1
|
Couly S, Yasui Y, Foncham S, Grammatikakis I, Lal A, Shi L, Su TP. Benzomorphan and non-benzomorphan agonists differentially alter sigma-1 receptor quaternary structure, as does types of cellular stress. Cell Mol Life Sci 2024; 81:14. [PMID: 38191696 PMCID: PMC10774196 DOI: 10.1007/s00018-023-05023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 01/10/2024]
Abstract
Sigma-1 receptor (S1R) is a calcium-sensitive, ligand-operated receptor chaperone present on the endoplasmic reticulum (ER) membrane. S1R plays an important role in ER-mitochondrial inter-organelle calcium signaling and cell survival. S1R and its agonists confer resilience against various neurodegenerative diseases; however, the molecular mechanism of S1R is not yet fully understood. At resting state, S1R is either in a monomeric or oligomeric state but the ratio of these concentrations seems to change upon activation of S1R. S1R is activated by either cellular stress, such as ER-calcium depletion, or ligands. While the effect of ligands on S1R quaternary structure remains unclear, the effect of cellular stress has not been studied. In this study we utilize cellular and an in-vivo model to study changes in quaternary structure of S1R upon activation. We incubated cells with cellular stressors (H2O2 and thapsigargin) or exogenous ligands, then quantified monomeric and oligomeric forms. We observed that benzomorphan-based S1R agonists induce monomerization of S1R and decrease oligomerization, which was confirmed in the liver tissue of mice injected with (+)-Pentazocine. Antagonists block this effect but do not induce any changes when used alone. Oxidative stress (H2O2) increases the monomeric/oligomeric S1R ratio whereas ER calcium depletion (thapsigargin) has no effect. We also analyzed the oligomerization ability of various truncated S1R fragments and identified the fragments favorizing oligomerization. In this publication we demonstrate that quaternary structural changes differ according to the mechanism of S1R activation. Therefore, we offer a novel perspective on S1R activation as a nuanced phenomenon dependent on the type of stimulus.
Collapse
Affiliation(s)
- Simon Couly
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute On Drug Abuse, NIH/DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute On Drug Abuse, NIH/DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Semnyonga Foncham
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute On Drug Abuse, NIH/DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute On Drug Abuse, NIH/DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute On Drug Abuse, NIH/DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Das M, Ward GW, Sulima A, Luo D, Prisinzano TE, Imler GH, Kerr AT, Jacobson AE, Rice KC. Potent MOR Agonists from 2'-Hydroxy-5,9-dimethyl- N-phenethyl Substituted-6,7-benzomorphans and from C8-Hydroxy, Methylene and Methyl Derivatives of N-Phenethylnormetazocine. Molecules 2023; 28:7709. [PMID: 38067439 PMCID: PMC10708259 DOI: 10.3390/molecules28237709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
(-)-5,9-Dimethyl-6,7-benzomorphan (normetazocine) derivatives with a para-OH or ortho-F substituent in the aromatic ring of the N-phenethyl moiety were synthesized and found to have subnanomolar potency at MOR, and both were fully efficacious in vitro. These new compounds, (1R,5R,9R)-6,11-dimethyl-3-(2-fluorophenethyl)-1,2,3,4,5,6-hexahydro-2,6-methanobenzo[d]azocin-8-ol and (1R,5R,9R)-6,11-dimethyl-3-(4-hydroxyphenethyl)-1,2,3,4,5,6-hexahydro-2,6-methanobenzo[d]azocin-8-ol, were more potent than the unsubstituted compound N-phenethylnormetazocine and about 30 or 40 times more potent than morphine, respectively. A variety of substituents in the ortho, meta, or para position in the aromatic ring of the N-phenethyl moiety were synthesized, 25 of these compounds, and found to have varying effects on potency and efficacy as determined by the forskolin-induced cAMP accumulation assay. The N-phenethyl moiety was also modified by increasing chain length to form a N-phenylpropyl side chain with and without a para-nitro moiety, and by an N-cinnamyl side chain. Also, an indole ethylamine normetazocine was synthesized to replace the N-phenethylamine side chain in normetazocine. The phenylpropylamine, propenylamine (cinnamyl) and the para-nitropropylamine had little or no MOR potency. The indole-ethylamine on the normetazocine nucleus, however, had moderate potency (MOR EC50 = 12 nM), and was fully efficacious (%Emax = 102%) in the cAMP assay. Retention of the N-phenethyl moiety and the addition of alkyl and alkenyl moieties on C8 in (-)-N-phenethylnormetazocine gave a C8-methylene derivative that had subnanomolar potency at MOR and a C8-methyl analog that had nanomolar potency. Five C8-substituted compounds were synthesized.
Collapse
Affiliation(s)
- Madhurima Das
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (M.D.); (G.W.W.); (A.S.)
| | - George W. Ward
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (M.D.); (G.W.W.); (A.S.)
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (M.D.); (G.W.W.); (A.S.)
| | - Dan Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY 40536, USA; (D.L.); (T.E.P.)
| | - Thomas Edward Prisinzano
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY 40536, USA; (D.L.); (T.E.P.)
| | - Gregory H. Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (G.H.I.); (A.T.K.)
| | - Andrew T. Kerr
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (G.H.I.); (A.T.K.)
| | - Arthur E. Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (M.D.); (G.W.W.); (A.S.)
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (M.D.); (G.W.W.); (A.S.)
| |
Collapse
|
3
|
Hirakawa H, Taguchi K, Murakawa S, Asano M, Noguchi S, Kikkawa S, Harada K, Adachi N, Ueyama T, Hide I, Tanaka S, Sakai N. Effects of flurbiprofen on the functional regulation of serotonin transporter and its misfolded mutant. J Pharmacol Sci 2021; 148:187-195. [PMID: 34924125 DOI: 10.1016/j.jphs.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022] Open
Abstract
Flurbiprofen, a nonsteroidal anti-inflammatory drug, reportedly exhibits chemical chaperone activity. Herein, we investigated the role of flurbiprofen in regulating serotonin transporter (SERT) function via membrane trafficking. We used COS-7 cells transiently expressing wild-type (WT) SERT or a C-terminus-deleted mutant of SERT (SERTΔCT), a misfolded protein. Flurbiprofen treatment reduced the expression of immaturely glycosylated SERT and enhanced the expression of maturely glycosylated SERT. In addition, we observed increased serotonin uptake in SERT-expressing cells. These results suggest that flurbiprofen modulates SERT function by promoting membrane trafficking. In SERTΔCT-expressing cells, flurbiprofen reduced the protein expression and uptake activity of SERTΔCT. Furthermore, flurbiprofen inhibited the formation of SERTΔCT aggregates. Studies using flurbiprofen enantiomers suggested that these effects of flurbiprofen on SERT were not mediated via cyclooxygenase inhibition. The levels of GRP78/BiP, an endoplasmic reticulum (ER) stress marker, were assessed to elucidate whether flurbiprofen can ameliorate SERTΔCT-induced ER stress. Interestingly, flurbiprofen induced GRP78/BiP expression only under ER stress conditions and not under steady-state conditions. In HRD1 E3 ubiquitin ligase knockdown cells, flurbiprofen affected the ER-associated degradation system. Collectively, the findings suggest that flurbiprofen may function as an inducer of molecular chaperones, in addition to functioning as a chemical chaperone.
Collapse
Affiliation(s)
- Haruki Hirakawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kei Taguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Seiya Murakawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaya Asano
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Satoshi Kikkawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
4
|
Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021; 12:705575. [PMID: 34305655 PMCID: PMC8293995 DOI: 10.3389/fphys.2021.705575] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Sigma 1 receptor (Sigmar1) is a ubiquitously expressed multifunctional inter-organelle signaling chaperone protein playing a diverse role in cellular survival. Recessive mutation in Sigmar1 have been identified as a causative gene for neuronal and neuromuscular disorder. Since the discovery over 40 years ago, Sigmar1 has been shown to contribute to numerous cellular functions, including ion channel regulation, protein quality control, endoplasmic reticulum-mitochondrial communication, lipid metabolism, mitochondrial function, autophagy activation, and involved in cellular survival. Alterations in Sigmar1’s subcellular localization, expression, and signaling has been implicated in the progression of a wide range of diseases, such as neurodegenerative diseases, ischemic brain injury, cardiovascular diseases, diabetic retinopathy, cancer, and drug addiction. The goal of this review is to summarize the current knowledge of Sigmar1 biology focusing the recent discoveries on Sigmar1’s molecular, cellular, pathophysiological, and biological functions.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
5
|
Motoike S, Taguchi K, Harada K, Asano M, Hide I, Tanaka S, Irifune M, Sakai N. Syntaxin 3 interacts with serotonin transporter and regulates its function. J Pharmacol Sci 2021; 145:297-307. [PMID: 33712280 DOI: 10.1016/j.jphs.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
Herein, we investigated the functional association of the serotonin transporter (SERT) with syntaxin-3 (STX3). We first overexpressed SERT and STX3 in various cells and examined their interaction, localization, and functional association. Immunoprecipitation studies revealed that STX3 interacted with SERT when expressed in COS-7 cells. Immunocytochemical studies revealed that SERT and STX3 were colocalized in the endoplasmic reticulum (ER) and Golgi apparatus. STX3 overexpression significantly reduced the uptake activity of SERT by attenuating its plasma membrane expression, suggesting that overexpressed STX3 anchors SERT in the ER and Golgi apparatus. STX3 knockdown did not affect the uptake activity of SERT but altered its glycosylation state. To elucidate the association of STX3 with SERT under physiological conditions, rather than overexpressing cells, we investigated this interaction in polarized Caco-2 cells, which endogenously express both proteins. Immunocytochemical studies revealed that SERT and STX3 were localized in microvilli-like structures at the apical plasma membrane. STX3 knockdown marginally but significantly decreased the serotonin uptake activity of Caco-2 cells, suggesting that STX3 positively regulates SERT function in Caco-2 cells, as opposed to SERT regulation by STX3 in overexpressing cells. Collectively, STX3 may colocalize with SERT during SERT membrane trafficking and regulate SERT function in an STX3-expressing lesion-dependent manner.
Collapse
Affiliation(s)
- Serika Motoike
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kei Taguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaya Asano
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
6
|
Sakai M, Nagayasu K, Shibui N, Andoh C, Takayama K, Shirakawa H, Kaneko S. Prediction of pharmacological activities from chemical structures with graph convolutional neural networks. Sci Rep 2021; 11:525. [PMID: 33436854 PMCID: PMC7803991 DOI: 10.1038/s41598-020-80113-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Many therapeutic drugs are compounds that can be represented by simple chemical structures, which contain important determinants of affinity at the site of action. Recently, graph convolutional neural network (GCN) models have exhibited excellent results in classifying the activity of such compounds. For models that make quantitative predictions of activity, more complex information has been utilized, such as the three-dimensional structures of compounds and the amino acid sequences of their respective target proteins. As another approach, we hypothesized that if sufficient experimental data were available and there were enough nodes in hidden layers, a simple compound representation would quantitatively predict activity with satisfactory accuracy. In this study, we report that GCN models constructed solely from the two-dimensional structural information of compounds demonstrated a high degree of activity predictability against 127 diverse targets from the ChEMBL database. Using the information entropy as a metric, we also show that the structural diversity had less effect on the prediction performance. Finally, we report that virtual screening using the constructed model identified a new serotonin transporter inhibitor with activity comparable to that of a marketed drug in vitro and exhibited antidepressant effects in behavioural studies.
Collapse
Affiliation(s)
- Miyuki Sakai
- grid.258799.80000 0004 0372 2033Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan ,Medical Database Ltd., 2-5-5 Sumitomoshibadaimon building, Shibadaimon, Minato-ku, Tokyo, 105-0012 Japan
| | - Kazuki Nagayasu
- grid.258799.80000 0004 0372 2033Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Norihiro Shibui
- grid.258799.80000 0004 0372 2033Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Chihiro Andoh
- grid.258799.80000 0004 0372 2033Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Kaito Takayama
- grid.258799.80000 0004 0372 2033Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Hisashi Shirakawa
- grid.258799.80000 0004 0372 2033Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Shuji Kaneko
- grid.258799.80000 0004 0372 2033Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| |
Collapse
|
7
|
Taguchi K, Kaneko M, Motoike S, Harada K, Hide I, Tanaka S, Sakai N. Role of the E3 ubiquitin ligase HRD1 in the regulation of serotonin transporter function. Biochem Biophys Res Commun 2020; 534:583-589. [PMID: 33243462 DOI: 10.1016/j.bbrc.2020.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022]
Abstract
To elucidate the regulation of serotonin transporter (SERT) function via its membrane trafficking, we investigated the involvement of the ubiquitin E3 ligase HRD1 (HMG-CoA reductase degradation protein), which participates in endoplasmic reticulum (ER)-associated degradation (ERAD), in the functional regulation of SERT. Cells transiently expressing wild-type SERT or a SERT C-terminal deletion mutant (SERTΔCT), a SERT protein predicted to be misfolded, were used for experiments. Studies using HRD1-overexpressing or HRD1-knockdown cells demonstrated that HRD1 is involved in SERT proteolysis. Overexpression of HRD1 promoted SERT ubiquitination, the effect of which was augmented by treatment with the proteasome inhibitor MG132. Immunoprecipitation studies revealed that HRD1 interacts with SERT in the presence of MG132. In addition, HRD1 was intracellularly colocalized with SERT, especially with aggregates of SERTΔCT in the ER. HRD1 also affected SERT uptake activity in accordance with the expression levels of the SERT protein. These results suggest that HRD1 contributes to the membrane trafficking and functional regulation of SERT through its involvement in ERAD-mediated SERT degradation.
Collapse
Affiliation(s)
- Kei Taguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences
| | - Serika Motoike
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
8
|
Propofol induces the elevation of intracellular calcium via morphological changes in intracellular organelles, including the endoplasmic reticulum and mitochondria. Eur J Pharmacol 2020; 884:173303. [PMID: 32681942 DOI: 10.1016/j.ejphar.2020.173303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022]
Abstract
Propofol, most frequently used as a general anesthetic due to its versatility and short-acting characteristics, is thought to exert its anesthetic actions via GABAA receptors; however, the precise mechanisms of its adverse action including angialgia remain unclear. We examined the propofol-induced elevation of intracellular calcium and morphological changes in intracellular organelles using SHSY-5Y neuroblastoma cells, COS-7 cells, HEK293 cells, and HUVECs loaded with fluorescent dyes for live imaging. Although propofol (>50 μM) increased intracellular calcium in a dose-dependent manner in these cells, it was not influenced by the elimination of extracellular calcium. The calcium elevation was abolished when intracellular or intraendoplasmic reticulum (ER) calcium was depleted by BAPTA-AM or thapsigargin, respectively, suggesting that calcium was mobilized from the ER. Studies using U-73122, xestospongin C, and dantrolene revealed that propofol-induced calcium elevation was not mediated by G-protein coupled receptors, IP3 receptors, or ryanodine receptors. We performed live imaging of the ER, mitochondria and Golgi apparatus during propofol stimulation using fluorescent dyes. Concomitant with the calcium elevation, the structure of the ER and mitochondria was fragmented and aggregated, and these changes were not reversed during the observation period, suggesting that propofol-induced calcium elevation occurs due to calcium leakage from these organelles. Although the concentration of propofol used in this experiment was greater than that used clinically (30 μM), it is possible that the concentration exceeds 30 μM at the site where propofol is injected, leading the idea that these phenomena might relate to the various propofol-induced adverse effects including angialgia.
Collapse
|
9
|
Schmidt HR, Kruse AC. The Molecular Function of σ Receptors: Past, Present, and Future. Trends Pharmacol Sci 2019; 40:636-654. [PMID: 31387763 PMCID: PMC6748033 DOI: 10.1016/j.tips.2019.07.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
The σ1 and σ2 receptors are enigmatic proteins that have attracted attention for decades due to the chemical diversity and therapeutic potential of their ligands. However, despite ongoing clinical trials with σ receptor ligands for multiple conditions, relatively little is known regarding the molecular function of these receptors. In this review, we revisit past research on σ receptors and discuss the interpretation of these data in light of recent developments. We provide a synthesis of emerging structural and genetic data on the σ1 receptor and discuss the recent cloning of the σ2 receptor. Finally, we discuss the major questions that remain in the study of σ receptors.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|