1
|
Elattar A, Okoli O, Dickens T. Optimization of CsPbBr 3/PVDF composite for enhanced UV photodetection application. RSC Adv 2024; 14:36416-36422. [PMID: 39545171 PMCID: PMC11562920 DOI: 10.1039/d4ra07369j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Halide perovskites have exhibited great research impact for developing innovative materials with novel properties. Here, we report the synthesis of different caesium lead bromide perovskites using different (Cs/Pb) molar ratios and fabrication of their corresponding perovskite/polyvinylidene fluoride (PVDF) composites, as well as study of their structural and UV-photodetection properties. Spin-coated perovskite/PVDF composite thin films revealed strong oriented XRD diffraction peaks along the c-axis direction (00l) with homogeneously distributed perovskite microcrystals in the polymer matrix. The high-Cs containing perovskite/PVDF composite, with Cs/Pb (3/1) molar ratio, demonstrated the highest green emission under UV light and its corresponding UV-photodetector exhibited the highest UV photo-responsivity. These results highlight the importance of structural modulation and additive manufacturing for tailoring the optoelectronic properties of halide perovskites.
Collapse
Affiliation(s)
- Amr Elattar
- Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee Florida 32310 USA
| | - Okenwa Okoli
- Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee Florida 32310 USA
- Herff College of Engineering, University of Memphis Memphis TN 38111 USA
| | - Tarik Dickens
- Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee Florida 32310 USA
| |
Collapse
|
2
|
Zhang J, Ding P, Zhao Y, Wang T, Wang Y, Liu Z, Song H, Zhao Y, Lu S. Improvement of Self-Driven Nanowire-Based Ultraviolet Photodetectors by Metal-Organic Frameworks for Controlling Humanoid Robots. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39364809 DOI: 10.1021/acsami.4c10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Self-driven photodetectors (PDs) hold significant potential for the development of new information devices, which boast the advantages of ultralow power consumption and straightforward fabrication. In this study, we have proposed and demonstrated a self-driven ultraviolet PD utilizing gallium nitride/metal-organic framework (GaN/MOF) heterojunction nanowires successfully. By introducing Gd-ETTC MOFs on the surface of GaN nanowires, the photocurrent and responsivity of the device can be improved by approximately 75% under 310 nm illumination. Furthermore, they can also be effectively enhanced under visible light illumination. Owing to the appropriate energy level alignment, Gd-ETTC MOFs can serve as both a light harvester and a hole conductor, facilitating the efficient absorption, separation, and transmission of photogenerated carriers. It has been observed that due to reduced interface resistance, MOFs can enhance the charge transport through the acceleration of charge transfer. Furthermore, the PD equipped with MOFs is capable of continuous operation for 30,000 s, a feat attributable to the exceptional stability of both GaN nanowires and Gd-ETTC MOFs. By implementation of the humanoid robot systems, the control commands from the self-driven PD can drive the humanoid robot to execute different actions. The PD-equipped autonomous feedback system of a humanoid robot enables a seamless integration of light perception with intelligent robotic actions. Therefore, the design and demonstration of GaN/MOF nanowires hold significant reference value for further enhancing the performance of PDs and broadening their applications in ultralow-power artificial intelligence systems, humanoid intelligent robots, etc.
Collapse
Affiliation(s)
- Jianya Zhang
- Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Ding
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Yukun Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Tianxiang Wang
- Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yudie Wang
- Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiyang Liu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Helun Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yuewu Zhao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Shulong Lu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Ahmed S, Dolui SK. A dual emitting CsPbBr 3/Eu-BDC composite as a ratiometric photoluminescent turn-on probe for aliphatic amine sensing. Dalton Trans 2024; 53:8584-8592. [PMID: 38687325 DOI: 10.1039/d4dt00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The impressive photoluminescence properties of all inorganic cesium lead halide perovskite quantum dots (PeQDs) make them highly intriguing for fluorescence chemosensor applications. Herein, a ratiometric dual emitting perovskite-based sensor was designed by synthesizing fluorescent CsPbBr3 PeQDs in situ within a matrix of Eu-BDC (Eu(III) benzene-1,4-dicarboxylate). The results presented here establish the suggested sensor's quick and selective turn-on PL response to volatile primary aliphatic amine derivatives. In the presence of amines, the designed CsPbBr3/Eu-BDC sensor exhibits an enhancement of the PL signal of CsPbBr3 at 518 nm and the Eu-BDC signal at 615 nm served as a standard for constructing the ratiometric sensing system. Thereby, a visual color change from red to green was observed with the incremental addition of methylamine to the probe. A low detection limit of 0.083 ppm was determined for methylamine. In both the solution and vapor phases, this ratiometric sensor responds to a variety of primary aliphatic amines with very quick and strong fluorescence. Moreover, the sensor was effectively used for monitoring meat spoilage owing to the emission of biogenic amine vapor from meat products.
Collapse
Affiliation(s)
- Shahnaz Ahmed
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Swapan Kumar Dolui
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| |
Collapse
|
4
|
Huang Y, Zhang J, Zhou M, Pei R, Zhao Y. Engineering GaN/AuNC core-shell nanowire heterojunctions by gold nanoclusters with excitation-dependent behavior for enhancing the responsivity and stability of self-driven photodetectors. NANOSCALE ADVANCES 2023; 5:6228-6237. [PMID: 37941956 PMCID: PMC10628995 DOI: 10.1039/d3na00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023]
Abstract
Self-driven broadband photodetectors (PDs) with low-power consumption have great potential applications in the wide range of next-generation optoelectronic devices. In this study, a self-driven broadband PD responding to an ultraviolet-visible range based on gallium nitride/gold nanocluster (GaN/AuNC) core-shell nanowire heterojunctions is fabricated for the first time. By introducing the AuNCs onto the GaN nanowire surfaces, the GaN/AuNC core-shell nanowire heterojunctions can be formed efficiently. It is crucial that AuNCs have the functions of light collectors and hole conductors in heterojunctions due to the suitable energy level alignment. Under the optimized conditions of AuNCs, it is found that GaN/AuNC core-shell nanowires can significantly increase the photocurrent and responsivity of PDs, mainly resulting from the light interreflection within the heterojunctions and the effective improvement of carrier transport. Owing to the excitation-dependent emission behavior of AuNCs, the responsivity of PD with GaN/AuNC core-shell nanowire heterojunctions can be enhanced by around 330% compared with that of PD without AuNCs under visible illumination. Furthermore, GaN/AuNC hybrid nanowires with excitation-dependent fluorescence behavior can modulate the enhanced amplitude performance of broadband PDs. Owing to the high stability of AuNCs, the photocurrent of the PD with AuNCs is still quite stable after continuous operation for more than 20 000 s. Therefore, this study provides an effective method for developing new broadband PDs with high performance and low energy consumption.
Collapse
Affiliation(s)
- Yuanyuan Huang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) Suzhou 215123 China
| | - Jianya Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology Suzhou 215009 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) Suzhou 215123 China
| | - Min Zhou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) Suzhou 215123 China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
| | - Yukun Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) Suzhou 215123 China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
5
|
Saleem MI, Chandrasekar P, Batool A, Lee JH. Aqueous-Phase Formation of Two-Dimensional PbI 2 Nanoplates for High-Performance Self-Powered Photodetectors. MICROMACHINES 2023; 14:1949. [PMID: 37893386 PMCID: PMC10608996 DOI: 10.3390/mi14101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
The process of the aqueous synthesis of nanomaterials has gained considerable interest due to its ability to eliminate the need for complex organic solvents, which aligns with the principles of green chemistry. Fabricating nanostructures in aqueous solutions has gained recognition for its potential to develop ultrasensitive, low-energy, and ultrafast optoelectronic devices. This study focuses on synthesizing lead iodide (PbI2) nanoplates (NPs) using a water-based solution technique and fabricating a planar photodetector. The planar photodetectors (ITO/PbI2 NPs/Au) demonstrated a remarkable photosensitivity of 3.9 × 103 and photoresponsivity of 0.51 mA/W at a wavelength of 405 nm. Further, we have carried-out analytical calculations for key performance parameters including open-circuit voltage (Voc), short-circuit current (Isc), on-off ratio, responsivity (R), and specific detectivity (D*) at zero applied bias, while photodetector operating in self-powered mode. These values are as follows: Voc = 0.103 V, Isc = 1.93 × 10-8, on-off ratio = 103, R = 4.0 mA/W, and D* = 3.3 × 1011 Jones. Particularly, the asymmetrical output properties of ITO/PbI2 NPs/Au detector provided additional evidence of the effective creation of a Schottky contact. Therefore, the photodetector exhibited a photo-response even at 0 V bias (rise/decay time ~1 s), leading to the realization of self-powered photodetectors. Additionally, the device exhibited a rapid photo-response of 0.23/0.38 s (-5 V) in the visible range. This study expands the scope of aqueous-phase synthesis of PbI2 nanostructures, enabling the large-area fabrication of high-performance photodetectors.
Collapse
Affiliation(s)
- Muhammad Imran Saleem
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
| | | | - Attia Batool
- Research Center for Materials Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jeong-Hwan Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fertilizers are indispensable agri-inputs to accomplish the growing food demand. The injudicious use of conventional fertilizer products has resulted in several environmental and human health complications. To mitigate these problems, nanocomposite-based fertilizers are viable alternative options. Nanocomposites, a novel class of materials having improved mechanical strength, barrier properties, and mechanical and thermal stability, are suitable candidates to develop eco-friendly slow/controlled release fertilizer formulations. In this review, the use of different nanocomposite materials developed for nutrient management in agriculture has been summarized with a major focus on their synthesis and characterization techniques, and application aspects in plant nutrition, along with addressing constraints and future opportunities of this domain. Further detailed studies on nanocomposite-based fertilizers are required to evaluate the cost-effective synthesis methods, in-depth field efficacy, environmental fate, stability, etc. before commercialization in the field of agriculture. The present review is expected to help the policy makers and all the stakeholders in the large-scale commercialization and application of nanocomposite-based smart fertilizer products with greater societal acceptance and environmental sustainability in near future.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhadip Paul
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhasis Sarkar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
7
|
Perveen A, Movsesyan A, Abubakar SM, Saeed F, Hussain S, Raza A, Xu Y, Subramanian A, Khan Q, Lei W. In-situ Fabricated and Plasmonic Enhanced MACsPbBr3-Polymer Composite Perovskite Film Based UV Photodetector. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Seo J, Kim YJ, Yoo H. Zero Bias Operation: Photodetection Behaviors Obtained by Emerging Materials and Device Structures. MICROMACHINES 2022; 13:2089. [PMID: 36557389 PMCID: PMC9781907 DOI: 10.3390/mi13122089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Zero-biased photodetectors have desirable characteristics for potentially next-generation devices, including high efficiency, rapid response, and low power operation. In particular, the detector efficiency can be improved simply by changing the electrode contact geometry or morphological structure of materials, which give unique properties such as energy band bending, photo absorbance and electric field distribution. In addition, several combinations of materials enable or disable the operation of selective wavelengths of light detection. Herein, such recent progresses in photodetector operating at zero-bias voltage are reviewed. Considering the advantages and promises of these low-power photodetectors, this review introduces various zero-bias implementations and reviews the key points.
Collapse
Affiliation(s)
- Juhyung Seo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Yeong Jae Kim
- Korea Institute of Ceramic Engineering and Technology, Ceramic Total Solution Center, Icheon 17303, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
9
|
Park S, Park T, Park JH, Min JY, Jung Y, Kyoung S, Kang TY, Kim KH, Rim YS, Hong J. Ag 2O/β-Ga 2O 3 Heterojunction-Based Self-Powered Solar Blind Photodetector with High Responsivity and Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25648-25658. [PMID: 35611950 DOI: 10.1021/acsami.2c03193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-powered deep-ultraviolet photodetectors have received considerable attention in recent years because of their efficiency, reliability, and various applications in civilian and military fields. Herein, a Ag/Ag2O layer is continuously deposited on a β-Ga2O3 epitaxial layer by a facing target sputtering system without opening the chamber, which has an advantage in time and cost. A p-n junction photodetector was constructed through the Ag2O/β-Ga2O3 heterojunction and by varying the thickness of the Ag film, which was controlled by the sputtering time. The effect of top electrode thickness on the photoresponse characteristics of photodetectors was studied. Because thin Ag films have low surface roughness, indicating low optical loss and good interfacial conditions, photodetectors using a thin Ag film as the top electrode exhibit high photoresponsivity. However, Ag films that were thinner than the threshold thickness, which is the minimum thickness required to form a continuous, homogeneous surface film, exhibited rather low performance owing to the high reflection and scattering caused by the inhomogeneous surface morphology. The as-fabricated photodetector with a 20 nm Ag film presents a high on/off ratio of 3.43 × 108, responsivity and detectivity of 25.65 mA/W and 6.10 × 1011 Jones, respectively, and comparable rise and decay times of 108 and 80 ms, respectively. Additionally, even after three months of storage in an ambient environment, the photoresponse of the photodetector was maintained, indicating good stability in air. These results suggest that Ag2O/β-Ga2O3 heterojunction-based photodetectors with thin Ag films can be used in various applications requiring deep-ultraviolet detection without an external power supply.
Collapse
Affiliation(s)
- Sangbin Park
- Department of Electrical Engineering, College of IT Convergence, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Taejun Park
- Department of Electrical Engineering, College of IT Convergence, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Joon Hui Park
- Intelligent Mechatronics Engineering, College of Software Convergence, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Ji Young Min
- Intelligent Mechatronics Engineering, College of Software Convergence, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Yusup Jung
- PowerCubeSemi, Inc., 686, Cheonggyesan-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13105, Republic of Korea
| | - Sinsu Kyoung
- PowerCubeSemi, Inc., 686, Cheonggyesan-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13105, Republic of Korea
| | - Tai-Young Kang
- PowerCubeSemi, Inc., 686, Cheonggyesan-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13105, Republic of Korea
| | - Kyung Hwan Kim
- Department of Electrical Engineering, College of IT Convergence, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - You Seung Rim
- Intelligent Mechatronics Engineering, College of Software Convergence, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Jeongsoo Hong
- Department of Electrical Engineering, College of IT Convergence, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
10
|
Zhang G, Zhang H, Yu R, Duan Y, Huang Y, Yin Z. Critical Size/Viscosity for Coffee-Ring-Free Printing of Perovskite Micro/Nanopatterns. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14712-14720. [PMID: 35297596 DOI: 10.1021/acsami.1c23630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inkjet printing is the most encouraging method for patterning and integrating perovskite materials into microminiature application scenarios. However, it is still challenging to achieve high-resolution, coffee-ring-free, and perfect crystallized patterns. Here, a strategy based on powerful electrohydrodynamic printing and droplet viscosity-size coordinate regulation is developed to solve the above problems. By adding a long-chain polymer poly(vinylpyrrolidone) (PVP) into perovskite precursor to tune ink viscosity and introducing electrohydrodynamic printing to print the high-viscosity ink into droplets of different sizes, we can manipulate the inside flowing resistance and outside evaporation rate of a droplet, thus revealing a critical size/viscosity under which the coffee ring effect is inhibited, showing immense potential and significance for high-quality patterning. In addition, the long-chain polymer benefits droplet spatial limitation and uniform crystallization. The as-printed luminous patterns demonstrate high resolution (structure size ∼1 μm), excellent brightness, pleasant uniformity, and fascinating compatibility with flexible substrates, which is promising for future perovskite optoelectronic device applications.
Collapse
Affiliation(s)
- Guannan Zhang
- State Key Laboratory of Digital Manufacture Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanyuan Zhang
- State Key Laboratory of Digital Manufacture Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Yu
- State Key Laboratory of Digital Manufacture Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongqing Duan
- State Key Laboratory of Digital Manufacture Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacture Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhouping Yin
- State Key Laboratory of Digital Manufacture Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|