1
|
Bhat AA, Afzal M, Goyal A, Gupta G, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Paudel KR, Ali H, Sahu D, Prasher P, Singh SK, Dua K. The impact of formaldehyde exposure on lung inflammatory disorders: Insights into asthma, bronchitis, and pulmonary fibrosis. Chem Biol Interact 2024; 394:111002. [PMID: 38604395 DOI: 10.1016/j.cbi.2024.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2050, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Dipak Sahu
- Department of Pharmacology, Amity University, Raipur, Chhattisgarh, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Torshin IY, Gromova OA, Nazarenko AG. Chondroprotectors as modulators of neuroinflammation. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2023. [DOI: 10.14412/2074-2711-2023-1-110-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- I. Y. Torshin
- Institute of Pharmacoinformatics of the Federal Research Center “Computer Science and Management”, Russian Academy of Sciences
| | - O. A. Gromova
- Institute of Pharmacoinformatics of the Federal Research Center “Computer Science and Management”, Russian Academy of Sciences
| | - A. G. Nazarenko
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
| |
Collapse
|
3
|
Zhang FM, Wang B, Hu H, Zhang YY, Chen HH, Jiang ZJ, Zeng MX, Liu XJ. Transcriptional profiles of TGF-β superfamily members in the lumbar DRGs and the effects of activins A and C on inflammatory pain in rats. J Physiol Biochem 2023:10.1007/s13105-022-00943-z. [PMID: 36696051 DOI: 10.1007/s13105-022-00943-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023]
Abstract
Signaling by the transforming growth factor (TGF)-β superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-β superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-β superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-β superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-β superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research.
Collapse
Affiliation(s)
- Feng-Ming Zhang
- School of Pharmacy, Nantong University, Jiangsu Province, 226001, Nantong, China
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Bing Wang
- School of Pharmacy, Nantong University, Jiangsu Province, 226001, Nantong, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Ying-Ying Zhang
- School of Pharmacy, Nantong University, Jiangsu Province, 226001, Nantong, China
| | - Hao-Hao Chen
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Zuo-Jie Jiang
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Mei-Xing Zeng
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Xing-Jun Liu
- School of Pharmacy, Nantong University, Jiangsu Province, 226001, Nantong, China.
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
4
|
Acute orofacial pain leads to prolonged changes in behavioral and affective pain components. Pain 2020; 161:2830-2840. [DOI: 10.1097/j.pain.0000000000001970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Pal D, Saha S. Chondroitin: a natural biomarker with immense biomedical applications. RSC Adv 2019; 9:28061-28077. [PMID: 35530463 PMCID: PMC9071010 DOI: 10.1039/c9ra05546k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022] Open
Abstract
Naturally extracted glycosaminoglycan chondroitin sulphate is the reactive product of N-acetylgalactosamine and d-glucuronic acid. Chondroitin sulfate (CS) extracted from Scophthalmus maximus, H. scabra, E. fraudatrix, M. magnum, and H. mexicana has shown remarkable anticoagulant, articular cartilage repair, corneal lesion healing, antidiabetic, and antiproliferative effects. Also, platinum and strontium nanoparticles of chondroitin sulfate are effective in osteoarthritis and exert anti-HSV2 and anti-angiogenic properties. A combination of chondroitin sulfate and RNA lipolexes demonstrates gene silencing effects in liver fibrosis. Chondroitin sulfate has also been used as a carrier for loxoprofen hydrogel preparation. Oligosaccharides of chondroitin sulfate showed effective inhibition of bovine testicular hyaluronidase enzyme as an antibacterial agent during pregnancy. Monoclonal antibody-recognized chondroitin sulfate A was effectively used to treat ameloblastoma. Selenium-chondroitin sulfate nanoparticles demonstrated positive effects in therapy of Kashin-Beck disease (KBD) and osteoarthritis.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur-495009 C.G. India +91-7389263761
| | - Supriyo Saha
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Dehradun-248161 Uttarakhand India
| |
Collapse
|
6
|
Hotta N, Kubo A, Mizumura K. Chondroitin sulfate attenuates acid-induced augmentation of the mechanical response in rat thin-fiber muscle afferents in vitro. J Appl Physiol (1985) 2019; 126:1160-1170. [PMID: 30763166 DOI: 10.1152/japplphysiol.00633.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exercise-induced tissue acidosis augments the exercise pressor reflex (EPR). One reason for this may be acid-induced mechanical sensitization in thin-fiber muscle afferents, which is presumably related to EPR. Acid-induced sensitization to mechanical stimulation has been reported to be attenuated in cultured primary-sensory neurons by exogenous chondroitin sulfate (CS) and chondroitinase ABC, suggesting that the extracellular matrix CS proteoglycan is involved in this sensitization. The purpose of this study was to clarify whether acid-induced sensitization of the mechanical response in the thin-fiber muscle afferents is also suppressed by exogenous CS and chondroitinase ABC using a single-fiber recording technique. A total of 88 thin fibers (conduction velocity <15.0 m/s) dissected from 86 male Sprague-Dawley rats were identified. A buffer solution at pH 6.2 lowered their mechanical threshold and increased their response magnitude. Five minutes after CS (0.3 and 0.03%) injection near the receptive field, these acid-induced changes were significantly reduced. No significant difference in attenuation was detected between the two CS concentrations. Chondroitinase ABC also significantly attenuated this sensitization. The control solution (0% CS) did not significantly alter the mechanical sensitization. Furthermore, no significant differences were detected in this sensitization and CS-based suppression between fibers with and without acid-sensitive channels [transient receptor potential vanilloid 1 (TRPV1), acid-sensing ion channel (ASIC)]. In addition, this mechanical sensitization was not changed by TRPV1 and ASIC antagonists, suggesting that these ion channels are not involved in the acid-induced mechanical sensitization of muscle thin-fiber afferents. In conclusion, CS administration has a potential to attenuate the acidosis-induced exaggeration of muscle mechanoreflex. NEW & NOTEWORTHY We found that exogenous chondroitin sulfate attenuated acid-induced mechanical sensitization in thin-fiber muscle afferents that play a crucial role in the exercise pressor reflex. This finding suggests that extracellular matrix chondroitin sulfate proteoglycans may be involved in the mechanism of acid-induced mechanical sensitization and that daily intake of chondroitin sulfate may potentially attenuate this amplification of muscle mechanoreflex and therefore reduce muscle pain related to acidic muscle conditions.
Collapse
Affiliation(s)
- Norio Hotta
- College of Life and Health Sciences, Chubu University , Aichi , Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry , Tokyo , Japan
| | - Kazue Mizumura
- College of Life and Health Sciences, Chubu University , Aichi , Japan.,Department of Physiology, Nihon University School of Dentistry , Tokyo , Japan
| |
Collapse
|
7
|
Effect of repeated oral administration of chondroitin sulfate on neuropathic pain induced by partial sciatic nerve ligation in mice. J Pharmacol Sci 2018; 137:403-406. [DOI: 10.1016/j.jphs.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 01/23/2023] Open
|
8
|
Nemoto W, Yamagata R, Ogata Y, Nakagawasai O, Tadano T, Tan-No K. Inhibitory effect of angiotensin (1-7) on angiotensin III-induced nociceptive behaviour in mice. Neuropeptides 2017; 65:71-76. [PMID: 28559062 DOI: 10.1016/j.npep.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that the intrathecal (i.t.) administration of angiotensin (Ang) II into mice produces a nociceptive behaviour consisting of scratching, biting and licking accompanied by the phosphorylation of p38 MAPK in the spinal cord, which was mediated through AT1 receptors. Both the p38 MAPK phosphorylation and subsequent nociceptive behaviour were attenuated by the i.t. co-administration of Ang (1-7), an N-terminal fragment of Ang II, that acted via Mas receptors. On the other hand, a C-terminal fragment of Ang II, namely Ang III, was also shown to induce a nociceptive behaviour by acting upon AT1 receptors on spinal astrocytes and neurons, and was found to be more potent than Ang II. However, the inhibitory effect of Ang (1-7) on the Ang III-induced nociceptive behaviour remains unclear. Thus, here we examined whether Ang (1-7) can attenuate the Ang III-induced nociceptive behaviour and activation of spinal p38 MAPK. The i.t. administration of Ang (1-7) (1-100fmol) dose-dependently attenuated the Ang III (1pmol)-induced nociceptive behaviour in mice. Moreover, the inhibitory effect of Ang (1-7) at a dose of 100fmol was prevented by A779 (30fmol), a Mas receptor antagonist. Western blot analysis showed that the phosphorylation of p38 MAPK induced by the i.t. administration of Ang III (1pmol) was also attenuated by Ang (1-7) (100fmol), and this inhibition was prevented by A779 (30fmol). Furthermore, we showed that in the lumbar superficial dorsal horn, Mas receptors are expressed in neurons and microglia but absent from astrocytes. Together, these results suggest that the i.t. administration of Ang (1-7) attenuates the nociceptive behaviour and accompanying p38 MAPK phosphorylation induced by Ang III, and that this effect is likely mediated through Mas receptors on spinal neurons.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yoshiki Ogata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takeshi Tadano
- Department of Health Care Medical Research, Venture Business Laboratory, Kanazawa University, Kanazawa 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|