1
|
Afshari M, Varma RS, Saghanezhad SJ. Catalytic Applications of Heteropoly acid-Supported Nanomaterials in Synthetic Transformations and Environmental Remediation. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czech Republic
| | | |
Collapse
|
2
|
Khudhair EM, Khudhair WN, Ammar SH, Mahdi AS. Assembling ZIF-67@Cd0.5Zn0.5S nanocomposites with an enhanced photocatalytic activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
4
|
Song R, Zhang X, Wang H, Liu C. Polyoxometalate/Cellulose Nanofibrils Aerogels for Highly Efficient Oxidative Desulfurization. Molecules 2022; 27:2782. [PMID: 35566131 PMCID: PMC9101072 DOI: 10.3390/molecules27092782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Polyoxometalate (POM) presents great potential in oxidative desulfurization (ODS) reaction. However, the high dissolubility of POM in common solvents makes it difficult to recycle. Besides, the small specific surface area of POM also limits the interaction between them and the substrate. Depositing polyoxometalates onto three-dimensional (3D) network structured materials could largely expand the application of POM. Here, the surfaces of cellulose nanofibrils (CNFs) were modified with very few (3-Aminopropyl) trimethoxysilane (APTS) to endow positive charges on the surfaces of CNFs, and then phosphotungstic acid (PTA) was loaded to obtain the aerogel A-CNF/PTA as the ODS catalyst. FT-IR indicated the successful deposition of PTA onto aminosilane modified CNF surfaces. UV-VIS further suggested the stability of PTA in the aerogels. BET and SEM results suggested the increased specific surface area and the relatively uniform 3D network structure of the prepared aerogels. TGA analysis indicated that the thermal stability of the aerogel A-CNF/PTA50% was a little higher than that of the pure CNF aerogel. Most importantly, the aerogel A-CNF/PTA50% showed good catalytic performance for ODS. Catalysis results showed that the substrate conversion rate of the aerogel A-CNF/PTA50% reached 100% within 120 min at room temperature. Even after five cycles, the substrate conversion rate of the aerogel A-CNF/PTA50% still reached 91.2% during the dynamic catalytic process. This work provides a scalable and facile way to stably deposit POM onto 3D structured materials.
Collapse
Affiliation(s)
- Rui Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China; (R.S.); (H.W.)
| | - Xueqin Zhang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Huihui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China; (R.S.); (H.W.)
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China; (R.S.); (H.W.)
| |
Collapse
|
5
|
Urbonavicius M, Varnagiris S, Tuckute S, Sakalauskaite S, Demikyte E, Lelis M. Visible-Light-Driven Photocatalytic Inactivation of Bacteria, Bacteriophages, and Their Mixtures Using ZnO-Coated HDPE Beads as Floating Photocatalyst. MATERIALS 2022; 15:ma15041318. [PMID: 35207858 PMCID: PMC8879144 DOI: 10.3390/ma15041318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023]
Abstract
Semiconductor materials used as photocatalysts are considered among the most effective ways to treat biologically polluted water. Certainly, efficiency depends on the selection of photocatalyst and its substrate, as well as the possibility of its application in a broader spectrum of light. In this study, a reactive magnetron sputtering technique was applied for the immobilisation of ZnO photocatalyst on the surface of HDPE beads, which were selected as the buoyant substrates for enhanced photocatalytic performance and easier recovery from the treated water. Moreover, the study compared the effect on the inactivation of the microorganism between ZnO-coated HDPE beads without Ni and with Ni underlayer. Crystal structure, surface morphology, and chemical bonds of as-deposited ZnO films were investigated by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Visible-light-induced photocatalytic treatment was performed on the Gram-negative and Gram-positive bacteria and bacteriophages PRD1, T4, and their mixture. Higher bacteria inactivation efficiency was obtained using the ZnO photocatalyst with Ni underlayer for the treatment of S. Typhimurium and M. Luteus mixtures. As for infectivity of bacteriophages, T4 alone and in the mixture with PRD1 were more affected by the produced photocatalyst, compared with PRD1.
Collapse
Affiliation(s)
- Marius Urbonavicius
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas, Lithuania; (S.V.); (S.T.); (M.L.)
- Correspondence: ; Tel.: +370-37-401-824
| | - Sarunas Varnagiris
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas, Lithuania; (S.V.); (S.T.); (M.L.)
| | - Simona Tuckute
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas, Lithuania; (S.V.); (S.T.); (M.L.)
| | - Sandra Sakalauskaite
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (S.S.); (E.D.)
| | - Emilija Demikyte
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (S.S.); (E.D.)
| | - Martynas Lelis
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas, Lithuania; (S.V.); (S.T.); (M.L.)
| |
Collapse
|
6
|
Tian H, Luo J, Zhang K, Ma C, Qi Y, Zhan S, Liu X, Li M, Liu H. Synergistic Photocatalytic-Adsorption Removal of Basic Magenta Effect of AgZnO/Polyoxometalates Nanocomposites. NANOSCALE RESEARCH LETTERS 2021; 16:163. [PMID: 34757523 PMCID: PMC8581081 DOI: 10.1186/s11671-021-03620-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/27/2021] [Indexed: 05/26/2023]
Abstract
The bifunctional photocatalytic-adsorbent AgZnO/polyoxometalates (AgZnO/POMs) nanocomposites were synthesized by combining AgZnO hybrid nanoparticles and polyoxometalates [Cu(L)2(H2O)]H2[Cu(L)2(P2Mo5O23)]⋅4H2O (HL = C6H6N2O) into nanostructures via a sonochemical method. Transmission electron microscopy (TEM) indicated that AgZnO/POMs nanocomposites were uniform with narrow particle size distribution and without agglomeration. X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the nanostructure and composition of AgZnO/POMs nanocomposites. The ultraviolet-visible spectra (UV-Vis) and photoluminescence spectra (PL) confirmed excellent optical properties of the AgZnO/POMs nanocomposites. 94.13% ± 0.61 of basic magenta (BM) in aqueous solution could be removed using the AgZnO/POMs nanocomposites through adsorption and photocatalysis. The kinetic analysis showed that both the adsorption and photocatalysis process conform to pseudo-second-order kinetics. In addition, the removal rate of AgZnO/POMs nanocomposites was found to be almost unchanged after 5 cycles of use. The bifunctional photocatalytic-adsorbent AgZnO/POMs nanocomposites with high stability and cycling performance have broad application prospects in the treatment of refractory organic dye wastewater containing triphenylmethane.
Collapse
Affiliation(s)
- Heyun Tian
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Jie Luo
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Ke Zhang
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Chenguang Ma
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Yiyi Qi
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Shixia Zhan
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Xiao Liu
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China.
| | - Mingxue Li
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China.
| | - Hongling Liu
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
7
|
Li S, Lai C, Li C, Zhong J, He Z, Peng Q, Liu X, Ke B. Enhanced photocatalytic degradation of dimethyl phthalate by magnetic dual Z-scheme iron oxide/mpg-C3N4/BiOBr/polythiophene heterostructure photocatalyst under visible light. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|