1
|
Yamaura S, Sadamori K, Konishi R, Majima T, Mukai A, Uno K, Kinjo T, Komori K, Kuramoto N, Kawada K. Pharmacokinetics of L-theanine and the effect on amino acid composition in mice administered with L-theanine. Amino Acids 2024; 56:29. [PMID: 38583116 PMCID: PMC10999383 DOI: 10.1007/s00726-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
L-theanine, an amino acid component of the tea leaves of Camellia sinensis, is sold in Japan as a supplement for good sleep. Although several studies in humans and mice have reported the effects of L-theanine on brain function, only a few reports have comprehensively clarified the disposition of theanine administered to mice and its effects on concentrations of other blood amino acids. In this study, we aimed to determine the changes in the blood levels of L-theanine administered to mice and amino acid composition of the serum. L-theanine were administered to four-week-old Std-ddY male mice orally or via tail vein injection. L-theanine and other amino acids in serum prepared from blood collected at different time points post-dose were labeled with phenylisothiocyanate and quantified. The serum concentration of orally administered L-theanine peaked 15 min after administration. The area under the curve for tail vein injection revealed the bioavailability of L- theanine to be approximately 70%. L-theanine administration did not affect any amino acid levels in the serum, but a significant increase in the peak area overlapping the Glycine (Gly) peak was observed 30 min after administration. L-theanine administered to mice was rapidly absorbed and eliminated, suggesting that taking L-theanine as a supplement is safe without affecting its own levels or serum levels of other amino acids. However, considering that Gly, similar to L-theanine, is used as a dietary supplement for its anxiolytic effects and to improve sleep, determining the effects of L-theanine administration on Gly is important and needs further research.
Collapse
Affiliation(s)
- Shinnosuke Yamaura
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Koki Sadamori
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Reiko Konishi
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Takashi Majima
- Department of Nursing, Faculty of Allied Health Sciences, Yamato University, Suita, Osaka, Japan
| | - Akira Mukai
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kyosuke Uno
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Toshihiko Kinjo
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Koji Komori
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.
| | - Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kou Kawada
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
2
|
Yilmaz U, Buzdagli Y, Polat ML, Bakir Y, Ozhanci B, Alkazan S, Ucar H. Effect of single or combined caffeine and L-Theanine supplementation on shooting and cognitive performance in elite curling athletes: a double-blind, placebo-controlled study. J Int Soc Sports Nutr 2023; 20:2267536. [PMID: 37815006 PMCID: PMC10566444 DOI: 10.1080/15502783.2023.2267536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE Previous studies have investigated the effect of single or combined caffeine (CAF) and L-theanine (THE) intake on attention performance. However, its effect on shooting performance and cognitive performance in a sport is unknown. The aim of this study was to investigate the hypothesis "Does single or combined CAF and THE supplementation have an effect on shooting and cognitive performance in elite curling athletes?." It is predicted that over the next decade, studies based on nutritional ergogenic supplements in the developing sport of curling will continue to increase, leading to a significant increase in studies examining the effects of CAF and THE supplementation, alone or in combination, on throwing and cognitive performance in elite curling athletes. METHODS In this double-blind, randomized controlled crossover study, twenty-two elite national curling athletes (age 20.20 ± 1.61 and sports age 6.20 ± 0.51 years, height 174.10 ± 7.21 cm, BMI 21.80 ± 3.47 kg/m2) were randomly assigned to CAF (6 mg/kg single dose CAF), THE (6 mg/kg single dose THE), CAF*THE (6 mg/kg CAF and 6 mg/kg THE combined) and PLA (400 mg maltodextrin) groups at each of four sessions. 60 minutes after taking the supplement, the athletes were first given the Stroop test and then asked to shoot. RESULTS Our main findings have shown that the performance of athletes in guard (F=3.452, P < .001, ηp2 = .842), draw (F=1.647, P < .001, ηp2 = .485), and take-out (F=3.121, P < .001, ηp2 = .743) shot styles significantly improved when comparing the combined intake of CAF and THE to the PLA. Regarding cognitive performance evaluation through the Stroop test, during the NR task (F=4.743, P = .001, ηp2 = .653), the combined intake of CAF and THE significantly improved reaction times compared to the intake of single CAF, THE, or PLA. The best reaction times during the CR and ICR (respectively; F=2.742, P = .004, ηp2 = .328; F = 1.632, P < .001, ηp2 = .625) tasks were achieved with the combined CAF and THE intake, showing a significant improvement compared to PLA. During the NER (F=2.961, P < .001, ηp2 = .741), task, the combined intake of CAF and THE significantly improved error rates compared to the intake of CAF, THE, or PLA single. The best accuracy rates during the CER and ICER (respectively; F=4.127, P < .001, ηp2 = .396; F=3.899, P < .001, ηp2 = .710) tasks were achieved with the combined CAF and THE intake, leading to a significant reduction in error rates compared to PLA. Based on these findings, it has been demonstrated in this study that the best shooting scores and cognitive performance were achieved, particularly with the combined intake of CAF and THE. CONCLUSIONS Based on these findings, it has been demonstrated in this study that the best shooting scores and cognitive performance were achieved, particularly with the combined intake of CAF and THE. The combined use of these supplements has been found to be more effective on shooting and cognitive performance than their single use.
Collapse
Affiliation(s)
- Umut Yilmaz
- Hakkâri University, Department of Physical Education and Sports, Faculty of Education, Hakkâri, Turkey
| | - Yusuf Buzdagli
- Erzurum Technical University, Department of Coaching Education, Faculty of Sport Sciences, Erzurum, Turkey
| | | | - Yusuf Bakir
- Erzurum Technical University, Institute of Health Sciences, Erzurum, Turkey
| | - Burak Ozhanci
- Erzurum Technical University, Institute of Health Sciences, Erzurum, Turkey
| | - Sena Alkazan
- Erzurum Technical University, Institute of Health Sciences, Erzurum, Turkey
| | - Halil Ucar
- Atatürk University, Institute of Winter Sports and Sport Sciences, Erzurum, Turkey
| |
Collapse
|
3
|
Zhu Y, Wang F, Han J, Zhao Y, Yu M, Ma M, Yu Z. Untargeted and targeted mass spectrometry reveal the effects of theanine on the central and peripheral metabolomics of chronic unpredictable mild stress-induced depression in juvenile rats. J Pharm Anal 2023; 13:73-87. [PMID: 36816539 PMCID: PMC9937789 DOI: 10.1016/j.jpha.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/25/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
Abstract
l-theanine has been shown to have a therapeutic effect on depression. However, whether l-theanine has an excellent preventive effect on depression in children and adolescents and what its mechanism is have not been well explained. Given the complexity of the pathogenesis of depression, this study investigated the preventive effect and mechanism of l-theanine on depression in juvenile rats by combining serum and hippocampal metabolomic strategies. Behavioral tests, hippocampal tissue sections, and serum and hippocampal biochemical indexes were studied, and the results confirmed the preventive effect of l-theanine. Untargeted reversed-phase liquid chromatography-quadrupole-time-of-flight mass spectrometry and targeted hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry were developed to analyze the metabolism changes in the serum and hippocampus to screen for potential biomarkers related to l-theanine treatment. The results suggested that 28 abnormal metabolites in the serum and hippocampus that were considered as potential biomarkers returned to near-normal levels after l-theanine administration. These biomarkers were involved in various metabolic pathways, mainly including amino acid metabolism and lipid metabolism. The levels of amino acids and neurotransmitters in the phenylalanine, tryptophan, and glutamic acid pathways were significantly reduced after l-theanine administration compared with chronic unpredictable mild stress-induced rats. In summary, l-theanine had a significant preventive effect on depression and achieved its preventive results on depression by regulating various aspects of the body, such as amino acids, lipids, and inflammation. This research systematically analyzed the mechanism of l-theanine in preventing depression and laid the foundation for applying l-theanine to prevent depression in children and adolescents.
Collapse
Affiliation(s)
- Yanru Zhu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, 315100, China
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feng Wang
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiatong Han
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yunli Zhao
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Miao Yu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingyan Ma
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, 315100, China
| | - Zhiguo Yu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
4
|
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with a wide range of behavioral disturbances and serious consequences for both patient and society. One of the main reasons for unsuccessful therapies is insufficient knowledge about its underlying pathomechanism. In the search for centrally signaling molecules that might be relevant to the development of PTSD we focus here on arginine vasopressin (AVP). So far AVP has not been strongly implicated in PTSD, but different lines of evidence suggest a possible impact of its signaling in all clusters of PTSD symptomatology. More specifically, in laboratory rodents, AVP agonists affect behavior in a PTSD-like manner, while significant reduction of AVP signaling in the brain e.g. in AVP-deficient Brattleboro rats, ameliorated defined behavioral parameters that can be linked to PTSD symptoms. Different animal models of PTSD also show alterations in the AVP signaling in distinct brain areas. However, pharmacological treatment targeting central AVP receptors via systemic routes is hampered by possible side effects that are linked to the peripheral action of AVP as a hormone. Indeed, the V1a receptor, the most common receptor subtype in the brain, is implicated in vasoconstriction. Thus, systemic treatment with V1a receptor antagonists would be implicated in hypotonia. This implies that novel treatment concepts are needed to target AVP receptors not only at brain level but also in distinct brain areas, to offer alternative treatments for PTSD.
Collapse
Affiliation(s)
- Eszter Sipos
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bibiána Török
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Barna
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mario Engelmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), Magdeburg, Germany
| | - Dóra Zelena
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Selective Upregulation by Theanine of Slc38a1 Expression in Neural Stem Cell for Brain Wellness. Molecules 2020; 25:molecules25020347. [PMID: 31952134 PMCID: PMC7024158 DOI: 10.3390/molecules25020347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Theanine is an amino acid abundant in green tea with an amide moiety analogous to glutamine (GLN) rather than glutamic acid (Glu) and GABA, which are both well-known as amino acid neurotransmitters in the brain. Theanine has no polyphenol and flavonoid structures required for an anti-oxidative property as seen with catechins and tannins, which are more enriched in green tea. We have shown marked inhibition by this exogenous amino acid theanine of the uptake of [3H]GLN, but not of [3H]Glu, in rat brain synaptosomes. Beside a ubiquitous role as an endogenous amino acid, GLN has been believed to be a main precursor for the neurotransmitter Glu sequestered in a neurotransmitter pool at glutamatergic neurons in the brain. The GLN transporter solute carrier 38a1 (Slc38a1) plays a crucial role in the incorporation of extracellular GLN for the intracellular conversion to Glu by glutaminase and subsequent sequestration at synaptic vesicles in neurons. However, Slc38a1 is also expressed by undifferentiated neural progenitor cells (NPCs) not featuring a neuronal phenotype. NPCs are derived from a primitive stem cell endowed to proliferate for self-renewal and to commit differentiation to several daughter cell lineages such as neurons, astrocytes, and oligodendrocytes. In vitro culture with theanine leads to the marked promotion of the generation of new neurons together with selective upregulation of Slc38a1 transcript expression in NPCs. In this review, we will refer to a possible novel neurogenic role of theanine for brain wellness through a molecular mechanism relevant to facilitated neurogenesis with a focus on Slc38a1 expressed by undifferentiated NPCs on the basis of our accumulating findings to date.
Collapse
|
6
|
Hidese S, Ogawa S, Ota M, Ishida I, Yasukawa Z, Ozeki M, Kunugi H. Effects of L-Theanine Administration on Stress-Related Symptoms and Cognitive Functions in Healthy Adults: A Randomized Controlled Trial. Nutrients 2019; 11:nu11102362. [PMID: 31623400 PMCID: PMC6836118 DOI: 10.3390/nu11102362] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/10/2023] Open
Abstract
This randomized, placebo-controlled, crossover, and double-blind trial aimed to examine the possible effects of four weeks L-theanine administration on stress-related symptoms and cognitive functions in healthy adults. Participants were 30 individuals (nine men and 21 women; age: 48.3 ± 11.9 years) who had no major psychiatric illness. L-theanine (200 mg/day) or placebo tablets were randomly and blindly assigned for four-week administration. For stress-related symptoms, Self-rating Depression Scale, State-Trait Anxiety Inventory-trait, and Pittsburgh Sleep Quality Index (PSQI) scores decreased after L-theanine administration (p = 0.019, 0.006, and 0.013, respectively). The PSQI subscale scores for sleep latency, sleep disturbance, and use of sleep medication reduced after L-theanine administration, compared to the placebo administration (all p < 0.05). For cognitive functions, verbal fluency and executive function scores improved after L-theanine administration (p = 0.001 and 0.031, respectively). Stratified analyses revealed that scores for verbal fluency (p = 0.002), especially letter fluency (p = 0.002), increased after L-theanine administration, compared to the placebo administration, in individuals who were sub-grouped into the lower half by the median split based on the mean pretreatment scores. Our findings suggest that L-theanine has the potential to promote mental health in the general population with stress-related ailments and cognitive impairments.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Shintaro Ogawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Zenta Yasukawa
- Department of Research and Development, Nutrition Division, Taiyo Kagaku Co. Ltd, 1-3, Takara-machi, Yokkaichi, Mie 510-0844, Japan.
| | - Makoto Ozeki
- Department of Research and Development, Nutrition Division, Taiyo Kagaku Co. Ltd, 1-3, Takara-machi, Yokkaichi, Mie 510-0844, Japan.
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
7
|
Yoneda Y, Kuramoto N, Kawada K. The role of glutamine in neurogenesis promoted by the green tea amino acid theanine in neural progenitor cells for brain health. Neurochem Int 2019; 129:104505. [PMID: 31310779 DOI: 10.1016/j.neuint.2019.104505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Abstract
The green tea amino acid theanine is abundant in green tea rather than black and oolong teas, which are all made of the identical tea plant "Chanoki" (Camellia sinensis). Theanine has a molecular structure close to glutamine (GLN) compared to glutamic acid (Glu), in terms of the absence of a free carboxylic acid moiety from the gamma carbon position. Theanine efficiently inhibits [3H]GLN uptake without affecting [3H]Glu uptake in rat brain synaptosomes. In contrast to GLN, however, theanine markedly stimulates the abilities to replicate and to commit to a neuronal lineage following prolonged exposure in cultured neural progenitor cells (NPCs) prepared from embryonic and adult rodent brains. Upregulation of transcript expression is found for one of the GLN transporter isoforms, Slc38a1, besides the promotion of both proliferation and neuronal commitment along with acceleration of the phosphorylation of mechanistic target of rapamycin (mTOR) and relevant downstream proteins, in murine NPCs cultured with theanine. Stable overexpression of Slc38a1 similarly facilitates both cellular replication and neuronal commitment in pluripotent embryonic carcinoma P19 cells. In P19 cells with stable overexpression of Slc38a1, marked phosphorylation is seen for mTOR and downstream proteins in a manner insensitive to further additional phosphorylation by theanine. Taken together, theanine would exhibit a novel pharmacological property to up-regulate Slc38a1 expression for activation of the intracellular mTOR signaling pathway required for neurogenesis after sustained exposure in undifferentiated NPCs in the brain. In this review, a novel neurogenic property of the green tea amino acid theanine is summarized for embryonic and adult neurogenesis with a focus on the endogenous amino acid GLN on the basis of our accumulating evidence to date.
Collapse
Affiliation(s)
- Yukio Yoneda
- Department of Pharmacology, Osaka University Graduate School of Dentistry, Suita, 565-0871, Japan; The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan.
| | - Nobuyuki Kuramoto
- The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan; Laboratory of Molecular Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Hirakata, 573-0101, Japan
| | - Koichi Kawada
- The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan; Department of Pharmacology, Chiba Institute of Science Faculty of Pharmaceutical Sciences, Chiba, 288-0025, Japan
| |
Collapse
|
8
|
Williams J, Sergi D, McKune AJ, Georgousopoulou EN, Mellor DD, Naumovski N. The beneficial health effects of green tea amino acid l
-theanine in animal models: Promises and prospects for human trials. Phytother Res 2019; 33:571-583. [DOI: 10.1002/ptr.6277] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jackson Williams
- Faculty of Health; University of Canberra; Canberra ACT Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra; Bruce ACT Australia
| | - Domenico Sergi
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Health and Biosecurity; Adelaide SA Australia
| | - Andrew J. McKune
- Faculty of Health; University of Canberra; Canberra ACT Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra; Bruce ACT Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE); Bruce ACT Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences; University of KwaZulu-Natal; Durban South Africa
| | - Ekavi N. Georgousopoulou
- Faculty of Health; University of Canberra; Canberra ACT Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra; Bruce ACT Australia
- Department of Nutrition and Dietetics, School of Health Science and Education; Harokopio University; Athens Greece
| | - Duane D. Mellor
- Faculty of Health; University of Canberra; Canberra ACT Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra; Bruce ACT Australia
| | - Nenad Naumovski
- Faculty of Health; University of Canberra; Canberra ACT Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra; Bruce ACT Australia
| |
Collapse
|
9
|
Nguyen BT, Sharma N, Shin EJ, Jeong JH, Lee SH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Kim HC. Theanine attenuates memory impairments induced by klotho gene depletion in mice. Food Funct 2019; 10:325-332. [DOI: 10.1039/c8fo01577e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Theanine (γ-glutamylethylamide), an amino acid in tea, is a putative neuroprotective and antioxidant compound capable of improving lifespan and cognitive function.
Collapse
|
10
|
Shen M, Yang Y, Wu Y, Zhang B, Wu H, Wang L, Tang H, Chen J. L-theanine ameliorate depressive-like behavior in a chronic unpredictable mild stress rat model via modulating the monoamine levels in limbic-cortical-striatal-pallidal-thalamic-circuit related brain regions. Phytother Res 2018; 33:412-421. [PMID: 30474152 DOI: 10.1002/ptr.6237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 08/30/2018] [Accepted: 10/20/2018] [Indexed: 01/12/2023]
Abstract
L-theanine, originally found in green tea, elicits various physiological effects, such as promoting relaxation, improving concentration and learning ability, and providing antianxiety-like and antidepressant-like properties. This study aims to investigate the effects of L-theanine (2 mg/kg) on monoamine levels in an animal model of depression. The effect of l-theanine on the symptoms of depression was examined through the open-field test, sucrose preference test, and forced swim test. The monoamine neurotransmitters that involve serotonin (5-HT), norepinephrine (NE), and dopamine (DA) were measured in the limbic-cortical-striatal-pallidal-thalamic (LCSPT)-circuit related brain regions, including the prefrontal cortex (PFC), nucleus accumbens (NAC), striatum (ST), amygdala, and hippocampus (HIP). L-theanine ameliorated the depressive-like behaviors in the chronic unpredictable mild stress (CUMS) rat model. In the PFC, NAC, and HIP, L-theanine administration significantly increased the levels of 5-HT, NE, and DA. In the ST, the levels of 5-HT and DA were increased after the administration of L-theanine. However, in the HIP, only the level of DA significantly changed after the treatment of L-theanine. Taken together, these results indicated that L-theanine has possibly antidepressant-like effects in the CUMS rat model, which could be mediated by the monoamine neurotransmitters in the LCSPT-circuit related brain regions.
Collapse
Affiliation(s)
- Manjun Shen
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Yi Yang
- Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying Wu
- Intensive Care Unit of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Beibei Zhang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Haishan Wu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Lu Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Hui Tang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Jindong Chen
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
11
|
Theanine supplementation prevents liver injury and heat shock response by normalizing hypothalamic-pituitaryadrenal axis hyperactivity in mice subjected to whole body heat stress. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
12
|
An l-Glutamine Transporter Isoform for Neurogenesis Facilitated by l-Theanine. Neurochem Res 2017; 42:2686-2697. [DOI: 10.1007/s11064-017-2317-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
|
13
|
Possible activation by the green tea amino acid theanine of mammalian target of rapamycin signaling in undifferentiated neural progenitor cells in vitro. Biochem Biophys Rep 2015; 5:89-95. [PMID: 28955810 PMCID: PMC5600317 DOI: 10.1016/j.bbrep.2015.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 11/23/2022] Open
Abstract
We have shown marked promotion of both proliferation and neuronal differentiation in pluripotent P19 cells exposed to the green tea amino acid theanine, which is a good substrate for SLC38A1 responsible for glutamine transport. In this study, we evaluated the activity of the mammalian target of rapamycin (mTOR) kinase pathway, which participates in protein translation, cell growth and autophagy in a manner relevant to intracellular glutamine levels, in murine neural progenitor cells exposed to theanine. Exposure to theanine promoted the phosphorylation of mTOR and downstream proteins in neurospheres from embryonic mouse neocortex. Although stable overexpression of SLC38A1 similarly facilitated phosphorylation of mTOR-relevant proteins in undifferentiated P19 cells, theanine failed to additionally accelerate the increased phosphorylation in these stable transfectants. Theanine accelerated the formation of neurospheres from murine embryonic neocortex and adult hippocampus, along with facilitation of both 5-bromo-2’-deoxyuridine incorporation and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction in embryonic neurospheres. In embryonic neurospheres previously exposed to theanine, a significant increase was seen in the number of cells immunoreactive for a neuronal marker protein after spontaneous differentiation. These results suggest that theanine activates the mTOR signaling pathway for proliferation together with accelerated neurogenesis in murine undifferentiated neural progenitor cells. Theanine promotes mTOR phosphorylation in neural progenitors. Theanine promotes the formation of embryonic and adult neurospheres. SLC38A1 overexpression promotes mTOR phosphorylation in pluripotent P19 cells. Theanine fails to further promote mTOR phosphorylation in SLC38A1 transfectants. Theanine promotes subsequent neuronal differentiation in embryonic progenitors.
Collapse
|