1
|
Sheynikhovich D, Otani S, Bai J, Arleo A. Long-term memory, synaptic plasticity and dopamine in rodent medial prefrontal cortex: Role in executive functions. Front Behav Neurosci 2023; 16:1068271. [PMID: 36710953 PMCID: PMC9875091 DOI: 10.3389/fnbeh.2022.1068271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mnemonic functions, supporting rodent behavior in complex tasks, include both long-term and (short-term) working memory components. While working memory is thought to rely on persistent activity states in an active neural network, long-term memory and synaptic plasticity contribute to the formation of the underlying synaptic structure, determining the range of possible states. Whereas, the implication of working memory in executive functions, mediated by the prefrontal cortex (PFC) in primates and rodents, has been extensively studied, the contribution of long-term memory component to these tasks received little attention. This review summarizes available experimental data and theoretical work concerning cellular mechanisms of synaptic plasticity in the medial region of rodent PFC and the link between plasticity, memory and behavior in PFC-dependent tasks. A special attention is devoted to unique properties of dopaminergic modulation of prefrontal synaptic plasticity and its contribution to executive functions.
Collapse
Affiliation(s)
- Denis Sheynikhovich
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,*Correspondence: Denis Sheynikhovich ✉
| | - Satoru Otani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jing Bai
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
2
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
3
|
Roberts RJ, Findlay LJ, El-Mallakh PL, El-Mallakh RS. Update on schizophrenia and bipolar disorder: focus on cariprazine. Neuropsychiatr Dis Treat 2016; 12:1837-42. [PMID: 27524901 PMCID: PMC4966692 DOI: 10.2147/ndt.s97616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia and bipolar disorder are severe psychiatric disorders that are frequently associated with persistent symptoms and significant dysfunction. While there are a multitude of psychopharmacologic agents are available for treatment of these illnesses, suboptimal response and significant adverse consequences limit their utility. Cariprazine is a new, novel antipsychotic medication with dopamine D2 and D3 partial agonist effects. Its safety and efficacy have been investigated in acute psychosis of schizophrenia, bipolar mania, bipolar depression, and unipolar depression. Efficacy has been demonstrated in schizophrenia and mania. It is unclear if cariprazine is effective in depression associated with unipolar or bipolar illness. Adverse consequences include extrapyramidal symptoms including akathisia, and various gastrointestinal symptoms. The US Food and Drug Administration (FDA) has recently approved cariprazine. This review will provide clinicians with basic information regarding the research program of cariprazine.
Collapse
Affiliation(s)
- Rona Jeannie Roberts
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville
| | | | | | - Rif S El-Mallakh
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville
| |
Collapse
|
4
|
Meunier CNJ, Callebert J, Cancela JM, Fossier P. Effect of dopaminergic D1 receptors on plasticity is dependent of serotoninergic 5-HT1A receptors in L5-pyramidal neurons of the prefrontal cortex. PLoS One 2015; 10:e0120286. [PMID: 25775449 PMCID: PMC4361673 DOI: 10.1371/journal.pone.0120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/02/2015] [Indexed: 01/11/2023] Open
Abstract
Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective.
Collapse
Affiliation(s)
- Claire Nicole Jeanne Meunier
- Neuroscience Paris-Saclay Institute (NeuroPSI), UMR 8197 CNRS-Université Paris-Sud, Bâtiment 446, Université Paris-Sud, Orsay F-91405, France
| | - Jacques Callebert
- Université Paris Descartes, Laboratoire de Neuropharmacologie des addictions, INSERM U705 CNRS UMR 7157, 4 avenue de l’Observatoire, 75006 Paris, France
| | - José-Manuel Cancela
- Neuroscience Paris-Saclay Institute (NeuroPSI), UMR 8197 CNRS-Université Paris-Sud, Bâtiment 446, Université Paris-Sud, Orsay F-91405, France
| | - Philippe Fossier
- Neuroscience Paris-Saclay Institute (NeuroPSI), UMR 8197 CNRS-Université Paris-Sud, Bâtiment 446, Université Paris-Sud, Orsay F-91405, France
- * E-mail:
| |
Collapse
|
5
|
Buchta WC, Riegel AC. Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res 2015; 1628:88-103. [PMID: 25704202 DOI: 10.1016/j.brainres.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 01/06/2023]
Abstract
The addictive power of drugs of abuse such as cocaine comes from their ability to hijack natural reward and plasticity mechanisms mediated by dopamine signaling in the brain. Reward learning involves burst firing of midbrain dopamine neurons in response to rewards and cues predictive of reward. The resulting release of dopamine in terminal regions is thought to act as a teaching signaling to areas such as the prefrontal cortex and striatum. In this review, we posit that a pool of extrasynaptic dopaminergic D1-like receptors activated in response to dopamine neuron burst firing serve to enable synaptic plasticity in the prefrontal cortex in response to rewards and their cues. We propose that disruptions in these mechanisms following chronic cocaine use contribute to addiction pathology, in part due to the unique architecture of the mesocortical pathway. By blocking dopamine reuptake in the cortex, cocaine elevates dopamine signaling at these extrasynaptic receptors, prolonging D1-receptor activation and the subsequent activation of intracellular signaling cascades, and thus inducing long-lasting maladaptive plasticity. These cellular adaptations may account for many of the changes in cortical function observed in drug addicts, including an enduring vulnerability to relapse. Therefore, understanding and targeting these neuroadaptations may provide cognitive benefits and help prevent relapse in human drug addicts.
Collapse
Affiliation(s)
- William C Buchta
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Arthur C Riegel
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
6
|
Markou A, Salamone JD, Bussey TJ, Mar AC, Brunner D, Gilmour G, Balsam P. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci Biobehav Rev 2013; 37:2149-65. [PMID: 23994273 PMCID: PMC3849135 DOI: 10.1016/j.neubiorev.2013.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu) meeting. A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits.
Collapse
Affiliation(s)
- Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C0603, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Dopaminergic control of long-term depression/long-term potentiation threshold in prefrontal cortex. J Neurosci 2013; 33:13914-26. [PMID: 23966711 DOI: 10.1523/jneurosci.0466-13.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Long-term memory in the prefrontal cortex is a necessary component of adaptive executive control and is strongly modulated by dopamine. However, the functional significance of this dopaminergic modulation remains elusive. In vitro experimental results on dopamine-dependent shaping of prefrontal long-term plasticity often appear inconsistent and, altogether, draw a complicated picture. It is also generally difficult to relate these findings to in vivo observations given strong differences between the two experimental conditions. This study presents a unified view of the functional role of dopamine in the prefrontal cortex by framing it within the Bienenstock-Cooper-Munro theory of cortical plasticity. We investigate dopaminergic modulation of long-term plasticity through a multicompartment Hodgkin-Huxley model of a prefrontal pyramidal neuron. Long-term synaptic plasticity in the model is governed by a calcium- and dopamine-dependent learning rule, in which dopamine exerts its action via D1 and D2 dopamine receptors in a concentration-dependent manner. Our results support a novel function of dopamine in the prefrontal cortex, namely that it controls the synaptic modification threshold between long-term depression and potentiation in pyramidal neurons. The proposed theoretical framework explains a wide range of experimental results and provides a link between in vitro and in vivo studies of dopaminergic plasticity modulation. It also suggests that dopamine may constitute a new player in metaplastic and homeostatic processes in the prefrontal cortex.
Collapse
|