1
|
Gong Q, Lv X, Liao C, Liang A, Luo C, Wu J, Zhou Y, Huang Y, Tong Z. Single-cell RNA sequencing combined with proteomics of infected macrophages reveals prothymosin-α as a target for treatment of apical periodontitis. J Adv Res 2024; 66:349-361. [PMID: 38237771 PMCID: PMC11675041 DOI: 10.1016/j.jare.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Chronic apical periodontitis (CAP) is a common infectious disease of the oral cavity. Immune responses and osteoclastogenesis of monocytes/macrophages play a crucial role in CAP progression, and this study want to clarify role of monocytes/macrophages in CAP, which will contribute to treatment of CAP. OBJECTIVES We aim to explore the heterogeneity of monocyte populations in periapical lesion of CAP tissues and healthy control (HC) periodontal tissues by single-cell RNA sequencing (scRNA-seq), search novel targets for alleviating CAP, and further validate it by proteomics and in vitro and in vivo evaluations. METHODS ScRNA-seq was used to analyze the heterogeneity of monocyte populations in CAP, and proteomics of THP-1-derived macrophages with porphyromonas gingivalis infection were intersected with the differentially expressed genes (DEGs) of macrophages between CAP and HC tissues. The upregulated PTMA (prothymosin-α) were validated by immunofluorescence staining and quantitative real time polymerase chain reaction. We evaluated the effect of thymosin α1 (an amino-terminal proteolytic cleavage product of PTMA protein) on inflammatory factors and osteoclast differentiation of macrophages infected by P. gingivalis. Furthermore, we constructed mouse and rat mandibular bone lesions caused by apical periodontitis, and estimated treatment of systemic and topical administration of PTMA for CAP. Statistical analyses were performed using GraphPad Prism software (v9.2) RESULTS: Monocytes were divided into seven sub-clusters comprising monocyte-macrophage-osteoclast (MMO) differentiation in CAP. 14 up-regulated and 21 down-regulated genes and proteins were intersected between the DEGs of scRNA-seq data and proteomics, including the high expression of PTMA. Thymosin α1 may decrease several inflammatory cytokine expressions and osteoclastogenesis of THP-1-derived macrophages. Both systemic administration in mice and topical administration in the pulp chamber of rats alleviated periapical lesions. CONCLUSIONS PTMA upregulation in CAP moderates the inflammatory response and prevents the osteoclastogenesis of macrophages, which provides a basis for targeted therapeutic strategies for CAP.
Collapse
Affiliation(s)
- Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaomin Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chenxi Liao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuiting Luo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanling Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yihua Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhongchun Tong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Babenko VA, Yakupova EI, Pevzner IB, Bocharnikov AD, Zorova LD, Fedulova KS, Grebenchikov OA, Kuzovlev AN, Grechko AV, Silachev DN, Rahimi-Moghaddam P, Plotnikov EY. Effects of Lithium Ions on tPA-Induced Hemorrhagic Transformation under Stroke. Biomedicines 2024; 12:1325. [PMID: 38927532 PMCID: PMC11201972 DOI: 10.3390/biomedicines12061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Thrombolytic therapy with the tissue plasminogen activator (tPA) is a therapeutic option for acute ischemic stroke. However, this approach is subject to several limitations, particularly the increased risk of hemorrhagic transformation (HT). Lithium salts show neuroprotective effects in stroke, but their effects on HT mechanisms are still unknown. In our study, we use the models of photothrombosis (PT)-induced brain ischemia and oxygen-glucose deprivation (OGD) to investigate the effect of Li+ on tPA-induced changes in brain and endothelial cell cultures. We found that tPA did not affect lesion volume or exacerbate neurological deficits but disrupted the blood-brain barrier. We demonstrate that poststroke treatment with Li+ improves neurological status and increases blood-brain barrier integrity after thrombolytic therapy. Under conditions of OGD, tPA treatment increased MMP-2/9 levels in endothelial cells, and preincubation with LiCl abolished this MMP activation. Moreover, we observed the effect of Li+ on glycolysis in tPA-treated endothelial cells, which we hypothesized to have an effect on MMP expression.
Collapse
Affiliation(s)
- Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elmira I. Yakupova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
| | - Irina B. Pevzner
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Alexey D. Bocharnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- Advanced Engineering School “Intelligent Theranostics Systems”, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Kseniya S. Fedulova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
| | - Oleg A. Grebenchikov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Parvaneh Rahimi-Moghaddam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran;
| | - Egor Y. Plotnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
3
|
Ueda H. Prothymosin α-derived hexapeptide prevents the brain damage and sequelae due to ischemia-hemorrhage. Peptides 2023; 160:170922. [PMID: 36496010 DOI: 10.1016/j.peptides.2022.170922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
ProTα discovered as a necrosis-inhibitor from the conditioned medium of cortical culture also shows a potent survival action in brain and retinal ischemia/reperfusion models. The proposed mechanisms are the initial cell death mode switch from necrosis to apoptosis, which is subsequently inhibited by neurotrophic factors in vivo. It should be noted that ProTα and its derived hexapeptide P6Q completely suppress the cerebral hemorrhage induced by late tPA treatment (4.5 h) after the brain ischemia/reperfusion. Mechanisms underlying their beneficial actions may be related to the fact that ProTα inhibits the production of matrix metalloproteases (MMPs) in microglia and vascular endothelial cells. However, as P6Q inhibits MMPs in vascular endothelial cells, but not in microglia, the suppression of MMP production in endothelial cells seems to play major roles in the late tPA-induced hemorrhage. Although the tPA-treatments could enable the survival of patients with stroke, the post-stroke sequelae are the next clinical issues to be solved. The use of small peptide P6Q revealed the blockade of post-stroke pain, depression and memory-learning deficits in animal models. Furthermore, recent studies also showed that P6Q supplementation increased the viability of human induced pluripotent stem (iPS) cell-derived retinal pigment epithelium cell suspensions during the storage and P6Q attenuated the cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation of Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan; Graduate Institute of Pharmacology, National Defense Medical Center, Neihu, 114201 Taipei, Taiwan
| |
Collapse
|
4
|
Matsunaga H, Halder SK, Ueda H. Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions. Cells 2021; 10:cells10030567. [PMID: 33807671 PMCID: PMC7998613 DOI: 10.3390/cells10030567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum-free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1. The stress-induced externalization of ANXA2 was inhibited by pretreatment with siRNA for P4-ATPase, ATP8A2, under serum-free conditions, which ablates membrane lipid asymmetry. The stress-induced ProTα release via Stx-1A, ANXA2 and ATP8A2 was also evidenced by the knock-down strategy in the experiments using oxygen glucose deprivation-treated cultured neurons. These findings suggest that starvation stress-induced release of ProTα, S100A13, and p40 Syt-1 from C6 glioma cells is mediated by the ANXA2-flop-out via energy crisis-dependent recovery of membrane lipid asymmetry.
Collapse
Affiliation(s)
- Hayato Matsunaga
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Sebok Kumar Halder
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Hiroshi Ueda
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: ; Tel.: +81-75-753-4536
| |
Collapse
|
5
|
Klegeris A. Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns. Neural Regen Res 2021; 16:423-429. [PMID: 32985460 PMCID: PMC7996015 DOI: 10.4103/1673-5374.293134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sterile inflammatory processes are essential for the maintenance of central nervous system homeostasis, but they also contribute to various neurological disorders, including neurotrauma, stroke, and demyelinating or neurodegenerative diseases. Immune mechanisms in the central nervous system and periphery are regulated by a diverse group of endogenous proteins, which can be broadly divided into the pro-inflammatory damage-associated molecular patterns (DAMPs) and anti-inflammatory resolution-associated molecular patterns (RAMPs), even though there is notable overlap between the DAMP- and RAMP-like activities for some of these molecules. Both groups of molecular patterns were initially described in peripheral immune processes and pathologies; however, it is now evident that at least some, if not all, of these immunomodulators also regulate neuroimmune processes and contribute to neuroinflammation in diverse central nervous system disorders. The review of recent literature demonstrates that studies on DAMPs and RAMPs of the central nervous system still lag behind the much broader research effort focused on their peripheral counterparts. Nevertheless, this review also reveals that over the last five years, significant advances have been made in our understanding of the neuroimmune functions of several well-established DAMPs, including high-mobility group box 1 protein and interleukin 33. Novel neuroimmune functions have been demonstrated for other DAMPs that previously were considered almost exclusively as peripheral immune regulators; they include mitochondrial transcription factor A and cytochrome C. RAMPs of the central nervous system are an emerging area of neuroimmunology with very high translational potential since some of these molecules have already been used in preclinical and clinical studies as candidate therapeutic agents for inflammatory conditions, such as multiple sclerosis and rheumatoid arthritis. The therapeutic potential of DAMP antagonists and neutralizing antibodies in central nervous system neuroinflammatory diseases is also supported by several of the identified studies. It can be concluded that further studies of DAMPs and RAMPs of the central nervous system will continue to be an important and productive field of neuroimmunology.
Collapse
Affiliation(s)
- Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| |
Collapse
|
6
|
Wenzel TJ, Kwong E, Bajwa E, Klegeris A. Resolution-Associated Molecular Patterns (RAMPs) as Endogenous Regulators of Glia Functions in Neuroinflammatory Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:483-494. [DOI: 10.2174/1871527319666200702143719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Glial cells, including microglia and astrocytes, facilitate the survival and health of all cells
within the Central Nervous System (CNS) by secreting a range of growth factors and contributing to
tissue and synaptic remodeling. Microglia and astrocytes can also secrete cytotoxins in response to
specific stimuli, such as exogenous Pathogen-Associated Molecular Patterns (PAMPs), or endogenous
Damage-Associated Molecular Patterns (DAMPs). Excessive cytotoxic secretions can induce the death
of neurons and contribute to the progression of neurodegenerative disorders, such as Alzheimer’s disease
(AD). The transition between various activation states of glia, which include beneficial and detrimental
modes, is regulated by endogenous molecules that include DAMPs, cytokines, neurotransmitters,
and bioactive lipids, as well as a diverse group of mediators sometimes collectively referred to as
Resolution-Associated Molecular Patterns (RAMPs). RAMPs are released by damaged or dying CNS
cells into the extracellular space where they can induce signals in autocrine and paracrine fashions by
interacting with glial cell receptors. While the complete range of their effects on glia has not been described
yet, it is believed that their overall function is to inhibit adverse CNS inflammatory responses,
facilitate tissue remodeling and cellular debris removal. This article summarizes the available evidence
implicating the following RAMPs in CNS physiological processes and neurodegenerative diseases:
cardiolipin (CL), prothymosin α (ProTα), binding immunoglobulin protein (BiP), heat shock protein
(HSP) 10, HSP 27, and αB-crystallin. Studies on the molecular mechanisms engaged by RAMPs could
identify novel glial targets for development of therapeutic agents that effectively slow down neuroinflammatory
disorders including AD.
Collapse
Affiliation(s)
- Tyler J. Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Evan Kwong
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
7
|
Karachaliou CE, Kalbacher H, Voelter W, Tsitsilonis OE, Livaniou E. In Vitro Immunodetection of Prothymosin Alpha in Normal and Pathological Conditions. Curr Med Chem 2020; 27:4840-4854. [PMID: 31389310 DOI: 10.2174/0929867326666190807145212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/20/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Prothymosin alpha (ProTα) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProTα is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as "alarmins". Antibodies and immunochemical techniques for ProTα have played a leading role in the investigation of the biological role of ProTα, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProTα (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", 15310 Agia Paraskevi, Athens, Greece
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Ourania E Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia Livaniou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", 15310 Agia Paraskevi, Athens, Greece
| |
Collapse
|
8
|
Sasaki K, Halder SK, Matsunaga H, Ueda H. Beneficial actions of prothymosin alpha-mimetic hexapeptide on central post-stroke pain, reduced social activity, learning-deficit and depression following cerebral ischemia in mice. Peptides 2020; 126:170265. [PMID: 31982448 DOI: 10.1016/j.peptides.2020.170265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 11/23/2022]
Abstract
Prothymosin alpha (ProTα)-mimetic hexapeptide (amino acid: NEVDQE, P6Q) inhibits cerebral or retinal ischemia-induced behavioral, electrophysiological and histological damage. P6Q also abolishes cerebral hemorrhage induced by ischemia with tissue plasminogen activator (tPA). In the present study we examined the beneficial effects of P6Q on other post-stroke prognostic psychology-related symptoms, which obstruct the motivation toward physical therapy. Intravenous (i.v.) administration with tPA (10 mg/kg) at 6 h after photochemically induced thrombosis (PIT) in mice resulted in bilateral central post-stroke pain in thermal and mechanical nociception tests and loss of social activity in the nest building test, both of which were significantly blocked by P6Q (30 mg/kg, i.v.) given at 5 h after PIT. P6Q (30 mg/kg, i.v.) also improved the memory-learning deficit in the step-through test and depression-like behavior in the tail suspension test when it was given 1 day after bilateral common carotid arteries occlusion (BCCAO) in mice. Thus, these studies suggest that P6Q could be a promising candidate to prevent negative prognostic psychological symptoms following focal and global ischemia.
Collapse
Affiliation(s)
- Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan.
| |
Collapse
|
9
|
Halder SK, Matsunaga H, Ueda H. Experimental evidence for the involvement of F 0/F 1 ATPase and subsequent P2Y 12 receptor activation in prothymosin alpha-induced protection of retinal ischemic damage. J Pharmacol Sci 2020; 143:127-131. [PMID: 32156464 DOI: 10.1016/j.jphs.2020.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 11/18/2022] Open
Abstract
The inhibition of retinal ischemia-induced damage by post-ischemic prothymosin alpha (ProTα) was not affected in toll-like receptor 4 knockout (TLR4-/-) mice but blocked by the pretreatment with antibody against F0/F1 ATPase α- or β-subunit, novel candidate for ProTα-receptor. In addition to the previous observation of ProTα-induced ATP release from cells, the present study showed a ProTα-induced enhancement of ATP hydrolysis activity of recombinant ATP5A1/5B complex. As the protection of retinal function by post-ischemic ProTα was abolished by anti-P2Y12 antibody, the activation of F0/F1 ATPase and subsequent P2Y12 receptor system may play roles in beneficial actions by post-ischemic ProTα.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA 92121, USA
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Department of Medical Pharmacology, Nagasaki University of Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Halder SK, Sasaki K, Ueda H. Gγ7-specific prothymosin alpha deletion causes stress- and age-dependent motor dysfunction and anxiety. Biochem Biophys Res Commun 2019; 522:264-269. [PMID: 31759625 DOI: 10.1016/j.bbrc.2019.11.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023]
Abstract
We previously showed that prothymosin alpha (ProTα) improves cerebral ischemia-induced motor dysfunction. Our recent study also demonstrated that heterozygous ProTα deletion exhibited an enhanced anxiety-like behavior in mice. However, it remains elusive which brain regions or cells are related to these phenotypes. Here we generated conditional Gγ7-specific ProTα knockout mice using G protein γ7 subunit gene (Gng7)-cre promoter to see the brain robustness roles of ProTα in the striatum and hippocampus. The younger conditional ProTα (Gng7) knockout mice at the age of 10 weeks showed no significant phenotypes in motor dysfunction in the Rotarod test and locomotor activity in the open-field test, whereas significant motor dysfunction was obtained by 15 min transient middle cerebral artery occlusion (tMCAO)-induced cerebral ischemia. The aged conditional ProTα (Gng7) knockout mice at the age of 20 weeks showed hypolocomotor activity with less center time in the open-field test and impaired motor coordination in the Rotarod test without ischemia. Thus, this study suggests that ProTα has important roles in the maintenance of motor coordination and anxiety-like behavior.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan.
| |
Collapse
|
11
|
Birmpilis AI, Karachaliou CE, Samara P, Ioannou K, Selemenakis P, Kostopoulos IV, Kavrochorianou N, Kalbacher H, Livaniou E, Haralambous S, Kotsinas A, Farzaneh F, Trougakos IP, Voelter W, Dimopoulos MA, Bamias A, Tsitsilonis O. Antitumor Reactive T-Cell Responses Are Enhanced In Vivo by DAMP Prothymosin Alpha and Its C-Terminal Decapeptide. Cancers (Basel) 2019; 11:cancers11111764. [PMID: 31717548 PMCID: PMC6896021 DOI: 10.3390/cancers11111764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Prothymosin α (proTα) and its C-terminal decapeptide proTα(100-109) were shown to pleiotropically enhance innate and adaptive immune responses. Their activities have been broadly studied in vitro, focusing primarily on the restoration of the deficient immunoreactivity of cancer patients' leukocytes. Previously, we showed that proTα and proTα(100-109) act as danger-associated molecular patterns (DAMPs), ligate Toll-like receptor-4, signal through TRIF- and MyD88-dependent pathways, promote the maturation of dendritic cells and elicit T-helper type 1 (Th1) immune responses in vitro, leading to the optimal priming of tumor antigen-reactive T-cell functions. Herein, we assessed their activity in a preclinical melanoma model. Immunocompetent mice bearing B16.F1 tumors were treated with two cycles of proTα or proTα(100-109) together with a B16.F1-derived peptide vaccine. Coadministration of proTα or proTα(100-109) and the peptide vaccine suppressed melanoma-cell proliferation, as evidenced by reduced tumor-growth rates. Higher melanoma infiltration by CD3+ T cells was observed, whereas ex vivo analysis of mouse total spleen cells verified the in vivo induction of melanoma-reactive cytotoxic responses. Additionally, increased levels of proinflammatory and Th1-type cytokines were detected in mouse serum. We propose that, in the presence of tumor antigens, DAMPs proTα and proTα(100-109) induce Th1-biased immune responses in vivo. Their adjuvant ability to orchestrate antitumor immunoreactivities can eventually be exploited therapeutically in humans.
Collapse
Affiliation(s)
- Anastasios I. Birmpilis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Chrysoula-Evangelia Karachaliou
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, Agia Paraskevi, 15310 Athens, Greece; (C.-E.K.); (E.L.)
| | - Pinelopi Samara
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Kyriaki Ioannou
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
- King’s College London, Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK;
| | - Platon Selemenakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece; (P.S.); (A.K.)
| | - Ioannis V. Kostopoulos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Nadia Kavrochorianou
- Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.K.); (S.H.)
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen. Germany; (H.K.); (W.V.)
| | - Evangelia Livaniou
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, Agia Paraskevi, 15310 Athens, Greece; (C.-E.K.); (E.L.)
| | - Sylva Haralambous
- Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.K.); (S.H.)
| | - Athanasios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece; (P.S.); (A.K.)
| | - Farzin Farzaneh
- King’s College London, Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK;
| | - Ioannis P. Trougakos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen. Germany; (H.K.); (W.V.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-A.D.); (A.B.)
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-A.D.); (A.B.)
| | - Ourania Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
- Correspondence: ; Tel.: +30-210-727-4215; Fax: +30-210-727-4635
| |
Collapse
|
12
|
Halder SK, Matsunaga H, Ueda H. Prothymosin alpha and its mimetic hexapeptide improve delayed tissue plasminogen activator-induced brain damage following cerebral ischemia. J Neurochem 2019; 153:772-789. [PMID: 31454420 DOI: 10.1111/jnc.14858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/13/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) administration beyond 4.5 h of stroke symptoms is beneficial for patients but has an increased risk of cerebral hemorrhage. Thus, increasing the therapeutic window of tPA is important for stroke recovery. We previously showed that prothymosin alpha (ProTα) or its mimetic hexapeptide (P6Q) has anti-ischemic activity. Here, we examined the beneficial effects of ProTα or P6Q against delayed tPA-induced brain damage following middle cerebral artery occlusion (MCAO) or photochemically induced thrombosis in mice. Brain hemorrhage was observed by tPA administration during reperfusion at 4.5 and 6 h after MCAO. Co-administration of ProTα with tPA at 4.5 h inhibited hemorrhage and motor dysfunction 2-4 days, but not 7 days after MCAO. ProTα administration at 2 and 4.5 h after MCAO significantly inhibited tPA (4.5 h)-induced motor dysfunction and death more than 7 days. Administration of tPA caused the loss of tight junction proteins, zona occulden-1 and occludin, and up-regulation of matrix metalloproteinase-2/9, in a ProTα-reversible manner. P6Q administration abolished tPA (4.5 h)-induced hemorrhage and reversed tPA (6 h)-induced vascular damage and matrix metalloproteinase-2 and 9 up-regulation. Twice administrations of P6Q at 2 h alone and 6 h with tPA significantly improved motor dysfunction more than 7 days. In photochemically induced thrombosis ischemia, similar vascular leakage and neuronal damage (infarction and motor dysfunction) by late tPA (4.5 or 6 h) were also inhibited by P6Q. Thus, these studies suggest that co-administration with ProTα or P6Q would be beneficial to inhibit delayed tPA-induced hemorrhagic mechanisms in acute ischemic stroke.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
13
|
Kitahata S, Tanaka Y, Hori K, Kime C, Sugita S, Ueda H, Takahashi M. Critical Functionality Effects from Storage Temperature on Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Suspensions. Sci Rep 2019; 9:2891. [PMID: 30814559 PMCID: PMC6393435 DOI: 10.1038/s41598-018-38065-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (hiPSC-RPE) cells suspension have the potential for regenerative treatment. However, practical regenerative applications with hiPSC-RPE cells require the development of simple and cost-effective non-freezing preservation methods. We investigated the effect of non-freezing temperatures on suspended hiPSC-RPE cells in various conditions and analysed mechanisms of cell death, anoikis, Rho GTPases, hypoxia, microtubule destruction, and cell metabolism. Cells stored at 37 °C had the lowest viability due to hypoxia from high cell metabolism and cell deposits, and cells preserved at 4 °C were damaged via microtubule fragility. Cell suspensions at 16 °C were optimal with drastically reduced apoptosis and negligible necrosis. Moreover, surviving cells proliferated and secreted key proteins normally, compared to cells without preservation. hiPSC-RPE cell suspensions were optimally preserved at 16 °C. Temperatures above or below the optimal temperature decreased cell viability significantly yet differentially by mechanisms of cell death, cellular metabolism, microtubule destruction, and oxygen tension, all relevant to cell conditions. Surviving cells are expected to function as grafts where high cell death is often reported. This study provides new insight into various non-freezing temperature effects on hiPSC-RPE cells that are highly relevant to clinical applications and may improve cooperation between laboratories and hospitals.
Collapse
Affiliation(s)
- Shohei Kitahata
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Application Biology and Regenerative Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yuji Tanaka
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan. .,Division of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Kanji Hori
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, 113-8431, Japan
| | - Cody Kime
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Kobe City Eye Hospital Research Center, Kobe, 650-0047, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8521, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Kobe City Eye Hospital Research Center, Kobe, 650-0047, Japan
| |
Collapse
|
14
|
Pointer CB, Wenzel TJ, Klegeris A. Extracellular cardiolipin regulates select immune functions of microglia and microglia-like cells. Brain Res Bull 2019; 146:153-163. [PMID: 30625370 DOI: 10.1016/j.brainresbull.2019.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Cardiolipin is a mitochondrial membrane phospholipid with several well-defined metabolic roles. Cardiolipin can be released extracellularly by damaged cells and has been shown to affect peripheral immune functions. We hypothesized that extracellular cardiolipin can also regulate functions of microglia, the resident immune cells of the central nervous system (CNS). We demonstrate that extracellular cardiolipin increases microglial phagocytosis and neurotrophic factor expression, as well as decreases the release of inflammatory mediators and cytotoxins by activated microglia-like cells. These results identify extracellular cardiolipin as a potential CNS intercellular signaling molecule that can regulate key microglial immune functions associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Caitlin B Pointer
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
15
|
Ueda H, Matsunaga H, Matsushita Y, Maeda S, Iwamoto R, Yokoyama S, Shirouzu M. Ecto-F 0/F 1 ATPase as a novel candidate of prothymosin α receptor. Expert Opin Biol Ther 2018; 18:89-94. [PMID: 30063859 DOI: 10.1080/14712598.2018.1454427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Prothymosin α (ProTα) was reported to inhibit the neuronal necrosis by facilitating the plasma membrane localization of endocytosed glucose transporter 1/4 through an activation of putative Gi-coupled receptor. The present study aims to identify a novel ProTα target, which may lead to an activation of Gi-coupled receptor. METHODS We used Gi-rich lipid rafts fraction of retinal cell line N18-RE-105 cells for affinity cross-linking. The biological confirmation that F0/F1 ATPase is a target protein complex was performed by cell-free experiments using ELISA-based binding assay, surface plasmon resonance assay and quartz crystal microbalance assay, and cell-based experiments to measure extracellular ATP level in the HUVECs culture. RESULTS From the cross-linking study and above-mentioned protein-protein interaction assays, ATP5A1 and ATP5B, F1 ATPase subunits were found to ProTα binding target proteins. In the culture of HUVEC cells, furthermore, ProTα increased the extracellular ATP levels in a reversible manner by anti-ATP5A1- and ATP5B-antibodies. CONCLUSION The present study suggests that ProTα may activate ecto-F0/F1 ATPase and produced ATP. This study leads to next subjects whether produced ATP and its metabolites, ADP or adenosine may activate corresponding Gi-coupled receptors.
Collapse
Affiliation(s)
- Hiroshi Ueda
- a Department of Pharmacology and Therapeutic Innovation , Nagasaki University Institute of Biomedical Sciences , Nagasaki , Japan
| | - Hayato Matsunaga
- a Department of Pharmacology and Therapeutic Innovation , Nagasaki University Institute of Biomedical Sciences , Nagasaki , Japan
| | - Yosuke Matsushita
- a Department of Pharmacology and Therapeutic Innovation , Nagasaki University Institute of Biomedical Sciences , Nagasaki , Japan
| | - Shiori Maeda
- a Department of Pharmacology and Therapeutic Innovation , Nagasaki University Institute of Biomedical Sciences , Nagasaki , Japan
| | - Ryusei Iwamoto
- a Department of Pharmacology and Therapeutic Innovation , Nagasaki University Institute of Biomedical Sciences , Nagasaki , Japan
| | - Shigeyuki Yokoyama
- b RIKEN Systems and Structural Biology Center , Yokohama , Japan.,c RIKEN Structural Biology Laboratory , Yokohama , Japan
| | - Mikako Shirouzu
- b RIKEN Systems and Structural Biology Center , Yokohama , Japan.,d RIKEN Center for Life Science Technologies , Yokohama , Japan
| |
Collapse
|
16
|
Halder SK, Ueda H. Amlexanox Inhibits Cerebral Ischemia-Induced Delayed Astrocytic High-Mobility Group Box 1 Release and Subsequent Brain Damage. J Pharmacol Exp Ther 2018; 365:27-36. [PMID: 29330155 DOI: 10.1124/jpet.117.245340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is increased in the cerebrospinal fluid (CSF) and serum during the early and late phases of brain ischemia and is known to contribute to brain damage. However, detailed characterization underlying cell type-specific HMGB1 release and pathophysiological roles of extracellularly released HMGB1 in ischemic brain remain unclear. Here, we examined cell type-specific HMGB1 release and the therapeutic potential of amlexanox, an inhibitor of nonclassical release, and of an anti-HMGB1 antibody against ischemic brain damage. HMGB1 depletion from neuronal nuclei was observed within 3 hours after transient middle cerebral artery occlusion (tMCAO), whereas the intracerebroventricular (i.c.v.) pretreatment with amlexanox blocked HMGB1 release from neurons, resulting in HMGB1 redistribution in the nuclei and cytoplasm. HMGB1 was selectively released from astrocytes 27 hours after tMCAO and this HMGB1 release was blocked by late treatment with amlexanox (i.c.v.) 24 hours after tMCAO. Proximity extension assay revealed that the HMGB1 level was elevated in the CSF at 3 and 27 hours after tMCAO. This late treatment with amlexanox significantly protected the brain from ischemic damage, but its pretreatment 30 minutes before tMCAO failed to show any protection. The late treatment (i.c.v.) with anti-HMGB1 antibody 24 hours after tMCAO also ameliorated ischemic brain damage 48 hours after tMCAO. Thus, the inhibition of brain damage by late treatment with amlexanox or anti-HMGB1 antibody indicates that late HMGB1 release plays a role in the maintenance of stroke-induced brain damage, and the inhibition of this release would be a novel therapeutic target for protection of ischemic brain damage.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
17
|
Ueda H, Sasaki K, Halder SK, Deguchi Y, Takao K, Miyakawa T, Tajima A. Prothymosin alpha-deficiency enhances anxiety-like behaviors and impairs learning/memory functions and neurogenesis. J Neurochem 2017; 141:124-136. [PMID: 28122138 DOI: 10.1111/jnc.13963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/11/2023]
Abstract
Prothymosin alpha (ProTα) is expressed in various mammalian organs including the neuronal nuclei in the brain, and is involved in multiple functions, such as chromatin remodeling, transcriptional regulation, cell proliferation, and survival. ProTα has beneficial actions against ischemia-induced necrosis and apoptosis in the brain and retina. However, characterizing the physiological roles of endogenous ProTα in the brain without stress remains elusive. Here, we generated ProTα-deficiency mice to explore whether endogenous ProTα is involved in normal brain functions. We successfully generated heterozygous ProTα knockout (ProTα+/- ) mice, while all homozygous ProTα knockout (ProTα-/- ) offspring died at early embryonic stage, suggesting that ProTα has crucial roles in embryonic development. In the evaluation of different behavioral tests, ProTα+/- mice exhibited hypolocomotor activity in the open-field test and enhanced anxiety-like behaviors in the light/dark transition test and the novelty induced hypophagia test. ProTα+/- mice also showed impaired learning and memory in the step-through passive avoidance test and the KUROBOX test. Depression-like behaviors in ProTα+/- mice in the forced swim and tail suspension tests were comparable with that of wild-type mice. Furthermore, adult hippocampal neurogenesis was significantly decreased in ProTα+/- mice. ProTα+/- mice showed an impaired long-term potentiation induction in the evaluation of electrophysiological recordings from acute hippocampal slices. Microarray analysis revealed that the candidate genes related to anxiety, learning/memory-functions, and neurogenesis were down-regulated in ProTα+/- mice. Thus, this study suggests that ProTα has crucial physiological roles in the robustness of brain.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuichi Deguchi
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, NINS, Okazaki, Aichi, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, NINS, Okazaki, Aichi, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
18
|
ŞAHİN B, BAYKAL AT. Proteomics analysis of mitochondrial dysfunction triggered by complex specific electron transport chain inhibitors reveals common pathways involving protein misfolding in an SH-SY5Y in vitro cell model. Turk J Biol 2017. [DOI: 10.3906/biy-1702-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|