1
|
Kawade K, Tabeta H, Ferjani A, Hirai MY. The Roles of Functional Amino Acids in Plant Growth and Development. PLANT & CELL PHYSIOLOGY 2023; 64:1482-1493. [PMID: 37489637 DOI: 10.1093/pcp/pcad071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/04/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Plants incorporate acquired carbon and nitrogen into amino acid metabolism, whereby the building blocks of proteins and the precursors of various metabolites are produced. This fundamental demand requires tight amino acid metabolism to sustain physiological homeostasis. There is increasing evidence that amino acid metabolism undergoes plastic alteration to orchestrate specific growth and developmental events. Consequently, there has been a gradual exploration of the interface at which amino acid metabolism and plant morphogenesis are mutually affected. This research progress offers an opportunity to explore amino acid metabolism, with the goal to understand how it can be modulated to serve special cellular needs and regulate specific growth and developmental pathways. Continuous improvements in the sensitivity and coverage of metabolomics technology, along with the development of chemoinformatics, have allowed the investigation of these research questions. In this review, we summarize the roles of threonine, serine, arginine and γ-aminobutyric acid as representative examples of amino acids relevant to specific developmental processes in plants ('functional amino acids'). Our objective is to expand perspectives regarding amino acid metabolism beyond the conventional view that it is merely life-supporting machinery.
Collapse
Affiliation(s)
- Kensuke Kawade
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570 Japan
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | | | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo, 184-8501 Japan
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Masami Yokota Hirai
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
2
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
Affiliation(s)
- Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
3
|
Lyu X, Sun C, Zhang J, Wang C, Zhao S, Ma C, Li S, Li H, Gong Z, Yan C. Integrated Proteomics and Metabolomics Analysis of Nitrogen System Regulation on Soybean Plant Nodulation and Nitrogen Fixation. Int J Mol Sci 2022; 23:2545. [PMID: 35269687 PMCID: PMC8910638 DOI: 10.3390/ijms23052545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The specific mechanisms by which nitrogen affects nodulation and nitrogen fixation in leguminous crops are still unclear. To study the relationship between nitrogen, nodulation and nitrogen fixation in soybeans, dual-root soybean plants with unilateral nodulation were prepared by grafting. At the third trifoliate leaf (V3) to fourth trifoliate leaf (V4) growth stages (for 5 days), nitrogen nutrient solution was added to the non-nodulated side, while nitrogen-free nutrient solution was added to the nodulated side. The experiment was designed to study the effects of exogenous nitrogen on proteins and metabolites in root nodules and provide a theoretical reference for analyzing the physiological mechanisms of the interaction between nitrogen application and nitrogen fixation in soybean root nodules. Compared with no nitrogen treatment, exogenous nitrogen regulated the metabolic pathways of starch and sucrose metabolism, organic acid metabolism, nitrogen metabolism, and amino acid metabolism, among others. Additionally, exogenous nitrogen promoted the synthesis of signaling molecules, including putrescine, nitric oxide, and asparagine in root nodules, and inhibited the transformation of sucrose to malic acid; consequently, the rhizobia lacked energy for nitrogen fixation. In addition, exogenous nitrogen reduced cell wall synthesis in the root nodules, thus inhibiting root nodule growth and nitrogen fixation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.S.); (J.Z.); (C.W.); (S.Z.); (C.M.); (S.L.); (H.L.)
| | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.S.); (J.Z.); (C.W.); (S.Z.); (C.M.); (S.L.); (H.L.)
| |
Collapse
|
4
|
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N 2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3043-3064. [PMID: 31838702 DOI: 10.1007/s11356-019-07300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Kiran Saroy
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
5
|
Hidalgo-Castellanos J, Duque AS, Burgueño A, Herrera-Cervera JA, Fevereiro P, López-Gómez M. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153034. [PMID: 31493718 DOI: 10.1016/j.jplph.2019.153034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Legumes have the capacity to fix nitrogen in symbiosis with soil bacteria known as rhizobia by the formation of root nodules. However, nitrogen fixation is highly sensitive to soil salinity with a concomitant reduction of the plant yield and soil fertilization. Polycationic aliphatic amines known as polyamines (PAs) have been shown to be involved in the response to a variety of stresses in plants including soil salinity. Therefore, the generation of transgenic plants overexpressing genes involved in PA biosynthesis have been proposed as a promising tool to improve salt stress tolerance in plants. In this work we tested whether the modulation of PAs in transgenic Medicago truncatula plants was advantageous for the symbiotic interaction with Sinorhizobium meliloti under salt stress conditions, when compared to wild type plants. Consequently, we characterized the symbiotic response to salt stress of the homozygous M. truncatula plant line L-108, constitutively expressing the oat adc gene, coding for the PA biosynthetic enzyme arginine decarboxylase, involved in PAs biosynthesis. In a nodulation kinetic assay, nodule number incremented in L-108 plants under salt stress. In addition, these plants at vegetative stage showed higher nitrogenase and nodule biomass and, under salt stress, accumulated proline (Pro) and spermine (Spm) in nodules, while in wt plants, the accumulation of glutamic acid (Glu), γ-amino butyric acid (GABA) and 1-aminocyclopropane carboxylic acid (ACC) (the ethylene (ET) precursor) were the metabolites involved in the salt stress response. Therefore, overexpression of oat adc gene favours the symbiotic interaction between plants of M. truncatula L-108 and S. meliloti under salt stress and the accumulation of Pro and Spm, seems to be the molecules involved in salt stress tolerance.
Collapse
Affiliation(s)
- Javier Hidalgo-Castellanos
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain
| | - Ana Sofia Duque
- Plant Cell Biotechnology Lab, Instituto de Tecnologia Química e Biológica António Xavier (Green-it Unit), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alvaro Burgueño
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain
| | - José A Herrera-Cervera
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain
| | - Pedro Fevereiro
- Plant Cell Biotechnology Lab, Instituto de Tecnologia Química e Biológica António Xavier (Green-it Unit), Universidade Nova de Lisboa, Oeiras, Portugal; Departamento Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Portugal
| | - Miguel López-Gómez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.
| |
Collapse
|
6
|
Roy Choudhury S, Johns SM, Pandey S. A convenient, soil-free method for the production of root nodules in soybean to study the effects of exogenous additives. PLANT DIRECT 2019; 3:e00135. [PMID: 31245773 PMCID: PMC6589526 DOI: 10.1002/pld3.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 05/16/2023]
Abstract
Legumes develop root nodules that harbor endosymbiotic bacteria, rhizobia. These rhizobia convert nitrogen to ammonia by biological nitrogen fixation. A thorough understanding of the biological nitrogen fixation in legumes and its regulation is key to develop sustainable agriculture. It is well known that plant hormones affect nodule formation; however, most studies are limited to model legumes due to their suitability for in vitro, plate-based assays. Specifically, it is almost impossible to measure the effects of exogenous hormones or other additives during nodule development in crop legumes such as soybean as they have huge root system in soil. To circumvent this issue, the present research develops suitable media and growth conditions for efficient nodule development under in vitro, soil-free conditions in an important legume crop, soybean. Moreover, we also evaluate the effects of all major phytohormones on soybean nodule development under identical growing conditions. Phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) had an overall inhibitory effect and those such as gibberellic acid (GA) or brassinosteroids (BRs) had an overall positive effect on nodule formation. This versatile, inexpensive, scalable, and simple protocol provides several advantages over previously established methods. It is extremely time- and resource-efficient, does not require special training or equipment, and produces highly reproducible results. The approach is expandable to other large legumes as well as for other exogenous additives.
Collapse
Affiliation(s)
| | | | - Sona Pandey
- Donald Danforth Plant Science CenterSt. LouisMissouri
| |
Collapse
|
7
|
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:632-648. [PMID: 29578639 DOI: 10.1111/jipb.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 05/16/2023]
Abstract
Leguminous plants can establish symbiotic associations with diazotropic rhizobia to form nitrogen-fixating nodules, which are classified as determinate or indeterminate based on the persistence of nodule meristem. The formation of nitrogen-fixing nodules requires coordinating rhizobial infection and root nodule organogenesis. The formation of an infection thread and the extent of nodule formation are largely under plant control, but vary with environmental conditions and the physiological state of the host plants. Many achievements in these two areas have been made in recent decades. Phytohormone signaling pathways have gradually emerged as important regulators of root nodule symbiosis. Cytokinin, strigolactones (SLs) and local accumulation of auxin can promote nodule development. Ethylene, jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) all negatively regulate infection thread formation and nodule development. However, salicylic acid (SA) and brassinosteroids (BRs) have different effects on the formation of these two nodule types. Some peptide hormones are also involved in nodulation. This review summarizes recent findings on the roles of these plant hormones in legume-rhizobial symbiosis, and we propose that DELLA proteins may function as a node to integrate plant hormones to regulate nodulation.
Collapse
Affiliation(s)
- Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Thal B, Braun HP, Eubel H. Proteomic analysis dissects the impact of nodulation and biological nitrogen fixation on Vicia faba root nodule physiology. PLANT MOLECULAR BIOLOGY 2018; 97:233-251. [PMID: 29779088 DOI: 10.1007/s11103-018-0736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/08/2018] [Indexed: 05/25/2023]
Abstract
Symbiotic nitrogen fixation in root nodules of legumes is a highly important biological process which is only poorly understood. Root nodule metabolism differs from that of roots. Differences in root and nodule metabolism are expressed by altered protein abundances and amenable to quantitative proteome analyses. Differences in the proteomes may either be tissue specific and related to the presence of temporary endosymbionts (the bacteroids) or related to nitrogen fixation activity. An experimental setup including WT bacterial strains and strains not able to conduct symbiotic nitrogen fixation as well as root controls enables identification of tissue and nitrogen fixation specific proteins. Root nodules are specialized plant organs housing and regulating the mutual symbiosis of legumes with nitrogen fixing rhizobia. As such, these organs fulfill unique functions in plant metabolism. Identifying the proteins required for the metabolic reactions of nitrogen fixation and those merely involved in sustaining the rhizobia:plant symbiosis, is a challenging task and requires an experimental setup which allows to differentiate between these two physiological processes. Here, quantitative proteome analyses of nitrogen fixing and non-nitrogen fixing nodules as well as fertilized and non-fertilized roots were performed using Vicia faba and Rhizobium leguminosarum. Pairwise comparisons revealed altered enzyme abundance between active and inactive nodules. Similarly, general differences between nodules and root tissue were observed. Together, these results allow distinguishing the proteins directly involved in nitrogen fixation from those related to nodulation. Further observations relate to the control of nodulation by hormones and provide supportive evidence for the previously reported correlation of nitrogen and sulfur fixation in these plant organs. Additionally, data on altered protein abundance relating to alanine metabolism imply that this amino acid may be exported from the symbiosomes of V. faba root nodules in addition to ammonia. Data are available via ProteomeXchange with identifier PXD008548.
Collapse
Affiliation(s)
- Beate Thal
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany.
| |
Collapse
|
9
|
López-Gómez M, Hidalgo-Castellanos J, Muñoz-Sánchez JR, Marín-Peña AJ, Lluch C, Herrera-Cervera JA. Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:9-17. [PMID: 28478206 DOI: 10.1016/j.plaphy.2017.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 05/17/2023]
Abstract
Polyamines (PAs) such as spermidine (Spd) and spermine (Spm) are small ubiquitous polycationic compounds that contribute to plant adaptation to salt stress. The positive effect of PAs has been associated to a cross-talk with other anti-stress hormones such as brassinosteroids (BRs). In this work we have studied the effects of exogenous Spd and Spm pre-treatments in the response to salt stress of the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti by analyzing parameters related to nitrogen fixation, oxidative damage and cross-talk with BRs in the response to salinity. Exogenous PAs treatments incremented the foliar and nodular Spd and Spm content which correlated with an increment of the nodule biomass and nitrogenase activity. Exogenous Spm treatment partially prevented proline accumulation which suggests that this polyamine could replace the role of this amino acid in the salt stress response. Additionally, Spd and Spm pre-treatments reduced the levels of H2O2 and lipid peroxidation under salt stress. PAs induced the expression of genes involved in BRs biosynthesis which support a cross-talk between PAs and BRs in the salt stress response of M. truncatula-S. meliloti symbiosis. In conclusion, exogenous PAs improved the response to salinity of the M. truncatula-S. meliloti symbiosis by reducing the oxidative damage induced under salt stress conditions. In addition, in this work we provide evidences of the cross-talk between PAs and BRs in the adaptive responses to salinity.
Collapse
Affiliation(s)
- Miguel López-Gómez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.
| | - Javier Hidalgo-Castellanos
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - J Rubén Muñoz-Sánchez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Agustín J Marín-Peña
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Carmen Lluch
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - José A Herrera-Cervera
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
10
|
López-Gómez M, Hidalgo-Castellanos J, Lluch C, Herrera-Cervera JA. 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:212-221. [PMID: 27448795 DOI: 10.1016/j.plaphy.2016.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 05/01/2023]
Abstract
Brassinosteroids (BRs) are steroid plant hormones that have been shown to be involved in the response to salt stress in cross-talk with other plant growth regulators such as polyamines (PAs). In addition, BRs are involved in the regulation of the nodulation in the rhizobium-legume symbiosis through the alteration of the PAs content in leaves. In this work, we have studied the effect of exogenous 24-epibrassinolide (EBL) in the response to salinity of nitrogen fixation in the symbiosis Medicago truncatula-Sinorhizobium meliloti. Foliar spraying of EBL restored the growth of plants subjected to salt stress and provoked an increment of the nitrogenase activity. In general, PAs levels in leaves and nodules decreased by the salt and EBL treatments, however, the co-treatment with NaCl and EBL augmented the foliar spermine (Spm) concentration. This increment of the Spm levels was followed by a reduction of the membrane oxidative damage and a diminution of the proline accumulation. The effect of BRs on the symbiotic interaction was evaluated by the addition of 0.01, 0.1 and 0.5 μM EBL to the growing solution, which provoked a reduction of the nodule number and an increment of the PAs levels in shoot. In conclusion, foliar treatment with EBL had a protective effect against salt stress in the M. truncatula-S. meliloti symbiosis mediated by an increment of the Spm levels. Treatment of roots with EBL incremented PAs levels in shoot and reduced the nodule number which suggests a cross-talk between PAs and BRs in the nodule suppression and the protection against salt stress.
Collapse
Affiliation(s)
- Miguel López-Gómez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain.
| | - Javier Hidalgo-Castellanos
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Carmen Lluch
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - José A Herrera-Cervera
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
11
|
Sekula B, Ruszkowski M, Malinska M, Dauter Z. Structural Investigations of N-carbamoylputrescine Amidohydrolase from Medicago truncatula: Insights into the Ultimate Step of Putrescine Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:350. [PMID: 27066023 PMCID: PMC4812014 DOI: 10.3389/fpls.2016.00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/07/2016] [Indexed: 05/17/2023]
Abstract
Putrescine, 1,4-diaminobutane, is an intermediate in the biosynthesis of more complexed polyamines, spermidine and spermine. Unlike other eukaryotes, plants have evolved a multistep pathway for putrescine biosynthesis that utilizes arginine. In the final reaction, N-carbamoylputrescine is hydrolyzed to putrescine by N-carbamoylputrescine amidohydrolase (CPA, EC 3.5.1.53). During the hydrolysis, consecutive nucleophilic attacks on the substrate by Cys158 and water lead to formation of putrescine and two by-products, ammonia and carbon dioxide. CPA from the model legume plant, Medicago truncatula (MtCPA), was investigated in this work. Four crystal structures were determined: the wild-type MtCPA in complex with the reaction intermediate, N-(dihydroxymethyl)putrescine as well as with cadaverine, which is a longer analog of putrescine; and also structures of MtCPA-C158S mutant unliganded and with putrescine. MtCPA assembles into octamers, which resemble an incomplete left-handed helical twist. The active site of MtCPA is funnel-like shaped, and its entrance is walled with a contribution of the neighboring protein subunits. Deep inside the catalytic cavity, Glu48, Lys121, and Cys158 form the catalytic triad. In this studies, we have highlighted the key residues, highly conserved among the plant kingdom, responsible for the activity and selectivity of MtCPA toward N-carbamoylputrescine. Moreover, since, according to previous reports, a close MtCPA relative from Arabidopsis thaliana, along with several other nitrilase-like proteins, are subjected to allosteric regulation by substrates, we have used the structural information to indicate a putative secondary binding site. Based on the docking experiment, we postulate that this site is adjacent to the entrance to the catalytic pocket.
Collapse
Affiliation(s)
- Bartosz Sekula
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of TechnologyLodz, Poland
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
- *Correspondence: Milosz Ruszkowski,
| | - Maura Malinska
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
- Faculty of Chemistry, University of WarsawWarsaw, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
| |
Collapse
|
12
|
Li M, Yang Y, Li X, Gu L, Wang F, Feng F, Tian Y, Wang F, Wang X, Lin W, Chen X, Zhang Z. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5837-51. [PMID: 26077835 DOI: 10.1093/jxb/erv288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation.
Collapse
Affiliation(s)
- Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China, 450001
| | - Xinyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Li Gu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fengji Wang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fajie Feng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Yunhe Tian
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fengqing Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Xiaoran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Wenxiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Xinjian Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| |
Collapse
|
13
|
Saha S, DasGupta M. Does SUNN-SYMRK Crosstalk occur in Medicago truncatula for regulating nodule organogenesis? PLANT SIGNALING & BEHAVIOR 2015; 10:e1028703. [PMID: 25893374 PMCID: PMC4883944 DOI: 10.1080/15592324.2015.1028703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently we reported that overexpression of intracellular kinase domain of Symbiosis Receptor Kinase (SYMRK-kd) hyperactivated spontaneous nodulation in Medicago truncatula indicating the importance of SYMRK ectodomain in restricting nodule number. To clarify whether sunn and sickle pathways were overcome by SYMRK-kd for hyperactivation of nodule organogenesis, we overexpressed SYMRK-kd in these mutants and analyzed for spontaneous nodulation in absence of rhizobia. Spontaneous nodulation in skl/SYMRK-kd roots was 2-fold higher than A17/SYMRK-kd roots indicating nodule organogenesis induced by SYMRK-kd to be ethylene sensitive. Intriguingly, sunn/SYMRK-kd roots failed to generate any spontaneous nodule which directly indicate the LRR-RLK SUNN to have a role in SYMRK-kd mediated nodule development under non-symbiotic conditions. We hypothesize a crosstalk between SUNN and SYMRK receptors for activation as well as restriction of nodule development.
Collapse
Affiliation(s)
- Sudip Saha
- Department of Biochemistry; University of Calcutta; Kolkata, India
| | - Maitrayee DasGupta
- Department of Biochemistry; University of Calcutta; Kolkata, India
- Correspondence to: Maitrayee DasGupta;
| |
Collapse
|
14
|
Jiménez-Bremont JF, Marina M, Guerrero-González MDLL, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:95. [PMID: 24672533 PMCID: PMC3957736 DOI: 10.3389/fpls.2014.00095] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.
Collapse
Affiliation(s)
- Juan F. Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | - María Marina
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | | | - Franco R. Rossi
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Diana Sánchez-Rangel
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | | | - Oscar A. Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Andrés Gárriz
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| |
Collapse
|
15
|
Li P, Chen L, Zhou Y, Xia X, Shi K, Chen Z, Yu J. Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus. PLoS One 2013; 8:e66582. [PMID: 23840504 PMCID: PMC3686678 DOI: 10.1371/journal.pone.0066582] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/08/2013] [Indexed: 11/19/2022] Open
Abstract
Brassinosteroids (BRs), a group of naturally occurring plant steroidal compounds, are essential for plant growth, development and stress tolerance. Recent studies showed that BRs could induce systemic tolerance to biotic and abiotic stresses; however, the molecular mechanisms by which BRs signals lead to responses in the whole plant are largely unknown. In this study, 24-epibrassinosteroid (EBR)-induced systemic tolerance in Cucumis sativus L. cv. Jinyan No. 4 was analyzed through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation. Expression of defense/stress related genes were induced in both treated local leaves and untreated systemic leaves by local EBR application. With the suppressive subtractive hybridization (SSH) library using cDNA from the phloem sap of EBR-treated plants as the tester and distilled water (DW)-treated plants as the driver, 14 transcripts out of 260 clones were identified. Quantitative Real Time-Polymerase Chain Reaction (RT-qPCR) validated the specific up-regulation of these transcripts. Of the differentially expressed transcripts with known functions, transcripts for the selected four cDNAs, which encode an auxin-responsive protein (IAA14), a putative ankyrin-repeat protein, an F-box protein (PP2), and a major latex, pathogenesis-related (MLP)-like protein, were induced in local leaves, systemic leaves and roots after foliar application of EBR onto mature leaves. Our results demonstrated that EBR-induced systemic tolerance is accompanied with increased transcript of genes in the defense response in other organs. The potential role of phloem mRNAs as signaling components in mediating BR-regulated systemic resistance is discussed.
Collapse
Affiliation(s)
- Pingfang Li
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Li Chen
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhixiang Chen
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agricultural, Hangzhou, People’s Republic of China
| |
Collapse
|
16
|
Schaarschmidt S, Gresshoff PM, Hause B. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biol 2013; 14:R62. [PMID: 23777981 PMCID: PMC3706930 DOI: 10.1186/gb-2013-14-6-r62] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 06/18/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. RESULTS Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. CONCLUSIONS Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Collapse
Affiliation(s)
- Sara Schaarschmidt
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
- Humboldt-Universität zu Berlin, Faculty of Agriculture and Horticulture, Division Urban Plant Ecophysiology, Lentzeallee 55-57, 14195 Berlin, Germany
| | - Peter M Gresshoff
- ARC Centre of Excellence for Integrative Legume Research (CILR), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Murakami Y, Yokoyama H, Fukui R, Kawaguchi M. Down-regulation of NSP2 expression in developmentally young regions of Lotus japonicus roots in response to rhizobial inoculation. PLANT & CELL PHYSIOLOGY 2013; 54:518-27. [PMID: 23335614 DOI: 10.1093/pcp/pct008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During the early 1980s, Bauer and associates reported that nodulation potential in primary roots of soybean seedlings following inoculation with rhizobia was significantly reduced in developmentally younger regions. They suggested that this phenomenon might be due to a fast-acting regulatory mechanism in the host that prevented excessive nodulation. However, the molecular mechanism of this fast-acting regulatory response remains uncertain. Here, we sought to elucidate components of this regulatory mechanism by investigating the expression of the NSP1 and NSP2 genes that encode a GRAS transcription factor required for nodule initiation. First, we confirmed that younger regions of Lotus japonicus roots also show a reduction in nodule numbers in response to Mesorhizobium loti. Then, we compared the expression levels of NSP1 and NSP2 in developmentally younger regions of primary roots. After inoculation with M. loti, expression of NSP1 was transiently induced whereas that of NSP2 was significantly down-regulated 1 d after inoculation. This result implicates that down-regulation of NSP2 might cause a fast-acting regulatory mechanism to prevent further nodulation. Next we overexpressed NSP2 in wild-type plants. Overexpression resulted in the clustering of nodules in the upper region of the root but strong suppression of nodulation in the lower region. In contrast, overexpression of NSP2 in har1 hypernodulating mutants resulted in an increased number of nodule primordia even in the root tip region. These results indicate that HAR1 negatively regulates NSP2-induced excessive nodule formation in the developmentally younger regions of roots.
Collapse
Affiliation(s)
- Yasuhiro Murakami
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | | | | | | |
Collapse
|
18
|
Ryu H, Cho H, Choi D, Hwang I. Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 2012; 34:117-26. [PMID: 22820920 PMCID: PMC3887813 DOI: 10.1007/s10059-012-0131-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Legumes have evolved symbiotic interactions with rhizobial bacteria to efficiently utilize nitrogen. Recent progress in symbiosis has revealed several key components of host plants required for nitrogen-fixing nodule organogenesis, in which complicated metabolic and signaling pathways in the host plant are reprogrammed to generate nodules in the cortex upon perception of the rhizobial Nod factor. Following the recognition of Nod factors, plant hormones are likely to be essential throughout nodule organogenesis for integration of developmental and environmental signaling cues into nodule development. Here, we review the molecular events involved in plant hormonal regulation and signaling cross-talk for nitrogen-fixing nodule development, and discuss how these signaling networks are integrated into Nod factor-mediated signaling during plant-microbe interactions.
Collapse
Affiliation(s)
- Hojin Ryu
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyunwoo Cho
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Daeseok Choi
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Ildoo Hwang
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
19
|
Mortier V, Holsters M, Goormachtig S. Never too many? How legumes control nodule numbers. PLANT, CELL & ENVIRONMENT 2012; 35:245-58. [PMID: 21819415 DOI: 10.1111/j.1365-3040.2011.02406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | |
Collapse
|
20
|
Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA. The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. PLANT PHYSIOLOGY 2011; 157:328-40. [PMID: 21742814 PMCID: PMC3165882 DOI: 10.1104/pp.111.178756] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/07/2011] [Indexed: 05/20/2023]
Abstract
The formation of nitrogen-fixing nodules in legumes is tightly controlled by a long-distance signaling system in which nodulating roots signal to shoot tissues to suppress further nodulation. A screen for supernodulating Medicago truncatula mutants defective in this regulatory behavior yielded loss-of-function alleles of a gene designated ROOT DETERMINED NODULATION1 (RDN1). Grafting experiments demonstrated that RDN1 regulatory function occurs in the roots, not the shoots, and is essential for normal nodule number regulation. The RDN1 gene, Medtr5g089520, was identified by genetic mapping, transcript profiling, and phenotypic rescue by expression of the wild-type gene in rdn1 mutants. A mutation in a putative RDN1 ortholog was also identified in the supernodulating nod3 mutant of pea (Pisum sativum). RDN1 is predicted to encode a 357-amino acid protein of unknown function. The RDN1 promoter drives expression in the vascular cylinder, suggesting RDN1 may be involved in initiating, responding to, or transporting vascular signals. RDN1 is a member of a small, uncharacterized, highly conserved gene family unique to green plants, including algae, that we have named the RDN family.
Collapse
|
21
|
Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen Z, Yu JQ. Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. THE NEW PHYTOLOGIST 2011; 191:706-720. [PMID: 21564100 DOI: 10.1111/j.1469-8137.2011.03745.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
• Brassinosteroids (BRs) are a new class of plant hormones that are essential for plant growth and development. Here, the involvement of BRs in plant systemic tolerance to biotic and abiotic stresses was studied. • The effects of 24-epibrassinolide (EBR) on plant stress tolerance were studied through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation, the analysis of gene expression using quantitative real-time PCR and the measurement of hydrogen peroxide (H₂O₂) production using a spectrophotometric assay or confocal laser scanning microscopy. • Treatment of primary leaves with EBR induced systemic tolerance to photooxidative stress in untreated upper and lower leaves. This was accompanied by the systemic accumulation of H₂O₂ and the systemic induction of genes associated with stress responses. Foliar treatment of EBR also enhanced root resistance to Fusarium wilt pathogen. Pharmacological study showed that EBR-induced systemic tolerance was dependent on local and systemic H₂O₂ accumulation. The expression of BR biosynthetic genes was repressed in EBR-treated leaves, but elevated significantly in untreated systemic leaves. Further analysis indicated that EBR-induced systemic induction of BR biosynthetic genes was mediated by systemically elevated H₂O₂. • These results strongly argue that local EBR treatment can activate the continuous production of H₂O₂, and the autopropagative nature of the reactive oxygen species signal, in turn, mediates EBR-induced systemic tolerance.
Collapse
Affiliation(s)
- Xiao-Jian Xia
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Yan-Hong Zhou
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Ju Ding
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Kai Shi
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Tadao Asami
- Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Jing-Quan Yu
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
- Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Kaixuan Road 268, Hangzhou 310029, China
| |
Collapse
|
22
|
Abstract
Root-nodule bacteria (rhizobia) are of great importance for nitrogen acquisition through symbiotic nitrogen fixation in a wide variety of leguminous plants. These bacteria differ from most other soil microorganisms by taking dual forms, i.e. a free-living form in soils and a symbiotic form inside of host legumes. Therefore, they should have a versatile strategy for survival, whether inhabiting soils or root nodules formed through rhizobia-legume interactions. Rhizobia generally contain large amounts of the biogenic amine homospermidine, an analog of spermidine which is an essential cellular component in most living systems. The external pH, salinity and a rapid change in osmolarity are thought to be significant environmental factors affecting the persistence of rhizobia. The present review describes the regulation of homospermidine biosynthesis in response to environmental stress and its possible functional role in rhizobia. Legume root nodules, an alternative habitat of rhizobia, usually contain a variety of biogenic amines besides homospermidine and the occurrence of some of these amines is closely associated with rhizobial infections. In the second half of this review, novel biogenic amines found in certain legume root nodules and the mechanism of their synthesis involving cooperation between the rhizobia and host legume cells are also described.
Collapse
Affiliation(s)
- Shinsuke Fujihara
- National Agricultural Research Center, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666. Japan
| |
Collapse
|
23
|
Lin YH, Lin MH, Gresshoff PM, Ferguson BJ. An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 2011; 6:36-45. [PMID: 21212781 DOI: 10.1038/nprot.2010.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Introducing bioactive molecules into plants helps establish their roles in plant growth and development. Here we describe a simple and effective petiole-feeding protocol to introduce aqueous solutions into the vascular stream and apoplast of dicotyledonous plants. This 'intravenous feeding' procedure has wide applicability to plant physiology, specifically with regard to the analysis of source-sink allocations, long-distance signaling, hormone biology and overall plant development. In comparison with existing methods, this technique allows the continuous feeding of aqueous solutions into plants without the need for constant monitoring. Findings are provided from experiments using soybean plants fed with a range of aqueous solutions containing tracer dyes, small metabolites, radiolabeled chemicals and biologically active plant extracts controlling nodulation. Typically, feeding experiments consist of (i) generating samples to feed (extracts, solutions and so on); (ii) growing recipient plants; (iii) setting up the feeding apparatus; and (iv) feeding sample solutions into the recipient plants. When the plants are ready, the feeding procedure can take 1-3 h to set up depending on the size of experiment (not including preparation of materials). The petiole-feeding technique also works with other plant species, including tomato, chili pepper and cabbage plants, as demonstrated here.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
24
|
Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. PLANT & CELL PHYSIOLOGY 2010; 51:1381-97. [PMID: 20660226 PMCID: PMC2938637 DOI: 10.1093/pcp/pcq107] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant-microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant-microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes.
Collapse
Affiliation(s)
- Hiroshi Kouchi
- Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Subramanian S, Cho UH, Keyes C, Yu O. Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions. BMC PLANT BIOLOGY 2009; 9:119. [PMID: 19772575 PMCID: PMC2758885 DOI: 10.1186/1471-2229-9-119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 09/21/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins. RESULTS We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants. CONCLUSION Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.
Collapse
Affiliation(s)
- Senthil Subramanian
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Un-Haing Cho
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Changwon National University, Changwon, Kyoungnam, 641-773, Korea
| | - Carol Keyes
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Maryville University, St Louis, MO, 63141, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
26
|
Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. PLANTA 2008; 228:37-49. [PMID: 18320213 DOI: 10.1007/s00425-008-0717-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/15/2008] [Indexed: 05/10/2023]
Abstract
The biosynthesis of the polyamines spermidine (Spd) and spermine (Spm) from putrescine (Put) is catalysed by the consequent action of two aminopropyltransferases, spermidine synthase (SPDS EC: 2.5.1.16) and spermine synthase (SPMS EC: 2.5.1.22). Two cDNA clones coding for SPDS and SPMS homologues in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the encoded polypeptides was confirmed by their ability to complement spermidine and spermine deficiencies in yeast. The temporal and spatial expression pattern of the respective genes was correlated with the accumulation of total polyamines in symbiotic and non-symbiotic organs. Expression of both genes was maximal at early stages of nodule development, while at later stages the levels of both transcripts declined. Both genes were expressed in nodule inner cortical cells, vascular bundles, and central tissue. In contrast to gene expression, increasing amounts of Put, Spd, and Spm were found to accumulate during nodule development and after maturity. Interestingly, nodulated plants exhibited systemic changes in both LjSPDS and LjSPMS transcript levels and polyamine content in roots, stem and leaves, in comparison to uninoculated plants. These results give new insights into the neglected role of polyamines during nodule development and symbiotic nitrogen fixation (SNF).
Collapse
Affiliation(s)
- R C Efrose
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Oka-Kira E, Kawaguchi M. Long-distance signaling to control root nodule number. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:496-502. [PMID: 16877028 DOI: 10.1016/j.pbi.2006.07.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 07/17/2006] [Indexed: 05/11/2023]
Abstract
Symbiotic nitrogen fixation is beneficial to legumes. Excessive nodule development, however, disturbs the host growth by over-consuming energy from the plant. To keep a balance, legumes possess a systemic negative feedback regulatory system called 'autoregulation of nodulation', which controls the nodule number and the nodulation zone through long-distance signaling. Plants that are deficient in autoregulation display a hypernodulating phenotype. Recently, genes encoding a CLAVATA1-like receptor-like kinase that mediates autoregulation of nodulation have been identified from several legumes, such as Lotus japonicus and soybean. Other hypernodulation mutants that are regulated by shoot or root genotypes have also been isolated.
Collapse
Affiliation(s)
- Erika Oka-Kira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|