1
|
Liu S, Zhong H, Wang Q, Liu C, Li T, Peng Z, Li Y, Zhang H, Liao J, Huang Y, Wang Z. Global Analysis of UDP Glucose Pyrophosphorylase (UDPGP) Gene Family in Plants: Conserved Evolution Involved in Cell Death. FRONTIERS IN PLANT SCIENCE 2021; 12:681719. [PMID: 34177996 PMCID: PMC8222925 DOI: 10.3389/fpls.2021.681719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 05/28/2023]
Abstract
UDP glucose pyrophosphorylase (UDPGP) family genes have been reported to play essential roles in cell death or individual survival. However, a systematic analysis on UDPGP gene family has not been performed yet. In this study, a total of 454 UDPGP proteins from 76 different species were analyzed. The analyses of the phylogenetic tree and orthogroups divided UDPGPs into three clades, including UDP-N-acetylglucosamine pyrophosphorylase (UAP), UDP-glucose pyrophosphorylase (UGP, containing UGP-A and UGP-B), and UDP-sugar pyrophosphorylase (USP). The evolutionary history of the UDPGPs indicated that the members of UAP, USP, and UGP-B were relatively conserved while varied in UGP-A. Homologous sequences of UGP-B and USP were found only in plants. The expression profile of UDPGP genes in Oryza sativa was mainly motivated under jasmonic acid (JA), abscisic acid (ABA), cadmium, and cold treatments, indicating that UDPGPs may play an important role in plant development and environment endurance. The key amino acids regulating the activity of UDPGPs were analyzed, and almost all of them were located in the NB-loop, SB-loop, or conserved motifs. Analysis of the natural variants of UDPGPs in rice revealed that only a few missense mutants existed in coding sequences (CDSs), and most of the resulting variations were located in the non-motif sites, indicating the conserved structure and function of UDPGPs in the evolution. Furthermore, alternative splicing may play a key role in regulating the activity of UDPGPs. The spatial structure prediction, enzymatic analysis, and transgenic verification of UAP isoforms illustrated that the loss of N- and C-terminal sequences did not affect the overall 3D structures, but the N- and C-terminal sequences are important for UAP genes to maintain their enzymatic activity. These results revealed a conserved UDPGP gene family and provided valuable information for further deep functional investigation of the UDPGP gene family in plants.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ting Li
- Youth League Committee, Jiangxi Agricultural University, Nanchang, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
2
|
Identification and impact of stable prognostic biochemical markers for cold-induced sweetening resistance on selection efficiency in potato (Solanum tuberosum L.) breeding programs. PLoS One 2019; 14:e0225411. [PMID: 31891570 PMCID: PMC6938367 DOI: 10.1371/journal.pone.0225411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/02/2019] [Indexed: 01/09/2023] Open
Abstract
Biochemical markers for cold-induced sweetening (CIS) resistance were tested for their stability over years and their use in selection of parents for crossing to achieve high selection efficiency in potato breeding programs. Two regulatory enzymes directly associated with reducing sugar (RS) accumulation during potato tubers cold storage were tested as a predictor for CIS resistance. These enzymes were studied in 33 potato clones from various breeding programs over four years. Clones with the presence of A-II isozymes of UDP-glucose pyrophosphorylase (UGPase) and low activity of vacuolar acid invertase (VAcInv) enzyme had increased resistance to cold-induced sweetening (CIS). Depending on the levels of these enzymes, clones were divided into class A, class B and class C. Clones categorized as class A had average RS of 0.73 mg per g FW after six months at 5.5°C storage. Class B and C had average RS of 1.15 and 3.80 mg per g FW respectively. The enzyme activity was closely associated with RS accumulation over long-term cold storage. The biochemical markers were found to be stable over the years. Repeated-measure analysis showed 75% chance of maintaining class from one year to the next and a 25% chance of switching, No clone switched between class A and class C, even across all four years. Application of these biochemical markers can identify clones with CIS resistance early in the selection process. Biochemical markers were used to select parents for crossing and six families were established. Results showed that with both parents from class A, 95% of their offspring had desirable glucose levels and chip color, which dropped to 52% when one parent was from class A and other from class B. These results suggest that two regulatory enzymes, i.e., UGPase and VAcInv, can be used as stable prognostic biochemical markers for CIS resistance for precise parent selection resulting in progenies with significantly higher percentage of clones with acceptable processing quality.
Collapse
|
3
|
Kumpf A, Partzsch A, Pollender A, Bento I, Tischler D. Two Homologous Enzymes of the GalU Family in Rhodococcus opacus 1CP- RoGalU1 and RoGalU2. Int J Mol Sci 2019; 20:ijms20225809. [PMID: 31752319 PMCID: PMC6888414 DOI: 10.3390/ijms20225809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023] Open
Abstract
Uridine-5’-diphosphate (UDP)-glucose is reported as one of the most versatile building blocks within the metabolism of pro- and eukaryotes. The activated sugar moiety is formed by the enzyme UDP-glucose pyrophosphorylase (GalU). Two homologous enzymes (designated as RoGalU1 and RoGalU2) are encoded by most Rhodococcus strains, known for their capability to degrade numerous compounds, but also to synthesize natural products such as trehalose comprising biosurfactants. To evaluate their functionality respective genes of a trehalose biosurfactant producing model organism—Rhodococcus opacus 1CP—were cloned and expressed, proteins produced (yield up to 47 mg per L broth) and initially biochemically characterized. In the case of RoGalU2, the Vmax was determined to be 177 U mg−1 (uridine-5’-triphosphate (UTP)) and Km to be 0.51 mM (UTP), respectively. Like other GalUs this enzyme seems to be rather specific for the substrates UTP and glucose 1-phosphate, as it accepts only dTTP and galactose 1-phoshate in addition, but both with solely 2% residual activity. In comparison to other bacterial GalU enzymes the RoGalU2 was found to be somewhat higher in activity (factor 1.8) even at elevated temperatures. However, RoGalU1 was not obtained in an active form thus it remains enigmatic if this enzyme participates in metabolism.
Collapse
Affiliation(s)
- Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
- EMBL Hamburg, Notkestr. 85, 22607 Hamburg, Germany;
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: (A.K.); (D.T.); Tel.: +49-234-32-22082 (A.K.); +49-234-32-22656 (D.T.)
| | - Anett Partzsch
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
| | - Isabel Bento
- EMBL Hamburg, Notkestr. 85, 22607 Hamburg, Germany;
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: (A.K.); (D.T.); Tel.: +49-234-32-22082 (A.K.); +49-234-32-22656 (D.T.)
| |
Collapse
|
4
|
Effects of ( S)-Carvone and Gibberellin on Sugar Accumulation in Potatoes during Low Temperature Storage. Molecules 2018; 23:molecules23123118. [PMID: 30487439 PMCID: PMC6321255 DOI: 10.3390/molecules23123118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/18/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023] Open
Abstract
Potato tubers (Solanum tuberosum L.) are usually stored at low temperature, which can suppress sprouting and control the occurrence of diseases. However, low temperatures lead potatoes to easily suffer from cold-induced sweetening (CIS), which has a negative effect on food processing. The aim of this research was to investigate potential treatments on controlling CIS in potatoes during postharvest storage. “Atlantic” potatoes were treated with gibberellin and (S)-carvone, respectively, and stored at 4 °C for 90 days. The results showed that gibberellin can significantly accelerate sprouting and sugar accumulation by regulating expressions of ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), β-amylase (BAM1/2), UDP-glucose pyrophosphorylase (UGPase) and invertase inhibitor (INH1/2) genes. The opposite effects were found in the (S)-carvone treatment group, where CIS was inhibited by modulation of the expressions of GBSS and INH1/2 genes. In summary, gibberellin treatment can promote sugar accumulation while (S)-carvone treatment has some effects on alleviating sugar accumulation. Thus, (S)-carvone can be considered as a potential inhibitor of some of the sugars which are vital in controlling CIS in potatoes. However, the chemical concentration, treatment time, and also the treatment method needs to be optimized before industrial application.
Collapse
|
5
|
Li M, Chen T, Gao T, Miao Z, Jiang A, Shi L, Ren A, Zhao M. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose. Fungal Genet Biol 2015; 82:251-63. [PMID: 26235043 DOI: 10.1016/j.fgb.2015.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
UDP-glucose pyrophosphorylase (UGP) is a key enzyme involved in carbohydrate metabolism, but there are few studies on the functions of this enzyme in fungi. The ugp gene of Ganoderma lucidum was cloned, and enzyme kinetic parameters of the UGP recombinant protein were determined in vitro, revealing that this protein was functional and catalyzed the reversible conversion between Glc-1-P and UDP-Glc. ugp silencing by RNA interference resulted in changes in the levels of the intermediate metabolites Glc-1-P and UDP-Glc. The compounds and structure of the cell wall in the silenced strains were also altered compared with those in the wild-type strains. Moreover, the number of hyphal branches was also changed in the silenced strains. To verify the role of UGP in hyphal branching, a ugp-overexpressing strain was constructed. The results showed that the number of hyphal branches was influenced by UGP. The mechanism underlying hyphal branching was further investigated by adding exogenous Glc-1-P. Our results showed that hyphal branching was regulated by a change in the cytosolic Ca(2+) concentration, which was affected by the level of the intermediate metabolite Glc-1-P, in G. lucidum. Our findings indicate the existence of an interaction between carbon metabolism and Ca(2+) signaling in this fungus.
Collapse
Affiliation(s)
- Mengjiao Li
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tianxi Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tan Gao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Zhigang Miao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ailiang Jiang
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
The UDP-glucose pyrophosphorylase from Giardia lamblia is redox regulated and exhibits promiscuity to use galactose-1-phosphate. Biochim Biophys Acta Gen Subj 2015; 1850:88-96. [DOI: 10.1016/j.bbagen.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022]
|
7
|
Soares JSM, Gentile A, Scorsato V, Lima ADC, Kiyota E, Dos Santos ML, Piattoni CV, Huber SC, Aparicio R, Menossi M. Oligomerization, membrane association, and in vivo phosphorylation of sugarcane UDP-glucose pyrophosphorylase. J Biol Chem 2014; 289:33364-77. [PMID: 25320091 DOI: 10.1074/jbc.m114.590125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.
Collapse
Affiliation(s)
- Jose Sergio M Soares
- From the Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, C.P. 6109, Campinas, SP, Brazil
| | - Agustina Gentile
- From the Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, C.P. 6109, Campinas, SP, Brazil
| | - Valeria Scorsato
- the Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Campinas, SP, Brazil
| | - Aline da C Lima
- the Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Campinas, SP, Brazil
| | - Eduardo Kiyota
- the Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Campinas, SP, Brazil
| | - Marcelo Leite Dos Santos
- the Centro de Ciências Exatas e Tecnologia, Núcleo de Química, Universidade Federal do Sergipe, C.P. 49500000, Itabaiana, SE, Brazil
| | - Claudia V Piattoni
- the Instituto de Agrobiotecnologia del Litoral (UNL-CONICET), Universidad Nacional del Litoral, Ciudad Universitaria-Paraje El Pozo, CC242, S3000ZAA Santa Fe, Argentina
| | - Steven C Huber
- the Department of Agriculture Agricultural Research Service, and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ricardo Aparicio
- the Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Campinas, SP, Brazil
| | - Marcelo Menossi
- From the Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, C.P. 6109, Campinas, SP, Brazil,
| |
Collapse
|
8
|
Li M, Song B, Zhang Q, Liu X, Lin Y, Ou Y, Zhang H, Liu J. A synthetic tuber-specific and cold-induced promoter is applicable in controlling potato cold-induced sweetening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:41-7. [PMID: 23542182 DOI: 10.1016/j.plaphy.2013.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/19/2013] [Indexed: 05/03/2023]
Abstract
Cold-induced sweetening (CIS) in potato seriously hinders the potato processing industry. It could be of great value for genetic improvement of potato CIS to have a target gene specifically expressed in cold stored tubers. In this study, we used a synthetic promoter, pCL, in potato transformation to drive an antisense expression of StvacINV1, the acid vacuolar invertase gene from Solanum tuberosum. The measurements of expression and enzyme activity of target gene showed that pCL promoter could efficiently govern target gene to express specifically and remarkably regulate the activity of acid vacuolar invertase in potato tubers at low temperature, furthermore, it had almost no effect in other tissues or the tubers under room temperature. The transgenic tubers showed decrease in reducing sugar content during storage at low temperature and acceptable chip color without significant changes observed in plant morphology and tuberization between the nontransgenic and transgenic lines. This tuber-specific and cold-induced feature could maximally reduce the background expression of the target gene which might bring about potential negative or detrimental effects to plant development. The synthetic promoter confirmed here would be optimal for gene function research in potato tubers in response to low temperature.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| | - Botao Song
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| | - Qiong Zhang
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Xun Liu
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Yuan Lin
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Yongbin Ou
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Huiling Zhang
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Jun Liu
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| |
Collapse
|