1
|
Munir R, Zahoor AF, Anjum MN, Nazeer U, Haq AU, Mansha A, Chaudhry AR, Irfan A. Synthesis And Photovoltaic Performance of Carbazole (Donor) Based Photosensitizers in Dye-Sensitized Solar Cells (DSSC): A Review. Top Curr Chem (Cham) 2024; 383:5. [PMID: 39738993 DOI: 10.1007/s41061-024-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/22/2024] [Indexed: 01/02/2025]
Abstract
Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push-pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile. Additionally, acceptors (A) employed in the designs include cyanoacrylic acids, carboxylic acids, malononitrile, rhodanine-3-acetic acid, 4-aminobenzoic acid, or 4-amino salicylic acid. This comprehensive review explores the synthesis and photovoltaic performances of numerous carbazole-based photosensitizers tailored for dye-sensitized solar cells, covering the period of 2019-2023.
Collapse
Affiliation(s)
- Ramsha Munir
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Texas, 77204-5003, USA
| | - Atta Ul Haq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, 61922, Bisha, Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| |
Collapse
|
2
|
Ibrayeva A, Abibulla U, Imanbekova Z, Baptayev B, O’Reilly RJ, Balanay MP. Advancements in Carbazole-Based Sensitizers and Hole-Transport Materials for Enhanced Photovoltaic Performance. Molecules 2024; 29:5035. [PMID: 39519676 PMCID: PMC11547213 DOI: 10.3390/molecules29215035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Carbazole-based molecules play a significant role in dye-sensitized solar cells (DSSCs) due to their advantageous properties. Carbazole derivatives are known for their thermal stability, high hole-transport capability, electron-rich (p-type) characteristics, elevated photoconductivity, excellent chemical stability, and commercial availability. This review focuses on DSSCs, including their structures, working principles, device characterization, and the photovoltaic performance of carbazole-based derivatives. Specifically, it covers compounds such as 2,7-carbazole and indolo[3,2-b]carbazole, which are combined with various acceptors like benzothiadiazole, thiazolothiazole, diketopyrrolopyrrole, and quinoxaline, as reported over the past decade. The review will also outline the relationship between molecular structure and power-conversion efficiencies. Its goal is to summarize recent research and advancements in carbazole-based dyes featuring a D-π-A architecture for DSSCs. Additionally, this review addresses the evolution of carbazole-based hole-transport materials (HTMs), which present a promising alternative to the costly spiro-OMeTAD. We explore the development of novel HTMs that leverage the unique properties of carbazole derivatives to enhance charge transport, stability, and overall device performance. By examining recent innovations and emerging trends in carbazole-based HTMs, we provide insights into their potential to reduce costs and improve the efficiency of DSSCs.
Collapse
Affiliation(s)
- Ayagoz Ibrayeva
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
- Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satpayev St., Astana 010008, Kazakhstan
| | - Urker Abibulla
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Zulfiya Imanbekova
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Bakhytzhan Baptayev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
| | - Robert J. O’Reilly
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Mannix P. Balanay
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| |
Collapse
|
3
|
Stavrou M, Zyla G, Ladika D, Dumur F, Farsari M, Gray D. Push-Pull Carbazole-Based Dyes: Synthesis, Strong Ultrafast Nonlinear Optical Response, and Effective Photoinitiation for Multiphoton Lithography. ACS APPLIED OPTICAL MATERIALS 2024; 2:1653-1666. [PMID: 39206344 PMCID: PMC11348418 DOI: 10.1021/acsaom.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The present work reports on the ultrafast nonlinear optical (NLO) properties of a series of D-π-Α and D-A push-pull carbazole-based dyes and establishes a correlation between these properties and their efficiency for potential photonic and optoelectronic applications such as multiphoton lithography (MPL). The ultrafast NLO properties of the studied dyes are determined by two distinct experimental techniques, Z-scan and pump-probe optical Kerr effect (OKE), employing 246 fs laser pulses at 515 nm. The results indicate that chemical functionalization of the carbazole moiety with various strong electron-donating and/or electron-withdrawing groups, such as benzene, styrene, 4-bromostyrene, nitrobenzene, trimethyl isocyanurate, methyl, and indane-1,3-dione, can result in a controlled and significant enhancement of the NLO absorptive and refractive responses. In the context of potential applications, the efficiency of carbazole-based organic materials as photoinitiators (PIs) for MPL applications is demonstrated. The fabricated woodpile microstructure using chemically functionalized carbazole as a PI demonstrates improvements in both feature size and MPL efficiency compared to that using unfunctionalized carbazole as a PI. This is attributed to the efficient charge transfer resulting from chemical functionalization, which leads to a substantial increase (approximately 1 order of magnitude) in the values of the imaginary part of the second-order hyperpolarizability (Imγ) and the two-photon absorption cross section (σ). The achieved feature size of 280 nm is comparable to that obtained with other widely used PIs in MPL applications. Additionally, owing to the strong NLO properties of the studied functionalized carbazole, they could also be promising candidates for further applications in photonics and optoelectronics.
Collapse
Affiliation(s)
- Michalis Stavrou
- Foundation
for Research and Technology-Hellas, Institute
of Electronic Structure and Laser, Heraklion 70013, Greece
| | - Gordon Zyla
- Foundation
for Research and Technology-Hellas, Institute
of Electronic Structure and Laser, Heraklion 70013, Greece
| | - Dimitra Ladika
- Foundation
for Research and Technology-Hellas, Institute
of Electronic Structure and Laser, Heraklion 70013, Greece
| | - Frederic Dumur
- Aix
Marseille Univ, CNRS, ICR, UMR 7273, Marseille F-13397, France
| | - Maria Farsari
- Foundation
for Research and Technology-Hellas, Institute
of Electronic Structure and Laser, Heraklion 70013, Greece
| | - David Gray
- Foundation
for Research and Technology-Hellas, Institute
of Electronic Structure and Laser, Heraklion 70013, Greece
| |
Collapse
|
4
|
Al-Marhabi AR, El-Shishtawy RM, Bouzzine SM, Hamidi M, Al-Ghamdi HA, Al-Footy KO. D-D-π-A-π-A-based quinoxaline dyes incorporating phenothiazine, phenoxazine and carbazole as electron donors: Synthesis, photophysical, electrochemical, and computational investigation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Oloub M, Hosseinzadeh R, Tajbakhsh M, Mohadjerani M. A new fluorescent boronic acid sensor based on carbazole for glucose sensing via aggregation-induced emission. RSC Adv 2022; 12:26201-26205. [PMID: 36275092 PMCID: PMC9473643 DOI: 10.1039/d2ra04110c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
A water-soluble fluorescent sensor based on carbazole pyridinium boronic acid (CPBA) was designed and synthesized. Its structure has been confirmed by CHN and 1H and 13C NMR, FT-IR, and MS spectral data. Fluorescence studies of the synthesized chemosensor CPBA showed a selective ratiometric fluorescent response for glucose among different monosaccharides. The results specified that CPBA is a pH-sensitive sensor that behaves differently in the absence and presence of glucose in the pH range 4-10. The pH, DLS, Job's plot, UV-visible, and fluorescence titration studies showed that the selectivity of CPBA towards glucose is through the aggregation-induced emission (AIE) phenomenon. The fluorescence emission intensity of CPBA changes by more than 2100 fold by adding glucose, whereas it is 2 fold for fructose. The calculated binding constant value of CPBA for glucose (K = 2.3 × 106 M-1) is 85 times greater than for fructose, indicating the high affinity of the sensor for glucose.
Collapse
Affiliation(s)
- Mandana Oloub
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Maryam Mohadjerani
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran Babolsar Iran
| |
Collapse
|
6
|
A novel application of synthesised based squarylium dyes on nylon 6, and silk woven fabrics. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Squarylium dyes were synthesized and characterized by different spectrometric techniques using FT-IR, UV-visible and GC–MS, the dyes gave molar extinction coefficient values greater than 5.2812 × 105 L mol−1 cm−1. Their fastness properties in respect to wash, light, perspiration and hot pressing on nylon 6, and silk fabrics were analyzed, effects of time, temperature, carrier concentration and pH was also investigated and reported. The dyed fabrics showed good to very good wash, light fastness, and perspiration good to very good hot pressing on nylon 6 and good to very good on silk fabric, respectively. The dye-bath exhaustion was found to be between 76 and 92% on nylon 6 and 57 and 85% on silk, respectively. The percentage exhaustion on nylon 6 was found to be very good to excellent but on silk it was found to be good to very good. These studies showed that squarylium dyes can be applied to nylon 6 and silk fabrics, but better performance was found on nylon 6 than silk fabric.
Collapse
|
7
|
Zhao D, Liu C, Wang Y, Zhang H. Ionic liquids design for efficient separation of anthracene and carbazole. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Roohi H, Motamedifar N. Molecular engineering of the efficiency of new thieno[3,2-b]thiophene-based metal-free dyes owning different donor and π-linkers groups for use in the dye-sensitised solar cells: a quantum chemical study. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1913250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hossein Roohi
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Nafiseh Motamedifar
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|