1
|
Bautista-López JA, Díaz-Ponce A, Rangel-Méndez JR, Cházaro-Ruiz LF, Mumanga TJ, Olmos-Moya P, Vences-Álvarez E, Pineda-Arellano CA. Recent progress in organic waste recycling materials for solar cell applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103367-103389. [PMID: 37700126 DOI: 10.1007/s11356-023-29639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Organic waste-derived solar cells (OWSC) are a classification of third-generation photovoltaic cells in which one or more constituents are fabricated from organic waste material. They are an inspirational complement to the conventional third-generation solar cell with the potential of revolutionizing our future approach to solar cell manufacture. This article provides a study and summary of solar cells that fall under the category of OWSC. OWSC own their merit to low cost of manufacturing and environmental friendliness. This review article reveals different organic waste raw materials, preparation-to-assembly methodologies, and novel approaches to solar cell manufacturing. Ideas for the optimization of the performance of OWSC are presented. The assembly configurations and photovoltaic parameters of reported OWSC are compared in detail. An overview of the trends in the research regarding OWSC in the past decade is given. Also, the advantages and disadvantages of the different solar cell technologies are discussed, and possible trends are proposed. Industrial organic waste raw materials such as paper, coal, and plastics are among the least explored and yet most attractive for solar cell fabrication. The power conversion efficiencies for the cited works are mentioned while emphasizing the products and functions of the organic waste raw materials used.
Collapse
Affiliation(s)
- José Alfonso Bautista-López
- Inter-Institutional Postgraduate in Science and Technology-CONAHCYT-Optics Research Center, Fracc. Reserva Loma Bonita, A.C., Prol. Constitución #607, 20200, Aguascalientes, Ags, México
| | - Arturo Díaz-Ponce
- Aguascalientes Unit, CONAHCYT-Optics Research Center, Fracc. Reserva Loma Bonita, A.C., Prol. Constitución #607, 20200, Aguascalientes, Ags, México
| | - José René Rangel-Méndez
- Division of Environmental Sciences, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa San José #2055, Col. Lomas 4a sección, 78216, San Luis Potosí, S.L.P, México
| | - Luis Felipe Cházaro-Ruiz
- Division of Environmental Sciences, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa San José #2055, Col. Lomas 4a sección, 78216, San Luis Potosí, S.L.P, México
| | - Takawira Joseph Mumanga
- Aguascalientes Unit, Optics Research Center, A.C.., Prol. Constitución #607, Fracc. Reserva Loma Bonita, 20200, Aguascalientes, Ags, México
| | - Patricia Olmos-Moya
- Science and Engineering Division, University of Guanajuato, Lomas del Bosque #103, Lomas del Campestre, 37150, León, Gto, México
| | - Esmeralda Vences-Álvarez
- Division of Environmental Sciences, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa San José #2055, Col. Lomas 4a sección, 78216, San Luis Potosí, S.L.P, México
| | - Carlos Antonio Pineda-Arellano
- Aguascalientes Unit, CONAHCYT-Optics Research Center, Fracc. Reserva Loma Bonita, A.C., Prol. Constitución #607, 20200, Aguascalientes, Ags, México.
| |
Collapse
|
2
|
Kusumawati Y, Hutama AS, Wellia DV, Subagyo R. Natural resources for dye-sensitized solar cells. Heliyon 2021; 7:e08436. [PMID: 34917788 PMCID: PMC8668837 DOI: 10.1016/j.heliyon.2021.e08436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
While the development of dye-sensitized solar cells (DSSCs) has been ongoing for more than 30 years, the currently obtained efficiency is unsatisfactory. However, the study of DSSC development has produced a fundamental understanding of cell performance and inspired other devices, such as perovskite cell solar cells. DSSCs consist of a dye-sensitized photoanode, a counter electrode, and a redox couple in the electrolyte system. Each of the components has an important role and cofunctions with each other to obtain a high power conversion efficiency. Various modifications to each DSSC component have been applied to improve their performance. Additionally, to generate improvements, the effort to reduce production costs has been crucial. The utilization of natural sources for DSSC components is a possible solution to this issue. The utilization of natural resources also aims to increase the value of the natural resource itself. In this review, the applications of various natural sources for DSSC components are described, as well as the modification efforts that have been made to enhance their performance. The discussion covers the utilization of natural dye for sensitizer dyes in liquid DSSC applications: (1) utilization of biopolymers for quasi-solid DSSC electrolytes, (2) green synthesis methods for photoanode semiconductors, and (3) development of natural carbon counter electrodes. The detailed factors that influence improvements in cell performance are also addressed.
Collapse
Affiliation(s)
- Yuly Kusumawati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Sukolilo Campus, Surabaya, 60111, Indonesia
| | - Aulia S. Hutama
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Jalan Sekip Utara, Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Diana V. Wellia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, 24516, Indonesia
| | - Riki Subagyo
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Sukolilo Campus, Surabaya, 60111, Indonesia
| |
Collapse
|
3
|
Nickel-cobalt alloy coatings prepared by electrodeposition Part I: Cathodic current efficiency, alloy composition, polarization behavior and throwing power. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0552-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|