1
|
Krämer K, Kepp G, Brock J, Stutz S, Heyer AG. Acclimation to elevated CO 2 affects the C/N balance by reducing de novo N-assimilation. PHYSIOLOGIA PLANTARUM 2022; 174:e13615. [PMID: 35014037 DOI: 10.1111/ppl.13615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants exposed to elevated atmospheric CO2 concentrations show an increased photosynthetic activity. However, after prolonged exposure, the activity declines. This acclimation to elevated CO2 is accompanied by a rise in the carbon-to-nitrogen ratio of the biomass. Hence, increased sugar accumulation and sequential downregulation of photosynthetic genes, as well as nitrogen depletion and reduced protein content, have been hypothesized as the cause of low photosynthetic performance. However, the reason for reduced nitrogen content in plants at high CO2 is unclear. Here, we show that reduced photorespiration at increased CO2 -to-O2 ratio leads to reduced de novo assimilation of nitrate, thus shifting the C/N balance. Metabolic modeling of acclimated and non-acclimated plants revealed the photorespiratory pathway to function as a sink for already assimilated nitrogen during the light period, providing carbon skeletons for de novo assimilation. At high CO2 , low photorespiratory activity resulted in diminished nitrogen assimilation and eventually resulted in reduced carbon assimilation. For the hpr1-1 mutant, defective in reduction of hydroxy-pyruvate, metabolic simulations show that turnover of photorespiratory metabolites is expanded into the night. Comparison of simulations for hpr1-1 with those for the wild type allowed investigating the effect of a perturbed photorespiration on N-assimilation.
Collapse
Affiliation(s)
- Konrad Krämer
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Gabi Kepp
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Judith Brock
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Simon Stutz
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Arnd G Heyer
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Byeon S, Song W, Park M, Kim S, Kim S, Lee H, Jeon J, Kim K, Lee M, Lim H, Han SH, Oh C, Kim HS. Canopy height affects the allocation of photosynthetic carbon and nitrogen in two deciduous tree species under elevated CO 2. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153584. [PMID: 34890847 DOI: 10.1016/j.jplph.2021.153584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Down-regulation of leaf N and Rubisco under elevated CO2 (eCO2) are accompanied by increased non-structural carbohydrates (NSC) due to the sink-source imbalance. Here, to investigate whether the canopy position affects the down-regulation of Rubisco, we measured leaf N, NSC and N allocation in two species with different heights at maturity [Fraxinus rhynchophylla (6.8 ± 0.3 m) and Sorbus alnifolia (3.6 ± 0.2 m)] from 2017 to 2019. Since 2009, both species were grown at three different CO2 concentrations in open-top chambers: ambient CO2 (400 ppm; aCO2); ambient CO2 × 1.4 (560 ppm; eCO21.4); and ambient CO2 × 1.8 (720 ppm; eCO21.8). Leaf N per unit mass (Nmass) decreased under eCO2, except under eCO21.8 in S. alnifolia and coincided with increased NSC. NSC increased under eCO2 in F. rhynchophylla, but the increment of NSC was greater in the upper canopy of S. alnifolia. Conversely, Rubisco content per unit area was reduced under eCO2 in S. alnifolia and there was no interaction between CO2 and canopy position. In contrast, the reduction of Rubisco content per unit area was greater in the upper canopy of F. rhynchophylla, with a significant interaction between CO2 and canopy position. Rubisco was negatively correlated with NSC only in the upper canopy of F. rhynchophylla, and at the same NSC, Rubisco was lower under eCO2 than under aCO2. Contrary to Rubisco, chlorophyll increased under eCO2 in both species, although there was no interaction between CO2 and canopy position. Finally, photosynthetic N content (Rubisco + chlorophyll + PSII) was reduced and consistent with down-regulation of Rubisco. Therefore, the observed Nmass reduction under eCO2 was associated with dilution due to NSC accumulation. Moreover, down-regulation of Rubisco under eCO2 was more sensitive to NSC accumulation in the upper canopy. Our findings emphasize the need for the modification of the canopy level model in the context of climate change.
Collapse
Affiliation(s)
- Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Wookyung Song
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Minjee Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea; Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA; Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sukyung Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Seohyun Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - HoonTaek Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea; Department of Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, 07745, Jena, Germany; Technische Universität Dresden, Institute of Photogrammetry and Remote Sensing, 01069, Dresden, Germany
| | - Jihyeon Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Minsu Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Sim-Hee Han
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea; National Center for Agro Meteorology, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Byeon S, Song W, Park M, Kim S, Kim S, Lee H, Jeon J, Kim K, Lee M, Lim H, Han SH, Oh C, Kim HS. Down-regulation of photosynthesis and its relationship with changes in leaf N allocation and N availability after long-term exposure to elevated CO 2 concentration. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153489. [PMID: 34416600 DOI: 10.1016/j.jplph.2021.153489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Down-regulation of photosynthesis under elevated CO2 (eCO2) concentrations could be attributed to the depletion of nitrogen (N) availability after long-term exposure to eCO2 (progressive nitrogen limitation, PNL) or leaf N dilutions due to excessive accumulation of nonstructural carbohydrates. To determine the mechanism underlying this down-regulation, we investigated N availability, photosynthetic characteristics, and N allocation in leaves of Pinus densiflora (shade-intolerant species, evergreen tree), Fraxinus rhynchophylla (intermediate shade-tolerant species, deciduous tree), and Sorbus alnifolia (shade-tolerant species, deciduous tree). The three species were grown under three different CO2 concentrations in open-top chambers, i.e., ambient 400 ppm (aCO2); ambient × 1.4, 560 ppm (eCO21.4); and ambient × 1.8, 720 ppm (eCO21.8), for 11 years. Unlike previous studies that addressed PNL, after 11 years of eCO2 exposure, N availability remained higher under eCO21.8, and chlorophyll and photosynthetic N use efficiency increased under eCO2. In the case of nonstructural carbohydrates, starch and soluble sugar showed significant increases under eCO2. The maximum carboxylation rate, leaf N per mass (Nmass), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were low under eCO21.8. The ratio of RuBP regeneration to the carboxylation rate as well as that of chlorophyll N to Rubisco N increased with CO2 concentrations. Based on the reduction in Nmass (not in Narea) that was diluted by increase in nonstructural carbohydrate, down-regulation of photosynthesis was found to be caused by the dilution rather than PNL. The greatest increases in chlorophyll under eCO2 were observed in S. alnifolia, which was the most shade-tolerant species. This study could help provide more detailed, mechanistically based processes to explain the down-regulation of photosynthesis by considering two hypotheses together and showed N allocation seems to be flexible against changes in CO2 concentration.
Collapse
Affiliation(s)
- Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Wookyung Song
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Minjee Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea; Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA; Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sukyung Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Seohyun Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - HoonTaek Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea; Department of Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, 07745, Jena, Germany; Technische Universität Dresden, Institute of Photogrammetry and Remote Sensing, 01069, Dresden, Germany
| | - Jihyeon Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Minsu Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Gyeonggi, 16631, Republic of Korea
| | - Sim-Hee Han
- Department of Forest Bioresources, National Institute of Forest Science, Gyeonggi, 16631, Republic of Korea
| | - ChangYoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Gyeonggi, 16631, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea; National Center for Agro Meteorology, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Marcos-Barbero EL, Pérez P, Martínez-Carrasco R, Arellano JB, Morcuende R. Screening for Higher Grain Yield and Biomass among Sixty Bread Wheat Genotypes Grown under Elevated CO 2 and High-Temperature Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081596. [PMID: 34451641 PMCID: PMC8401911 DOI: 10.3390/plants10081596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/01/2023]
Abstract
Global warming will inevitably affect crop development and productivity, increasing uncertainty regarding food production. The exploitation of genotypic variability can be a promising approach for selecting improved crop varieties that can counteract the adverse effects of future climate change. We investigated the natural variation in yield performance under combined elevated CO2 and high-temperature conditions in a set of 60 bread wheat genotypes (59 of the 8TH HTWSN CIMMYT collection and Gazul). Plant height, biomass production, yield components and phenological traits were assessed. Large variations in the selected traits were observed across genotypes. The CIMMYT genotypes showed higher biomass and grain yield when compared to Gazul, indicating that the former performed better than the latter under the studied environmental conditions. Principal component and hierarchical clustering analyses revealed that the 60 wheat genotypes employed different strategies to achieve final grain yield, highlighting that the genotypes that can preferentially increase grain and ear numbers per plant will display better yield responses under combined elevated levels of CO2 and temperature. This study demonstrates the success of the breeding programs under warmer temperatures and the plants' capacity to respond to the concurrence of certain environmental factors, opening new opportunities for the selection of widely adapted climate-resilient wheat genotypes.
Collapse
|
5
|
Marcos-Barbero EL, Pérez P, Martínez-Carrasco R, Arellano JB, Morcuende R. Genotypic Variability on Grain Yield and Grain Nutritional Quality Characteristics of Wheat Grown under Elevated CO 2 and High Temperature. PLANTS (BASEL, SWITZERLAND) 2021; 10:1043. [PMID: 34064280 PMCID: PMC8224326 DOI: 10.3390/plants10061043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
The progressive rise in atmospheric CO2 concentrations and temperature associated with climate change is predicted to have a major impact on the productivity and quality of food crops. Therefore, food security is highly dependent on climate change. Following a survey with 60 bread wheat genotypes, here we investigated the genetic variation in grain yield and nutritional quality among 10 of these genotypes grown under elevated CO2 and temperature. With this purpose, the biomass production, grain yield-related traits, the grain concentration of starch, total protein, phenolic compounds, and mineral nutrients, together with the total antioxidant capacity, were determined. Variation among genotypes was found for almost all the studied traits. Higher grain and ear numbers were associated with increased grain yield but decreased grain total protein concentration and minerals such as Cu, Fe, Mg, Na, P, and Zn. Mineral nutrients were mainly associated with wheat biomass, whereas protein concentration was affected by plant biomass and yield-related traits. Associations among different nutrients and promising nutrient concentrations in some wheat genotypes were also found. This study demonstrates that the exploration of genetic diversity is a powerful approach, not only for selecting genotypes with improved quality, but also for dissecting the effect of the environment on grain yield and nutritional composition.
Collapse
Affiliation(s)
| | | | | | | | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), 37008 Salamanca, Spain; (E.L.M.-B.); (P.P.); (R.M.-C.); (J.B.A.)
| |
Collapse
|
6
|
Wang W, He J, Wang Z, Gu J, Liu L, Zhang W, Ziska LH, Zhu J. Leaf characteristics of rice cultivars with a stronger yield response to projected increases in CO 2 concentration. PHYSIOLOGIA PLANTARUM 2021; 171:416-423. [PMID: 33090487 DOI: 10.1111/ppl.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 05/18/2023]
Abstract
Rising levels of atmospheric carbon dioxide (CO2 ) could, potentially, be exploited as a means to increase seed yield and maintain food security, especially for cereal grains. Although there have been multiple cultivar trials indicating that significant yield variation occurs, the basis for these differences has not been entirely elucidated. Here, we focus on two rice cultivars that differed in field trials to their yield sensitivity to elevated CO2 : Yangdao6hao (YD6), and Wuyunjing23 (W23) to assess whether observed yield differences (YD6 > W23) were associated with concurrent changes in leaf-level characteristics. At ambient levels of CO2 , leaf net photosynthesis (A) of YD6 was compatible with that of W23. However, at elevated CO2 , A was higher for YD6 relative to W23. The stability of leaf Rubisco content, biochemical characteristics (Vc,max, and Jmax ), nitrogen enzymatic activity, and chlorophyll concentration differed significantly, with greater values observed for YD6 relative to W23 at elevated CO2 . While such results are consistent with other studies, we also demonstrate that a higher ratio of carbon sinks (seed) to carbon sources (leaf), were linked to increases in cytokinins, and slower flag leaf senescence for the YD6 relative to the W23 cultivar at elevated CO2 . While additional data for a broader genetic selection are needed, the current study suggests a link between source/sink carbon assimilation, maintenance of photosynthetic biochemistry, and slower leaf senescence for rice cultivars that show a stronger yield response to projected CO2 levels. This information, in turn, may provide suitable metrics for future CO2 selection among rice cultivars.
Collapse
Affiliation(s)
- Weilu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jiang He
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lewis H Ziska
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
7
|
Padhan BK, Sathee L, Meena HS, Adavi SB, Jha SK, Chinnusamy V. CO 2 Elevation Accelerates Phenology and Alters Carbon/Nitrogen Metabolism vis-à-vis ROS Abundance in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1061. [PMID: 32765552 PMCID: PMC7379427 DOI: 10.3389/fpls.2020.01061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Wheat is an important staple food crop of the world and it accounts for 18-20% of human dietary protein. Recent reports suggest that CO2 elevation (CE) reduces grain protein and micronutrient content. In our earlier study, it was found that the enhanced production of nitric oxide (NO) and the concomitant decrease in transcript abundance as well as activity of nitrate reductase (NR) and high affinity nitrate transporters (HATS) resulted in CE-mediated decrease in N metabolites in wheat seedlings. In the current study, two bread wheat genotypes Gluyas Early and B.T. Schomburgk differing in nitrate uptake and assimilation properties were evaluated for their response to CE. To understand the impact of low (LN), optimal (ON) and high (HN) nitrogen supply on plant growth, phenology, N and C metabolism, ROS and RNS signaling and yield, plants were evaluated under short term (hydroponics experiment) and long term (pot experiment) CE. CE improved growth, altered N assimilation, C/N ratio, N use efficiency (NUE) in B.T. Schomburgk. In general, CE decreased shoot N concentration and grain protein concentration in wheat irrespective of N supply. CE accelerated phenology and resulted in early flowering of both the wheat genotypes. Plants grown under CE showed higher levels of nitrosothiol and ROS, mainly under optimal and high nitrogen supply. Photorespiratory ammonia assimilating genes were down regulated by CE, whereas, expression of nitrate transporter/NPF genes were differentially regulated between genotypes by CE under different N availability. The response to CE was dependent on N supply as well as genotype. Hence, N fertilizer recommendation needs to be revised based on these variables for improving plant responses to N fertilization under a future CE scenario.
Collapse
Affiliation(s)
- Birendra K. Padhan
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari S. Meena
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandeep B. Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra K. Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Yi Z, Cui J, Fu Y, Liu H. Effect of different light intensity on physiology, antioxidant capacity and photosynthetic characteristics on wheat seedlings under high CO 2 concentration in a closed artificial ecosystem. PHOTOSYNTHESIS RESEARCH 2020; 144:23-34. [PMID: 32090305 DOI: 10.1007/s11120-020-00726-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
The growth of plants under high carbon dioxide (CO2) concentrations (≥ 1000 ppm) is explored for the climate change and the bioregenerative life support system (BLSS) environment of long-duration space missions. Wheat (Triticum aestivum L.) is a grass cultivated for cereal grain-a global staple food including astronauts. Light and CO2 are both indispensable conditions for wheat seedlings. This study provides insights on the physiology, antioxidant capacity and photosynthetic characteristics of wheat seedlings under a range of photosynthetic photon flux densities in a closed system simulating BLSS with high CO2 concentration. We found that the Fv/Fm, Fv/F0, chlorophyll content, intrinsic water use efficiencies (WUEi), membrane stability index (MSI), and malondialdehyde (MDA) of wheat seedlings grown under an intermediate light intensity of 600 μmol m-2 s-1 environment were all largest. Interestingly, the high light intensity of 1200 mol m-2 s-1 treatment group exhibits the highest net photosynthetic rate but the lowest MDA content. The stomatal conductance and F0 of high light intensity of 1000 μmol m-2 s-1 treatment group were both significantly higher than that of other groups. Our study provides basic knowledge on the wheat growth in different environments, especially in a closed ecosystem with artificial lights.
Collapse
Affiliation(s)
- Zhihao Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing, 100191, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jingjing Cui
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing, 100191, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yuming Fu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
- Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing, 100191, China.
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Hong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
- Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing, 100191, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
9
|
Vicente R, Bolger AM, Martínez-Carrasco R, Pérez P, Gutiérrez E, Usadel B, Morcuende R. De Novo Transcriptome Analysis of Durum Wheat Flag Leaves Provides New Insights Into the Regulatory Response to Elevated CO 2 and High Temperature. FRONTIERS IN PLANT SCIENCE 2019; 10:1605. [PMID: 31921252 PMCID: PMC6915051 DOI: 10.3389/fpls.2019.01605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/14/2019] [Indexed: 05/08/2023]
Abstract
Global warming is becoming a significant problem for food security, particularly in the Mediterranean basin. The use of molecular techniques to study gene-level responses to environmental changes in non-model organisms is increasing and may help to improve the mechanistic understanding of durum wheat response to elevated CO2 and high temperature. With this purpose, we performed transcriptome RNA sequencing (RNA-Seq) analyses combined with physiological and biochemical studies in the flag leaf of plants grown in field chambers at ear emergence. Enhanced photosynthesis by elevated CO2 was accompanied by an increase in biomass and starch and fructan content, and a decrease in N compounds, as chlorophyll, soluble proteins, and Rubisco content, in association with a decline of nitrate reductase and initial and total Rubisco activities. While high temperature led to a decline of chlorophyll, Rubisco activity, and protein content, the glucose content increased and starch decreased. Furthermore, elevated CO2 induced several genes involved in mitochondrial electron transport, a few genes for photosynthesis and fructan synthesis, and most of the genes involved in secondary metabolism and gibberellin and jasmonate metabolism, whereas those related to light harvesting, N assimilation, and other hormone pathways were repressed. High temperature repressed genes for C, energy, N, lipid, secondary, and hormone metabolisms. Under the combined increases in atmospheric CO2 and temperature, the transcript profile resembled that previously reported for high temperature, although elevated CO2 partly alleviated the downregulation of primary and secondary metabolism genes. The results suggest that there was a reprogramming of primary and secondary metabolism under the future climatic scenario, leading to coordinated regulation of C-N metabolism towards C-rich metabolites at elevated CO2 and a shift away from C-rich secondary metabolites at high temperature. Several candidate genes differentially expressed were identified, including protein kinases, receptor kinases, and transcription factors.
Collapse
Affiliation(s)
- Rubén Vicente
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Rafael Martínez-Carrasco
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Pilar Pérez
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Elena Gutiérrez
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Björn Usadel
- Institute for Biology 1, RWTH Aachen University, Aachen, Germany
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| |
Collapse
|
10
|
Vicente R, Pérez P, Martínez-Carrasco R, Morcuende R. Improved responses to elevated CO 2 in durum wheat at a low nitrate supply associated with the upregulation of photosynthetic genes and the activation of nitrate assimilation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:119-128. [PMID: 28554469 DOI: 10.1016/j.plantsci.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/16/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Elevated CO2 often leads to photosynthetic acclimation, and N availability may alter this response. We investigated whether the coordination of shoot-root N assimilation by elevated CO2 may help to optimize the whole-plant N allocation and maximize photosynthesis in hydroponically-grown durum wheat at two NO3- supplies in interaction with plant development. Transcriptional and biochemical analyses were performed on flag leaves and roots. At anthesis, the improved photosynthetic acclimation response to elevated CO2 at low N was associated with increased Rubisco, chlorophyll and amino acid contents, and upregulation of genes related to their biosynthesis, light reactions and Calvin-Benson cycle, while a decrease was recorded at high N. Despite the decrease in carbohydrates with elevated CO2 at low N and the increase at high N, a stronger upward trend in leaf NR activity was found at low rather than high N. The induction of N recycling-related genes was accompanied by an amino acids decline at high N. At the grain-filling stage, the photosynthetic acclimation to elevated CO2 at high N was associated with the downregulation of both N assimilation, mainly in roots, and photosynthetic genes. At low N, enhanced root N assimilation partly compensated for slower shoot N assimilation and maximized photosynthetic capacity.
Collapse
Affiliation(s)
- Rubén Vicente
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain; Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain.
| | - Pilar Pérez
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Rafael Martínez-Carrasco
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Rosa Morcuende
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
11
|
Vicente R, Pérez P, Martínez-Carrasco R, Feil R, Lunn JE, Watanabe M, Arrivault S, Stitt M, Hoefgen R, Morcuende R. Metabolic and Transcriptional Analysis of Durum Wheat Responses to Elevated CO2 at Low and High Nitrate Supply. PLANT & CELL PHYSIOLOGY 2016; 57:2133-2146. [PMID: 27440546 DOI: 10.1093/pcp/pcw131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/14/2016] [Indexed: 05/03/2023]
Abstract
Elevated [CO2] (eCO2) can lead to photosynthetic acclimation and this is often intensified by low nitrogen (N). Despite intensive studies of plant responses to eCO2, the regulation mechanism of primary metabolism at the whole-plant level in interaction with [Formula: see text] supply remains unclear. We examined the metabolic and transcriptional responses triggered by eCO2 in association with physiological-biochemical traits in flag leaves and roots of durum wheat grown hydroponically in ambient and elevated [CO2] with low (LN) and high (HN) [Formula: see text] supply. Multivariate analysis revealed a strong interaction between eCO2 and [Formula: see text] supply. Photosynthetic acclimation induced by eCO2 in LN plants was accompanied by an increase in biomass and carbohydrates, and decreases of leaf organic N per unit area, organic acids, inorganic ions, Calvin-Benson cycle intermediates, Rubisco, nitrate reductase activity, amino acids and transcripts for N metabolism, particularly in leaves, whereas [Formula: see text] uptake was unaffected. In HN plants, eCO2 did not decrease photosynthetic capacity or leaf organic N per unit area, but induced transcripts for N metabolism, especially in roots. In conclusion, the photosynthetic acclimation in LN plants was associated with an inhibition of leaf [Formula: see text] assimilation, whereas up-regulation of N metabolism in roots could have mitigated the acclimatory effect of eCO2 in HN plants.
Collapse
Affiliation(s)
- Rubén Vicente
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Pilar Pérez
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Rafael Martínez-Carrasco
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Regina Feil
- Metabolic Networks Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - John E Lunn
- Metabolic Networks Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Amino Acid and Sulfur Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stephanie Arrivault
- Metabolic Networks Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Metabolic Networks Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Amino Acid and Sulfur Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Rosa Morcuende
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
12
|
Vicente R, Pérez P, Martínez-Carrasco R, Usadel B, Kostadinova S, Morcuende R. Quantitative RT-PCR Platform to Measure Transcript Levels of C and N Metabolism-Related Genes in Durum Wheat: Transcript Profiles in Elevated [CO2] and High Temperature at Different Levels of N Supply. PLANT & CELL PHYSIOLOGY 2015; 56:1556-73. [PMID: 26063390 DOI: 10.1093/pcp/pcv079] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/28/2015] [Indexed: 05/19/2023]
Abstract
Only limited public transcriptomics resources are available for durum wheat and its responses to environmental changes. We developed a quantitative reverse transcription-PCR (qRT-PCR) platform for analysing the expression of primary C and N metabolism genes in durum wheat in leaves (125 genes) and roots (38 genes), based on available bread wheat genes and the identification of orthologs of known genes in other species. We also assessed the expression stability of seven reference genes for qRT-PCR under varying environments. We therefore present a functional qRT-PCR platform for gene expression analysis in durum wheat, and suggest using the ADP-ribosylation factor as a reference gene for qRT-PCR normalization. We investigated the effects of elevated [CO(2)] and temperature at two levels of N supply on C and N metabolism by combining gene expression analysis, using our qRT-PCR platform, with biochemical and physiological parameters in durum wheat grown in field chambers. Elevated CO(2) down-regulated the photosynthetic capacity and led to the loss of N compounds, including Rubisco; this effect was exacerbated at low N. Mechanistically, the reduction in photosynthesis and N levels could be associated with a decreased transcription of the genes involved in photosynthesis and N assimilation. High temperatures increased stomatal conductance, and thus did not inhibit photosynthesis, even though Rubisco protein and activity, soluble protein, leaf N, and gene expression for C fixation and N assimilation were down-regulated. Under a future scenario of climate change, the extent to which C fixation capacity and N assimilation are down-regulated will depend upon the N supply.
Collapse
Affiliation(s)
- Rubén Vicente
- Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Cordel de Merinas 40-52, Salamanca, 37008 Spain
| | - Pilar Pérez
- Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Cordel de Merinas 40-52, Salamanca, 37008 Spain
| | - Rafael Martínez-Carrasco
- Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Cordel de Merinas 40-52, Salamanca, 37008 Spain
| | - Björn Usadel
- Institute for Biology 1, RWTH Aachen University, Aachen, D-52062 Germany IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Leo-Brandt-Straße, Jülich, D-52425 Germany
| | - Svetla Kostadinova
- Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Cordel de Merinas 40-52, Salamanca, 37008 Spain Present address: Department of Agrochemistry and Soil Science, Agricultural University, 12 Mendeleev Street, Plovdiv, 4004 Bulgaria
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Cordel de Merinas 40-52, Salamanca, 37008 Spain
| |
Collapse
|
13
|
Xu M. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum). JOURNAL OF PLANT PHYSIOLOGY 2015; 184:89-97. [PMID: 26253981 DOI: 10.1016/j.jplph.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/20/2023]
Abstract
This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change.
Collapse
Affiliation(s)
- Ming Xu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
14
|
Aljazairi S, Arias C, Sánchez E, Lino G, Nogués S. Effects of pre-industrial, current and future [CO2] in traditional and modern wheat genotypes. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1654-1663. [PMID: 25173452 DOI: 10.1016/j.jplph.2014.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Wheat is one of the most important cereal food crops in the world today. The productivity and quality of this crop is greatly affected by environmental conditions during grain filling. In this study, we have analyzed two genotypes of durum wheat, Blanqueta and Sula (traditional and a modern wheat respectively) in pre-industrial, current and future [CO2]. Plant growth and physiological parameters were analyzed during anthesis and grain filling in order to study the capacity of these plants to create new sinks and their role during the process of the acclimation of photosynthesis. It was observed that plants underwent photosynthetic acclimation at pre-industrial and future [CO2] (up and down-regulation respectively). However, the modern genotype averts the process of down-regulation by creating a new carbon sink (i.e. the spike). Here, we have shown the essential role that the spike plays as a new sink in order to avert the down-regulation of photosynthesis at future [CO2]. Moreover, we have demonstrated that at future [CO2] the growth response will depend on the ability of plants to develop new sinks or expand existing ones.
Collapse
Affiliation(s)
- Salvador Aljazairi
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain.
| | - Claudia Arias
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain
| | - Elena Sánchez
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain
| | - Gladys Lino
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain
| | - Salvador Nogués
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain
| |
Collapse
|
15
|
Schaz U, Düll B, Reinbothe C, Beck E. Influence of root-bed size on the response of tobacco to elevated CO2 as mediated by cytokinins. AOB PLANTS 2014; 6:plu010. [PMID: 24790131 PMCID: PMC4038427 DOI: 10.1093/aobpla/plu010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/06/2014] [Indexed: 05/05/2023]
Abstract
The extent of growth stimulation of C3 plants by elevated CO2 is modulated by environmental factors. Under optimized environmental conditions (high light, continuous water and nutrient supply, and others), we analysed the effect of an elevated CO2 atmosphere (700 ppm, EC) and the importance of root-bed size on the growth of tobacco. Biomass production was consistently higher under EC. However, the stimulation was overridden by root-bed volumes that restricted root growth. Maximum growth and biomass production were obtained at a root bed of 15 L at ambient and elevated CO2 concentrations. Starting with seed germination, the plants were strictly maintained under ambient or elevated CO2 until flowering. Thus, the well-known acclimation effect of growth to enhanced CO2 did not occur. The relative growth rates of EC plants exceeded those of ambient-CO2 plants only during the initial phases of germination and seedling establishment. This was sufficient for a persistently higher absolute biomass production by EC plants in non-limiting root-bed volumes. Both the size of the root bed and the CO2 concentration influenced the quantitative cytokinin patterns, particularly in the meristematic tissues of shoots, but to a smaller extent in stems, leaves and roots. In spite of the generally low cytokinin concentrations in roots, the amounts of cytokinins moving from the root to the shoot were substantially higher in high-CO2 plants. Because the cytokinin patterns of the (xylem) fluid in the stems did not match those of the shoot meristems, it is assumed that cytokinins as long-distance signals from the roots stimulate meristematic activity in the shoot apex and the sink leaves. Subsequently, the meristems are able to synthesize those phytohormones that are required for the cell cycle. Root-borne cytokinins entering the shoot appear to be one of the major control points for the integration of various environmental cues into one signal for optimized growth.
Collapse
Affiliation(s)
- Ulrike Schaz
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
- Present address: Department of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Barbara Düll
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Christiane Reinbothe
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Erwin Beck
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|