1
|
Latifimehr M, Rastegari AA, Zamani Z, Fard-Esfahani P, Nazari L. Association of histidine-rich glycoprotein C633T single nucleotide polymorphism and recurrent miscarriage in Iranian women. Mol Biol Rep 2024; 51:793. [PMID: 39001985 DOI: 10.1007/s11033-024-09758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Recurrent miscarriage (RM) is defined as the occurrence of at least two or three subsequent miscarriages within the 20th -24th weeks of pregnancy. The primary objective of this study was to investigate whether histidine-rich glycoprotein C633T single nucleotide polymorphism (HRG C633T SNP) statistically correlates with the occurrence of RM among Iranian women. METHODS AND RESULTS Blood samples from 200 women were taken at the outset of the study. Then, the blood samples of 100 women who had a record of RM (case group) were compared with the other 100 women's blood samples who had no record of RM (control group). Following DNA extraction, the polymorphism of histidine-rich glycoprotein C633T (HRG C633T) for every case was specified and all women were genotyped by the amplification-refractory mutation system (ARMS) method. The results of the study revealed that there was a statistically significant difference between T/T genotype (OR = 3.5, CI (1.39-8.77), p = 0.007), and C/T genotype (OR = 1.83, CI (0.99-3.37), p = 0.05) in the case and control groups. Also, a statistically significant association was observed in T allelic frequency in the RM participants compared to the control group (OR = 2.01, CI (1.31-3.09), p = 0.01). CONCLUSIONS The present study determined that there was a statistically significant relationship between HRG C633T SNP and increased RM regarding allelic and genotypical aspects. Moreover, it became apparent that women with homozygous T/T genotype were more susceptible to the risk of RM.
Collapse
Affiliation(s)
- Mahbobeh Latifimehr
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Zahra Zamani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Leila Nazari
- Department of Obstetrics and Gynecology Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Latifimehr M, Nazari L, Rastegari AA, Zamani Z, Fard-Esfahani P. The Association between Histidine-Rich Glycoprotein rs10770 Genotype and Recurrent Miscarriage in Iranian Women. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2501086. [PMID: 38659607 PMCID: PMC11042909 DOI: 10.1155/2024/2501086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Purpose Recurrent miscarriage (RM) is a significant reproductive concern affecting numerous women globally. Genetic factors are believed to play a crucial role in RM, making the histidine-rich glycoprotein (HRG) gene, a topic of interest due to its potential involvement in angiogenesis. This study is aimed at investigating the association between the HRG rs10770 genotype and RM. Method Blood samples were collected from a total of 200 women at the beginning of the study. Subsequently, a comparative analysis was conducted between the blood samples of 100 women with a history of RM (case group) and the blood samples of another 100 healthy women (control group). HRG rs10770 genotyping was performed through polymerase chain reaction restriction-fragment length polymorphism (PCR-RFLP), followed by statistical analysis to evaluate the relationship between HRG rs10770 genotype and RM. Results The results indicated a significant statistical difference between the C/C genotype (OR = 3.32, CI: 1.22-9.04, p = 0.01) and the C/T genotype (OR = 1.24, CI: 0.67-2.30, p = 0.47) in both the case and control groups. Additionally, a significant correlation was observed in the C allelic frequency among RM participants compared to the control group (OR = 1.65, CI: 1.06-2.58, p = 0.02). Conclusion The study highlights the importance of HRG rs10770 in understanding RM, shedding light on its implications for reproductive health. Furthermore, it became evident that women carrying the homozygous C/C genotype exhibited increased susceptibility to the risk of RM.
Collapse
Affiliation(s)
- Mahbobeh Latifimehr
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Leila Nazari
- Department of Obstetrics and Gynecology Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Zamani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
3
|
Nishibori M, Wake H, Sakaguchi M. [The plasma protein HRG is an important factor for preventing sepsis and maintaining homeostatic response]. Nihon Yakurigaku Zasshi 2024; 159:107-111. [PMID: 38432918 DOI: 10.1254/fpj.23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute phase proteins such as CRP, amyloid protein A, and α1-antitrypsin are produced in the liver and their plasma levels are increased during the acute inflammatory response. In contrast, there are plasma proteins whose dynamics are opposite to acute phase proteins. This group includes histidine-rich glycoprotein (HRG), inter-α-inhibitor proteins, albumin, and transthyretin. HRG binds to a variety of factors and regulates the fundamental processes; the blood coagulation, the clearance of apoptotic cells, and tumor growth. In the present review, we focus on the anti-septic effects of HRG in mice model, the actions of HRG on human blood cells/vascular endothelial cells, and the identification of a novel receptor CLEC1A for HRG, based on our recent findings. HRG appears to maintain the quiescence of neutrophils; a round shape, the low levels of spontaneous release of ROS, the ease passage through artificial microcapillaries, and prevention of adhesion to vascular endothelial cells. HRG also inhibited activation of vascular endothelial cells; the suppression of adhesion molecules and the inhibition of HMGB1 mobilization and cytokine secretion. It was shown that plasma HRG level was an excellent biomarker of septic patients in ICU for the evaluation of severity and prognosis. So far little attention has been paid to HRG in terms of a functional role in sepsis and ARDS, however, it is strongly suggested that HRG may be an important plasma factor that prevents a progress in the septic cascade and maintains the homeostasis of blood cells and vascular endothelial cells.
Collapse
Affiliation(s)
- Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
4
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
5
|
Li X, Zeng M, Liu J, Zhang S, Liu Y, Zhao Y, Wei C, Yang K, Huang Y, Zhang L, Xiao L. Identifying potential biomarkers for the diagnosis and treatment of IgA nephropathy based on bioinformatics analysis. BMC Med Genomics 2023; 16:63. [PMID: 36978098 PMCID: PMC10044383 DOI: 10.1186/s12920-023-01494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the leading cause of end-stage renal disease in young adults. Nevertheless, the current diagnosis exclusively relies on invasive renal biopsy, and specific treatment is deficient. Thus, our study aims to identify potential crucial genes, thereby providing novel biomarkers for the diagnosis and therapy of IgAN. METHODS Three microarray datasets were downloaded from GEO official website. Differentially expressed genes (DEGs) were identified by limma package. GO and KEGG analysis were conducted. Tissue/organ-specific DEGs were distinguished via BioGPS. GSEA was utilized to elucidate the predominant enrichment pathways. The PPI network of DEGs was established, and hub genes were mined through Cytoscape. The CTD database was employed to determine the association between hub genes and IgAN. Infiltrating immune cells and their relationship to hub genes were evaluated based on CIBERSORT. Furthermore, the diagnostic effectiveness of hub markers was subsequently predicted using the ROC curves. The CMap database was applied to investigate potential therapeutic drugs. The expression level and diagnostic accuracy of TYROBP was validated in the cell model of IgAN and different renal pathologies. RESULTS A total of 113 DEGs were screened, which were mostly enriched in peptidase regulator activity, regulation of cytokine production, and collagen-containing extracellular matrix. Among these DEGs, 67 genes manifested pronounced tissue and organ specificity. GSEA analysis revealed that the most significant enriched gene sets were involved in proteasome pathway. Ten hub genes (KNG1, FN1, ALB, PLG, IGF1, EGF, HRG, TYROBP, CSF1R, and ITGB2) were recognized. CTD showed a close connection between ALB, IGF, FN1 and IgAN. Immune infiltration analysis elucidated that IGF1, EGF, HRG, FN1, ITGB2, and TYROBP were closely associated with infiltrating immune cells. ROC curves reflected that all hub genes, especially TYROBP, exhibited a good diagnostic value for IgAN. Verteporfin, moxonidine, and procaine were the most significant three therapeutic drugs. Further exploration proved that TYROBP was not only highly expressed in IgAN, but exhibited high specificity for the diagnosis of IgAN. CONCLUSIONS This study may offer novel insights into the mechanisms involved in IgAN occurrence and progression and the selection of diagnostic markers and therapeutic targets for IgAN.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Mengru Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jialu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shumin Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yifei Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuee Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cong Wei
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Kexin Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Huang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Li Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
6
|
Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19. J Pharmacol Sci 2022; 150:9-20. [PMID: 35926948 PMCID: PMC9197787 DOI: 10.1016/j.jphs.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.
Collapse
Affiliation(s)
- M Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
7
|
Wake H. [Role of histidine-rich glycoprotein as anti-DAMPs and therapeutic effects on DAMPs-related diseases]. Nihon Yakurigaku Zasshi 2022; 157:426-428. [PMID: 36328553 DOI: 10.1254/fpj.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histidine-rich glycoprotein (HRG) is a plasma glycoprotein produced mainly in the liver. We have shown that HRG replacement therapy has a marked therapeutic effect on sepsis, in which high mobility group box 1 (HMGB1), one of the representative damage-associated molecular patterns (DAMPs), is known to play an important role in the disease progression. The mechanisms of action are diverse, including inhibition of immune thrombus formation and inhibition of ROS production. In addition, HRG has been shown to neutralize the toxicity of heme, a type of DAMPs, and neutralize the activity of LPS, a type of pathogen-associated molecular patterns (PAMPs), and to inhibit the translocation of HMGB1 from the nucleus of vascular endothelial cells to the extracellular space. Since DAMPs/PAMPs are known to play a central role in the pathogenesis of not only sepsis but also many inflammatory diseases, HRG has wide therapeutic applications and is considered to be a very promising seed for drug discovery.
Collapse
Affiliation(s)
- Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University
| |
Collapse
|
8
|
Nishibori M, Stonestreet BS. Understanding of COVID-19 Pathology: Much More Attention to Plasma Proteins. Front Immunol 2021; 12:656099. [PMID: 33841442 PMCID: PMC8024577 DOI: 10.3389/fimmu.2021.656099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Yoshii Y, Wake H, Nishimura Y, Teshigawara K, Wang D, Nishibori M. An Evaluation of the Activity of Histidine-Rich Glycoprotein on Differentiated Neutrophil-Like Cells from Human Cell Lines. J Pharmacol Exp Ther 2020; 375:406-413. [PMID: 33077479 DOI: 10.1124/jpet.120.000182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022] Open
Abstract
Histidine-rich glycoprotein (HRG) treatment ameliorated the survival rate of septic mice by suppressing excess immunothrombus formation. Although such findings suggested that HRG may be one of the most useful drugs for sepsis, obtaining a stable experimental system to standardize the HRG drug product is difficult to achieve using neutrophils isolated from volunteers. This is due to the short survival time and individual differences of human neutrophils. In the present study, we determined whether the differentiated neutrophil-like cell lines exhibited similar responses to HRG compared with human purified neutrophils. All-trans retinoic acid (ATRA) was employed to induce the differentiation of the human myeloid leukemia cell lines HL-60 and NB-4. Thereafter, the cells were treated with Hank's balanced salt solution, human serum albumin, or HRG. The effects of HRG on these cells were evaluated according to cell shape, microcapillary passage, reactive oxygen species (ROS) production, neutrophil extracellular traps (NETs) formation, the expression of activated CD11b, and cell viability. HRG maintained the round shape of differentiated neutrophil-like cells, decreased the time required by cells to pass through the microcapillaries, and inhibited ROS production, NETs formation, and the expression of activated CD11b on the cell surface. Moreover, the cells could survive longer in the presence of HRG than the control. The ATRA-induced differentiated cell lines could be used as alternatives to neutrophils to investigate the effects of HRG on neutrophils. This method can thus be used as an essential standardization test in pharmaceutical development. SIGNIFICANCE STATEMENT: Human neutrophils exhibit varying responses to histidine-rich glycoprotein (HRG); however, all-trans retinoic acid-induced differentiated neutrophil-like cell lines can be used as reliably proxies to investigate the effects of HRG on neutrophils. Additionally, these cell lines can be employed in the development of therapies for the treatment of sepsis.
Collapse
Affiliation(s)
- Yukinori Yoshii
- Department of Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshito Nishimura
- Department of Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Wake H, Takahashi Y, Yoshii Y, Gao S, Mori S, Wang D, Teshigawara K, Nishibori M. Histidine-rich glycoprotein possesses antioxidant activity through self-oxidation and inhibition of hydroxyl radical production via chelating divalent metal ions in Fenton's reaction. Free Radic Res 2020; 54:649-661. [PMID: 32967483 DOI: 10.1080/10715762.2020.1825703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is caused by infections associated with life-threatening multiple organ failure (MOF). Septic MOF appears to be closely related to circulatory failure due to immunothrombosis. This process involves the production of reactive oxygen spices (ROS) in inflammatory sites. Therefore, the detoxification of the systemic excess ROS is important for the improvement of the process in septic pathogenesis. Histidine-rich glycoprotein (HRG), a plasma glycoprotein, ameliorates a septic condition through the suppression of both excess ROS production from neutrophils and immunothrombosis. Hydroxyl radical is known as the most important species among ROS in pathogenesis; however, the direct influence of HRG on hydroxyl radical formation and ROS activity is poorly understood. In this study, we showed that HRG, in a concentration-dependent manner, efficiently inhibited the production of hydroxyl radical induced by the Fenton's reaction through chelation of the divalent iron. HRG also exhibited antioxidant activity against peroxyl radical by oxidation of HRG itself as a substrate; however, it did not show superoxide dismutase and catalase-like activities. Additionally, HRG enhanced glutathione peroxidase, a well-known antioxidant enzyme, activity. These results suggest that HRG may play a unique role in suppression of the production of hydroxyl radicals and subsequent tissue damage at inflammatory sites. Marked reduction in plasma HRG in sepsis might lose such an important protective mechanism. Thus, the present study provides evidence that inhibition of ROS and ROS-production systems by HRG may contribute to antiseptic effects in vivo and that HRG could be potential therapy for ROS-related diseases.
Collapse
Affiliation(s)
- Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yohei Takahashi
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yukinori Yoshii
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shangze Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, Shujitsu University School of Pharmacy, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
11
|
Gao S, Wake H, Sakaguchi M, Wang D, Takahashi Y, Teshigawara K, Zhong H, Mori S, Liu K, Takahashi H, Nishibori M. Histidine-Rich Glycoprotein Inhibits High-Mobility Group Box-1-Mediated Pathways in Vascular Endothelial Cells through CLEC-1A. iScience 2020; 23:101180. [PMID: 32498020 PMCID: PMC7267745 DOI: 10.1016/j.isci.2020.101180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 02/09/2023] Open
Abstract
High-mobility group box-1 (HMGB1) protein has been postulated to play a pathogenic role in severe sepsis. Histidine-rich glycoprotein (HRG), a 75 kDa plasma protein, was demonstrated to improve the survival rate of septic mice through the regulation of neutrophils and endothelium barrier function. As the relationship of HRG and HMGB1 remains poorly understood, we investigated the effects of HRG on HMGB1-mediated pathway in endothelial cells, focusing on the involvement of specific receptors for HRG. HRG potently inhibited the HMGB1 mobilization and effectively suppressed rHMGB1-induced inflammatory responses and expression of all three HMGB1 receptors in endothelial cells. Moreover, we first clarified that these protective effects of HRG on endothelial cells were mediated through C-type lectin domain family 1 member A (CLEC-1A) receptor. Thus, current study elucidates protective effects of HRG on vascular endothelial cells through inhibition of HMGB1-mediated pathways may contribute to the therapeutic effects of HRG on severe sepsis. HRG inhibited LPS-induced HMGB1 translocation and release from endothelial cells HRG reduced inflammatory responses in endothelial cells caused by released HMGB1 CLEC-1A was identified as the receptor for the function of HRG on endothelial cells
Collapse
Affiliation(s)
- Shangze Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Youhei Takahashi
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hui Zhong
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama 703-8516, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
12
|
Nishimura Y, Wake H, Teshigawara K, Wang D, Sakaguchi M, Otsuka F, Nishibori M. Histidine-rich glycoprotein augments natural killer cell function by modulating PD-1 expression via CLEC-1B. Pharmacol Res Perspect 2019; 7:e00481. [PMID: 31143450 PMCID: PMC6531599 DOI: 10.1002/prp2.481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Augmentation of natural killer (NK) cell cytotoxicity is one of the greatest challenges for cancer immunotherapy. Although histidine-rich glycoprotein (HRG), a 75-kDa glycoprotein with various immunomodulatory activities, reportedly elicits antitumor immunity, its effect on NK cell cytotoxicity is unclear. We assessed NK cell cytotoxicity against K562 cells. We also measured concentrations of cytokines and granzyme B in the cell supernatant. The proportion of CD56bright NK cells and NK cell surface PD-1 expression was assessed with flow cytometry. The neutralizing effects of anti-C-type lectin-like receptor (CLEC) 1B against HRG were also measured. NK cell morphological changes were analyzed via confocal microscopy. HRG significantly increased NK cell cytotoxicity against K562 cell lines. HRG also increased the release of granzyme B and the proportion of CD56bright NK cells. Further, HRG was able to decrease NK cell surface PD-1 expression. The effects of HRG on NK cells were reversed with anti-CLEC-1B antibodies. Additionally, we confirmed NK cell nuclear morphology and F-actin distribution, which are involved in the regulation of cytotoxic granule secretion. Because both PD-1 and CLEC-1B are associated with prognosis during malignancy, HRG incorporates these molecules to exert the antitumor immunity role. These facts indicate the potential of HRG to be a new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yoshito Nishimura
- Department of PharmacologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
- Department of Cell BiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hidenori Wake
- Department of PharmacologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kiyoshi Teshigawara
- Department of PharmacologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Dengli Wang
- Department of PharmacologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masakiyo Sakaguchi
- Department of Cell BiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Fumio Otsuka
- Department of General MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masahiro Nishibori
- Department of PharmacologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
13
|
Nishibori M, Wake H, Morimatsu H. Histidine-rich glycoprotein as an excellent biomarker for sepsis and beyond. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:209. [PMID: 30119699 PMCID: PMC6097411 DOI: 10.1186/s13054-018-2127-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/11/2018] [Indexed: 12/28/2022]
Abstract
Sepsis remains a critical problem with high morbidity and mortality worldwide. One of the problems we have in critical care is the need to find a good biomarker of sepsis to determine the existence of bacterial infection and the severity of patients. This would enable us to start appropriate treatment at an earlier stage of the disease course. We propose that decreases in the plasma protein histidine-rich glycoprotein (HRG) is an excellent biomarker of sepsis compared with the current markers. Based on the novel pathophysiological roles of HRG in the cascade of events during sepsis, we also discuss the potential for supplemental therapy with purified HRG.
Collapse
Affiliation(s)
- Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology & Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|