1
|
Sun X, Tang Z, Zheng G, Du H, Li P. Effects of different cellular and subcellular characteristics on the atmospheric Pb uptake, distribution and morphology in Tillandsia usneoides leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108400. [PMID: 38295526 DOI: 10.1016/j.plaphy.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
Lead (Pb) is a widespread highly toxic and persistent environmental pollutant. Plant leaves play a key role in accumulating atmospheric Pb, but its distribution in different cells and subcellular structures and the factors affecting it have been little studied. Here, Tillandsia usneoides, an indicator plant for atmospheric heavy metals, was treated with an aerosol generation device to analyze Pb contents in different cells (three types of cells in leaf surface scales, epidermal cells, mesophyll cells, vascular bundle cells), subcellular structures (cell wall, cell membrane, vacuoles, and organelles) and cell wall components (pectin, hemicellulose 1 and 2, and cellulose). Results show the different cells of T. usneoides leaves play distinct roles in the process of Pb retention. The outermost wing cells are structures that capture external pollutants, while mesophyll cells, as the aggregation site after material transport, ring cells, disc cells, epidermal cells, and vascular cells are material transporters. Pb was only detected in the cell wall and pectin, indicating the cell wall was the dominant subcellular structure for Pb retention, while pectin was the main component affecting Pb retention. FTIR analysis of cell wall components indicated the esterified carboxyl (CO) functional group in pectin may function in absorbing Pb. Pb entered leaf cells mainly in the form of low toxicity and activity to enhance its resistance.
Collapse
Affiliation(s)
- Xingyue Sun
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Zhen Tang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Guiling Zheng
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Peng Li
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
2
|
Fu Q, Liang JC, Lai JL, Luo XG. Radon adsorption and air purification by Spanish moss (Tillandsia usneoides) and its metabolic response to radon exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121744. [PMID: 37127238 DOI: 10.1016/j.envpol.2023.121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/30/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
The capacity of Spanish moss (Tillandsia usneoides), an aerial plant, to adsorb radon (Rn) and absorb CO2 was assessed to analyze its capacity to remove pollutants from indoor air and to determine its radon (Rn) tolerance mechanism. Transcriptomics and metabolomics techniques were used to analyze the response of the plant to Rn exposure. Spanish moss absorbed indoor CO2 at night using the type of photosynthesis termed crassulacean acid metabolism. The CO2 absorption efficiency of the plant was mainly affected by the light duration and diurnal temperature differences. The highest purification efficiency was 48.25%, and the scales on the Spanish moss leaf surface were the key sites for Rn adsorption. Metabolome analysis showed that Rn exposure induced differential metabolites significantly enriched in the metabolism of lipids, amino acids, nucleotides, and carbohydrates. Transcriptome analysis showed significantly upregulated expression levels of functional genes in Rn-exposed leaves. Rn had significant effects on respiratory metabolism, as indicated by upregulated expression of metabolites and functional genes related to the glycolysis pathway, pyruvate oxidation, tricarboxylic acid cycle, and oxidative phosphorylation pathway. These responses indicated that the internal mechanism by which Spanish moss alleviates Rn stress involves an enhancement of cellular energy supplies and regulation of respiratory metabolic pathways to allow adaptation to Rn pollution.
Collapse
Affiliation(s)
- Qian Fu
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | | | - Jin-Long Lai
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Engineering Research Center of Biomass Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
3
|
Li C, Mo Y, Wang N, Xing L, Qu Y, Chen Y, Yuan Z, Ali A, Qi J, Fernández V, Wang Y, Kopittke PM. The overlooked functions of trichomes: Water absorption and metal detoxication. PLANT, CELL & ENVIRONMENT 2023; 46:669-687. [PMID: 36581782 DOI: 10.1111/pce.14530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Trichomes are epidermal outgrowths on plant shoots. Their roles in protecting plants against herbivores and in the biosynthesis of specialized metabolites have long been recognized. Recently, studies are increasingly showing that trichomes also play important roles in water absorption and metal detoxication, with these roles having important implications for ecology, the environment, and agriculture. However, these two functions of trichomes have been largely overlooked and much remains unknown. In this review, we show that the trichomes of 37 plant species belonging to 14 plant families are involved in water absorption, while the trichomes of 33 species from 13 families are capable of sequestering metals within their trichomes. The ability of trichomes to absorb water results from their decreased hydrophobicity compared to the remainder of the leaf surface as well as the presence of special structures for collecting and absorbing water. In contrast, the metal detoxication function of trichomes results not only from the good connection of their basal cells to the underlying vascular tissues, but also from the presence of metal-chelating ligands and transporters within the trichomes themselves. Knowledge gaps and critical future research questions regarding these two trichome functions are highlighted. This review improves our understanding on trichomes.
Collapse
Affiliation(s)
- Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yingying Mo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Nina Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Longyi Xing
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qu
- Baoji Academy of Agriculture Sciences, Baoji, China
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zuoqiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- College of Life Sciences, Hebei University, Hebei, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Victoria Fernández
- School of Forest Engineering, Technical University of Madrid, Madrid, Spain
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Li C, Wu J, Blamey FPC, Wang L, Zhou L, Paterson DJ, van der Ent A, Fernández V, Lombi E, Wang Y, Kopittke PM. Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5079-5092. [PMID: 33944939 DOI: 10.1093/jxb/erab180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Trichomes are potentially important for absorption of foliar fertilizers. A study has shown that the non-glandular trichromes (NGTs) of sunflower (Helianthus annuus) accumulated high concentrations of foliar-applied zinc (Zn); however, the mechanisms of Zn accumulation in the NGTs and the fate of this Zn are unclear. Here we investigated how foliar-applied Zn accumulates in the NGTs and the subsequent translocation of this Zn. Time-resolved synchrotron-based X-ray fluorescence microscopy and transcriptional analyses were used to probe the movement of Zn in the NGTs, with the cuticle composition of the NGTs examined using confocal Raman microscopy. The accumulation of Zn in the NGTs is both an initial preferential absorption process and a subsequent translocation process. This preferred absorption is likely because the NGT base has a higher hydrophilicity, whilst the subsequent translocation is due to the presence of plasmodesmata, Zn-chelating ligands, and Zn transporters in the NGTs. Furthermore, the Zn sequestered in the NGTs was eventually translocated out of the trichome once the leaf Zn concentration had decreased, suggesting that the NGTs are also important in maintaining leaf Zn homeostasis. This study demonstrates for the first time that trichomes have a key structural and functional role in the absorption and translocation of foliar-applied Zn.
Collapse
Affiliation(s)
- Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jingtao Wu
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - F Pax C Blamey
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Linlin Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lina Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | | | - Antony van der Ent
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Victoria Fernández
- School of Forest Engineering, Forest Genetics and Ecophysiology Research Group, Technical University of Madrid, Madrid, Spain
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Rux G, Gelewsky R, Schlüter O, Herppich W. High hydrostatic pressure treatment effects on selected tissue properties of fresh horticultural products. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Schreck E, Viers J, Blondet I, Auda Y, Macouin M, Zouiten C, Freydier R, Dufréchou G, Chmeleff J, Darrozes J. Tillandsia usneoides as biomonitors of trace elements contents in the atmosphere of the mining district of Cartagena-La Unión (Spain): New insights for element transfer and pollution source tracing. CHEMOSPHERE 2020; 241:124955. [PMID: 31604198 DOI: 10.1016/j.chemosphere.2019.124955] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 05/09/2023]
Abstract
Nowadays, atmospheric pollution has a major impact on the human health and the environment, encouraging the development of biomonitors of the air quality over a wide zone. In this study, the relevance of the epiphyte plants Tillandsia usneoides is studied to estimate the transfer of metal(loid)s from a former Zn and Pb mining zone in the Southeast of Spain (Cartagena-La Unión) to the local atmosphere. Biomonitoring was performed by installing plants in 5 sites along a transect from the main mining area to the urban and the coastal zones. An aliquot of plants was collected in every site every 2 months over 1 year. The Tillandsia usneoides have been observed with SEM-EDX, and analysed by ICP-MS to determine trace element concentrations, magnetic susceptibility signals and Zn and Pb isotopes ratios. Results show that atmospheric particles are distributed homogeneously at the plant surface. By comparing elemental contents in Tillandsia usneoides with regard to the values of the geochemical background of the region of Murcia, significant enrichments are observed in the epiphyte plants for Sb, As, Cd, Zn and Pb. The statistical analyses (decentred PCA and PLS) also suggest that the kinetics of dust deposition is slower for the urban and coastal sites compared to the mining sites and highlight an influence of agricultural activities in Cu deposition. The similarity of isotopic compositions (Zn and Pb) between Tillandsia usneoides, soils and atmospheric particles also put in evidence that these plants could be a powerful tool to trace the source of matter in the atmosphere. Finally, this experiment provides new insight to better understand the foliar absorption mechanisms.
Collapse
Affiliation(s)
- Eva Schreck
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France.
| | - Jérôme Viers
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Isalyne Blondet
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Yves Auda
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Mélina Macouin
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Cyril Zouiten
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Rémi Freydier
- HydroSciences UMR 5569, CNRS, Universités Montpellier I & II, IRD, Place Eugène Bataillon, CC MSE, 34095, Montpellier, Cedex 5, France
| | - Grégory Dufréchou
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Jérôme Chmeleff
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France
| | - José Darrozes
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400, Toulouse, France
| |
Collapse
|
7
|
Holanda AER, Souza BC, Carvalho ECD, Oliveira RS, Martins FR, Muniz CR, Costa RC, Soares AA. How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1097-1109. [PMID: 31251437 DOI: 10.1111/plb.13023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Foliar uptake of dew is likely an important mechanism of water acquisition for plants from tropical dry environments. However, there is still limited experimental evidence describing the anatomical pathways involved in this process and the effects of this water subsidy on the maintenance of gas exchange and leaf lifespan of species from seasonally dry tropical vegetation such as the Brazilian caatinga. We performed scanning electron, bright-field and confocal microscopic analyses and used apoplastic tracers to examine the foliar water uptake (FWU) routes in four woody species with different foliar phenology and widely distributed in the caatinga. Leaves of plants subjected to water stress were exposed to dew simulation to evaluate the effects of the FWU on leaf water potentials, gas exchange and leaf lifespan. All species absorbed water through their leaf cuticles and/or peltate trichomes but FWU capacity differed among species. Leaf wetting by dew increased leaf lifespan duration up to 36 days compared to plants in the drought treatment. A positive effect on leaf gas exchange and new leaf production was only observed in the anisohydric and evergreen species. We showed that leaf wetting by dew is relevant for the physiology and leaf lifespan of plants from seasonally dry tropical vegetation, especially for evergreen species.
Collapse
Affiliation(s)
- A E R Holanda
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - B C Souza
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - E C D Carvalho
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - R S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - F R Martins
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - C R Muniz
- Embrapa Tropical Agroindustry, Fortaleza, Brazil
| | - R C Costa
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - A A Soares
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
8
|
Herppich WB, Martin CE, Tötzke C, Manke I, Kardjilov N. External water transport is more important than vascular transport in the extreme atmospheric epiphyte Tillandsia usneoides (Spanish moss). PLANT, CELL & ENVIRONMENT 2019; 42:1645-1656. [PMID: 30506732 DOI: 10.1111/pce.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Most epiphytic bromeliads, especially those in the genus Tillandsia, lack functional roots and rely on the absorption of water and nutrients by large, multicellular trichomes on the epidermal surfaces of leaves and stems. Another important function of these structures is the spread of water over the epidermal surface by capillary action between trichome "wings" and epidermal surface. Although critical for the ultimate absorption by these plants, understanding of this function of trichomes is primarily based on light microscope observations. To better understand this phenomenon, the distribution of water was followed by its attenuation of cold neutrons following application of H2 O to the cut end of Tillandsia usneoides shoots. Experiments confirmed the spread of added water on the external surfaces of this "atmospheric" epiphyte. In a morphologically and physiologically similar plant lacking epidermal trichomes, water added to the cut end of a shoot clearly moved via its internal xylem and not on its epidermis. Thus, in T. usneoides, water moves primarily by capillarity among the overlapping trichomes forming a dense indumentum on shoot surfaces, while internal vascular water movement is less likely. T. usneoides, occupying xeric microhabitats, benefits from reduction of water losses by low-shoot xylem hydraulic conductivities.
Collapse
Affiliation(s)
- Werner B Herppich
- Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Craig E Martin
- Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Lawrence, Kansas
| | - Christian Tötzke
- Helmholtz Center Berlin for Materials and Energy (HZB), Berlin, Germany
- University of Potsdam, Institute of Environmental Science and Geography, Potsdam, Germany
| | - Ingo Manke
- Helmholtz Center Berlin for Materials and Energy (HZB), Berlin, Germany
| | - Nikolay Kardjilov
- Helmholtz Center Berlin for Materials and Energy (HZB), Berlin, Germany
| |
Collapse
|
9
|
Techato K, Salaeh A, van Beem NC. Use of Atmospheric Epiphyte Tillandsia usneoides (Bromeliaceae) as Biomonitor. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.apcbee.2014.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|