employed.
Collapse
|
28
|
Peng H, Peng X, Huang J, Huang A, Xu S, Zhou J, Huang S, Cai X. Synthesis and crystal structure of a novel pyridine acylhydrazone derivative as a “turn on” fluorescent probe for Al3+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Synthesis of Nitrogen Containing Chalcone: A Highly Sensitive and Selective Fluorescent Chemosensor for the Fe 3+ Metal Ion in Aqueous Media. J Fluoresc 2020; 30:969-974. [PMID: 32564224 DOI: 10.1007/s10895-020-02534-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Title compound (PTPO) was synthesized by the reaction of 2-acetyl pyridine with 3,4,5-trimethoxy benzaldehyde. The structure of the compound has been confirmed by spectroscopic techniques. Interaction of chalcone with different metal cations was analyzed based on the fluorescence behavior. Results show that chalcone act as on-off switching fluorescent chemosensor for selective and sensitive detection iron metal ion. Mechanism of quenching and complexation were resolute by Benesi-Hildebrand, Stern-Volmer plot and Job-plot.
Collapse
|
30
|
Consty ZA, Zhang Y, Xu Y. A simple sensor based on imidazo[2,1-b]thiazole for recognition and differentiation of Al3+, F− and PPi. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Mukherjee S, Betal S, Chattopadhyay AP. Dual sensing and synchronous fluorescence spectroscopic monitoring of Cr 3+and Al 3+ using a luminescent Schiff base: Extraction and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117837. [PMID: 31784221 DOI: 10.1016/j.saa.2019.117837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/27/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
A well designed, new pyrene based small molecule (L) was synthesized from 1:1 condensation reaction of 1-aminopyrene and 6-(1,3-benzodioxal-5-yl)-2-pyridine carboxaldehyde which was characterized by absorption, emission spectrometry, FTIR, NMR and mass studies. Interestingly the UV-vis and fluorescence spectroscopic studies revealed that the ligand (L) works as a dual turn-on luminescent chemosensor for chromium(III) (Cr3+) and aluminium(III) (Al3+) in aqueous environment which were further supported by DFT and TDDFT studies. L shows a significant colour change from pale yellow to reddish yellow with a detection limit of ~10-9 M in the presence of Cr3+ and Al3+ whereas there were no noteworthy changes in the presence of other monovalent and divalent metal ions. The molecular signaling in the presence of Cr3+, Al3+, Fe3+ and EDTA was compared with advanced level combinational INHIBIT gate based on 4 input logic gates. Herein, first derivative constant wavelength synchronous fluorescence spectroscopy (1st DCWSFS) was applied for the determination of Cr3+, Al3+ ion concentrations in a mixture via increment of spectral resolution of the respective overlapping peaks. 1st DCWSFS is reported to be used in pharmaceuticals but very few works have been done for determination of metal ion concentration in environmental sample without prior separation. The individual Cr3+and Al3+ ion concentrations in a mixture were determined through liquid-liquid extraction process and the efficiencies were compared with 1st derivative SFS method. It was observed that 1st derivative SFS process is more efficient than conventional liquid-liquid extraction process. Therefore, 1st DCWSFS method using sensor L might be useful as a diagnostic tool for detection of individual metal ion concentrations (Cr3+ and Al3+) from a mixture which will be cost-effective, time saving and more precise.
Collapse
Affiliation(s)
- Soma Mukherjee
- Department of Environmental Science, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India.
| | - Soumi Betal
- Department of Environmental Science, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | | |
Collapse
|
32
|
Xu Y, Yang L, Wang H, Zhang Y, Yang X, Pei M, Zhang G. A new “off-on-off” sensor for sequential detection of Al3+ and Cu2+ with excellent sensitivity and selectivity based on different sensing mechanisms. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112372] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Immanuel David C, Bhuvanesh N, Jayaraj H, Thamilselvan A, Parimala devi D, Abiram A, Prabhu J, Nandhakumar R. Experimental and Theoretical Studies on a Simple S-S-Bridged Dimeric Schiff Base: Selective Chromo-Fluorogenic Chemosensor for Nanomolar Detection of Fe 2+ & Al 3+ Ions and Its Varied Applications. ACS OMEGA 2020; 5:3055-3072. [PMID: 32095729 PMCID: PMC7033979 DOI: 10.1021/acsomega.9b04294] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A simple S-S (disulfide)-bridged dimeric Schiff base probe, L, has been designed, synthesized, and successfully characterized for the specific recognition of Al3+ and Fe2+ ions as fluorometric and colorimetric "turn-on" responses in a dimethylformamide (DMF)-H2O solvent mixture, respectively. The probe L and each metal ion bind through a 1:1 complex stoichiometry, and the plausible sensing mechanism is proposed based on the inhibition of the photoinduced electron transfer process (PET). The reversible chemosensor L showed high sensitivity toward Al3+ and Fe2+ ions, which was analyzed by fluorescence and UV-vis spectroscopy techniques up to nanomolar detection limits, 38.26 × 10-9 and 17.54 × 10-9 M, respectively. These experimental details were advocated by density functional theory (DFT) calculations. The practical utility of the chemosensor L was further demonstrated in electrochemical sensing, in vitro antimicrobial activity, molecular logic gate function, and quantification of the trace amount of Al3+ and Fe2+ ions in real water samples.
Collapse
Affiliation(s)
- Charles Immanuel David
- Department
of Chemistry, Karunya Institute of Technology
and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Nanjan Bhuvanesh
- Department
of Chemistry, Karunya Institute of Technology
and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Haritha Jayaraj
- Department
of Chemistry, Karunya Institute of Technology
and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Annadurai Thamilselvan
- Electro
Organic-Division, Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi 630 003, India
| | - Duraisamy Parimala devi
- Department
of Physics, Karunya Institute of Technology
and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Angamuthu Abiram
- Department
of Physics, Karunya Institute of Technology
and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Jeyaraj Prabhu
- Department
of Chemistry, Karunya Institute of Technology
and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Raju Nandhakumar
- Department
of Chemistry, Karunya Institute of Technology
and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| |
Collapse
|
34
|
Experimental and theoretical studies of imidazole based chemosensor for Palladium and their biological applications. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Prabhu J, Velmurugan K, Raman A, Duraipandy N, Kiran MS, Easwaramoorthi S, Tang L, Nandhakumar R. Pyrene-phenylglycinol linked reversible ratiometric fluorescent chemosensor for the detection of aluminium in nanomolar range and its bio-imaging. Anal Chim Acta 2019; 1090:114-124. [PMID: 31655636 DOI: 10.1016/j.aca.2019.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023]
Abstract
Pyrene-phenylglycinol tangled ratiometric sensor (R)-1 was developed for the detection of Al3+ ion over other metal ions. Ratiometric behaviour of (R)-1 for Al3+ ion explained through monomer emission and excimer quenching leads to avoiding the π-π interactions of bis-pyrene rings. Pull-push to push-pull binding mechanism is successfully explained by DFT and sensing of Al3+-ions demonstrated in living cells. The LOD of (R)-1 for Al3+ downs to nanomolar concentrations which is lower than the allowed concentration of drinking water set by the (World Health Organization) WHO.
Collapse
Affiliation(s)
- J Prabhu
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore, 641 114, India
| | - K Velmurugan
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore, 641 114, India
| | - A Raman
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai 600 020, India
| | - N Duraipandy
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai 600 020, India; Biomaterials Laboratory, CSIR-Central Leather Research Institute, Adyar, India
| | - M S Kiran
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai 600 020, India; Biomaterials Laboratory, CSIR-Central Leather Research Institute, Adyar, India
| | - S Easwaramoorthi
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai 600 020, India.
| | - Lijun Tang
- College of Chemistry and Chemical Engineering, Liaoning Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University, Jinzhou 121013, PR China.
| | - R Nandhakumar
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore, 641 114, India.
| |
Collapse
|
36
|
Alyaninezhad Z, Bekhradnia A, Feizi N, Arshadi S, Zibandeh M. A novel aluminum-sensitive fluorescent chemosensor based on 4-aminoantipyrine: An experimental and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:32-41. [PMID: 30594851 DOI: 10.1016/j.saa.2018.12.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 05/12/2023]
Abstract
A practical and an efficient Schiff base fluorescent chemosensor, salicylidene-4-aminoantipyrinyl-4-aminophenol (A2) has been synthesized through the condensation procedure of 1-phenyl-2,3-dimethyl-4-(N-2-hydroxybenzylidene)-3-pyrazoline-5-one and 4-aminophenol. Compound A2 has displayed a considerable fluorescence enhancement with high selectivity and sensitivity toward Al3+ ion and exhibited an emission band at 484 nm, which contained a low detection limit (LOD) of 1.06 × 10-7 M. In accordance to the experimental study, DFT, TDDFT calculations, and the enhancement of fluorescence intensity might be attributed to the inhibition of Photoinduced Electron Transfer (PET) along with the Excited-State Intramolecular Proton Transfer (ESIPT). As it has been specified by Job's plot and DFT calculations, the binding stoichiometries of A2 with Al3+ are 1:1, while the association constant (Ka) of Al3+ has been calculated and observed to be 2.67 × × 105 M-1. Furthermore, the binding behavior and sensing mechanism of A2 with Al3+ have been confirmed through the experiments of 1H NMR titration.
Collapse
Affiliation(s)
| | - Ahmadreza Bekhradnia
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Nourollah Feizi
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Sattar Arshadi
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Mahmood Zibandeh
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| |
Collapse
|
37
|
Orojloo M, Amani S. Colorimetric Detection of Pollutant Trivalent Cations and HSO 4− in Aqueous Media Using a New Schiff-base Probe: An Experimental and DFT Studies. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1567561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Saeid Amani
- Department of Chemistry Faculty of Sciences, Arak University, Arak, Iran
| |
Collapse
|
38
|
Saravanan A, Shyamsivappan S, Suresh T, Subashini G, Kadirvelu K, Bhuvanesh N, Nandhakumar R, Mohan PS. An efficient new dual fluorescent pyrene based chemosensor for the detection of bismuth (III) and aluminium (III) ions and its applications in bio-imaging. Talanta 2019; 198:249-256. [PMID: 30876558 DOI: 10.1016/j.talanta.2019.01.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/21/2023]
Abstract
A new simple pyrene based schiff base chemosensor 1 (nicotinic acid pyren-1-ylmethylene-hydrazide) has been constructed and is prepared from 1-pyrenecarboxaldehyde and nicotinic hydrazide. Notably, the chemosensor 1 exhibited remarkable colour changes while in the presence of trivalent metal ions like Bi3+ & Al3+ ion in DMSO-H2O, (1:1 v/v, HEPES = 50 mM, pH = 7.4). The UV-Vis spectral investigation of chemosensor 1 showed that the maximum absorption peak appeared at 378 nm. In emission studies, chemosensor 1 develops weak fluorescence, while upon the addition of Bi3+ and Al3+ ions, it exhibits an enhancement of fluorescence intensity. Nevertheless, rest of metal ions have no changes in the emission spectra. The association constant of chemosensor 1 for binding to Bi3+ & Al3+ system had a value of 1.27 × 104 M-1 and 1.53 × 104 M-1. The detection limits were 0.12 µM for Bi3+ and 0.17 µM for Al3+ respectively. The overall results reveal that chemosensor 1 can act as a dual-channel, highly selective, and sensitive probe for Bi3+ and Al3+ ions. Moreover, the fluorescence imaging of chemosensor 1 was applied in RAW 264.7 cell line and cytotoxicity assay prove that this chemosensor 1 is non-toxic as well as highly biocompatible.
Collapse
Affiliation(s)
- Arjunan Saravanan
- Department of Chemistry, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; BU-DRDO CLS, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| | | | - Thangaraj Suresh
- Department of Chemistry, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gopalan Subashini
- Department of Chemistry, P.S.G.R. Krishnammal College for Women, Coimbatore 641004, Tamil Nadu, India
| | - Krishna Kadirvelu
- BU-DRDO CLS, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| | - Nanjan Bhuvanesh
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Raju Nandhakumar
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | | |
Collapse
|
39
|
Xu Y, Wang H, Zhao J, Yang X, Pei M, Zhang G, Zhang Y. A dual functional fluorescent sensor for the detection of Al3+ and Zn2+ in different solvents. NEW J CHEM 2019. [DOI: 10.1039/c9nj03298c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new fluorescent sensor, X, was designed and synthesized based on imidazo[2,1-b]thiazole and 2-hydroxy-1-naphthaldehyde, which could be used to detect Al3+ in methanol buffer solution and detect Zn2+ in ethanol buffer solution, respectively.
Collapse
Affiliation(s)
- Yuankang Xu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Hanyu Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | | | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanxia Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|