1
|
Glutathione Plays a Positive Role in the Proliferation of Pinus koraiensis Embryogenic Cells. Int J Mol Sci 2022; 23:ijms232314679. [PMID: 36499020 PMCID: PMC9736457 DOI: 10.3390/ijms232314679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
In the large-scale breeding of conifers, cultivating embryogenic cells with good proliferative capacity is crucial in the process of somatic embryogenesis. In the same cultural environment, the proliferative capacity of different cell lines is significantly different. To reveal the regulatory mechanism of proliferation in woody plant cell lines with different proliferative potential, we used Korean pine cell lines with high proliferative potential 001#-001 (Fast) and low proliferative potential 001#-010 (Slow) for analysis. A total of 17 glutathione-related differentially expressed genes was identified between F and S cell lines. A total of 893 metabolites was obtained from the two cell lines in the metabolomic studies. A total of nine metabolites related to glutathione was significantly upregulated in the F cell line compared with the S cell line. The combined analyses revealed that intracellular glutathione might be the key positive regulator mediating the difference in proliferative capacity between F and S cell lines. The qRT-PCR assay validated 11 differentially expressed genes related to glutathione metabolism. Exogenous glutathione and its synthase inhibitor L-buthionine-sulfoximine treatment assay demonstrated the positive role of glutathione in the proliferation of Korean pine embryogenic cells.
Collapse
|
2
|
Zechmann B. Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress. PLANTS 2020; 9:plants9091067. [PMID: 32825274 PMCID: PMC7569779 DOI: 10.3390/plants9091067] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell death, and triggers resistance. The accumulation of glutathione in chloroplasts and peroxisomes at the early stages of plant pathogen interactions is related to increased tolerance and resistance. The collapse of the antioxidative system in these two cell compartments at the later stages leads to cell death through retrograde signaling. The cytosol can be considered to be the switchboard during biotic stress where glutathione is synthesized, equally distributed to, and collected from different cell compartments. Changes in the redox state of glutathione and the accumulation of ROS in the cytosol during biotic stress can initiate the activation of defense genes in nuclei through pathways that involve salicylic acid, jasmonic acid, auxins, and abscisic acid. This review dissects the roles of glutathione in individual organelles during compatible and incompatible bacterial, fungal, and viral diseases in plants and explores the subcelluar roles of ROS, glutathione, ascorbate, and related enzymes in the development of resistance.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| |
Collapse
|
3
|
Cohen A, Hacham Y, Welfe Y, Khatib S, Avice JC, Amir R. Evidence of a significant role of glutathione reductase in the sulfur assimilation pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:246-261. [PMID: 31782847 DOI: 10.1111/tpj.14621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
With the objective of studying the role of glutathione reductase (GR) in the accumulation of cysteine and methionine, we generated transgenic tobacco and Arabidopsis lines overexpressing the cytosolic AtGR1 and the plastidic AtGR2 genes. The transgenic plants had higher contents of cysteine and glutathione. To understand why cysteine levels increased in these plants, we also used gr1 and gr2 mutants. The results showed that the transgenic plants have higher levels of sulfite, cysteine, glutathione and methionine, which are downstream to adenosine 5' phosphosulfate reductase (APR) activity. However, the mutants had lower levels of these metabolites, while the sulfate content increased. A feeding experiment using 34 SO42- also showed that the levels of APR downstream metabolites increased in the transgenic lines and decreased in gr1 compared with their controls. These findings, and the results obtained from the expression levels of several genes related to the sulfur pathway, suggest that GR plays an essential role in the sulfur assimilation pathway by supporting the activity of APR, the key enzyme in this pathway. GR recycles the oxidized form of glutathione (GSSG) back to reduce glutathione (GSH), which serves as an electron donor for APR activity. The phenotypes of the transgenic plants and the mutants are not significantly altered under non-stress and oxidative stress conditions. However, when germinating on sulfur-deficient medium, the transgenic plants grew better, while the mutants were more sensitive than the control plants. The results give substantial evidence of the yet unreported function of GR in the sulfur assimilation pathway.
Collapse
Affiliation(s)
- Anner Cohen
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| | - Yael Hacham
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| | - Yochai Welfe
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| | - Soliman Khatib
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| | | | - Rachel Amir
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| |
Collapse
|
4
|
Cimini S, Gualtieri C, Macovei A, Balestrazzi A, De Gara L, Locato V. Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:989. [PMID: 31428113 PMCID: PMC6688120 DOI: 10.3389/fpls.2019.00989] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 05/05/2023]
Abstract
Plants are continuously faced with complex environmental conditions which can affect the oxidative metabolism and photosynthetic efficiency, thus leading to the over-production of reactive oxygen species (ROS). Over a certain threshold, ROS can damage DNA. DNA damage, unless repaired, can affect genome stability, thus interfering with cell survival and severely reducing crop productivity. A complex network of pathways involved in DNA damage response (DDR) needs to be activated in order to maintain genome integrity. The expression of specific genes belonging to these pathways can be used as indicators of oxidative DNA damage and effective DNA repair in plants subjected to stress conditions. Managing ROS levels by modulating their production and scavenging systems shifts the role of these compounds from toxic molecules to key messengers involved in plant tolerance acquisition. Oxidative and anti-oxidative signals normally move among the different cell compartments, including the nucleus, cytosol, and organelles. Nuclei are dynamically equipped with different redox systems, such as glutathione (GSH), thiol reductases, and redox regulated transcription factors (TFs). The nuclear redox network participates in the regulation of the DNA metabolism, in terms of transcriptional events, replication, and repair mechanisms. This mainly occurs through redox-dependent regulatory mechanisms comprising redox buffering and post-translational modifications, such as the thiol-disulphide switch, glutathionylation, and S-nitrosylation. The regulatory role of microRNAs (miRNAs) is also emerging for the maintenance of genome stability and the modulation of antioxidative machinery under adverse environmental conditions. In fact, redox systems and DDR pathways can be controlled at a post-transcriptional level by miRNAs. This review reports on the interconnections between the DDR pathways and redox balancing systems. It presents a new dynamic picture by taking into account the shared regulatory mechanism mediated by miRNAs in plant defense responses to stress.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Vittoria Locato,
| |
Collapse
|
5
|
Adams E, Miyazaki T, Watanabe S, Ohkama-Ohtsu N, Seo M, Shin R. Glutathione and Its Biosynthetic Intermediates Alleviate Cesium Stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1711. [PMID: 32038683 PMCID: PMC6985154 DOI: 10.3389/fpls.2019.01711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 05/07/2023]
Abstract
Phytoremediation is optimized when plants grow vigorously while accumulating the contaminant of interest. Here we show that sulphur supply alleviates aerial chlorosis and growth retardation caused by cesium stress without reducing cesium accumulation in Arabidopsis thaliana. This alleviation was not due to recovery of cesium-induced potassium decrease in plant tissues. Sulphur supply also alleviated sodium stress but not potassium deficiency stress. Cesium-induced root growth inhibition has previously been demonstrated as being mediated through jasmonate biosynthesis and signalling but it was found that sulphur supply did not decrease the levels of jasmonate accumulation or jasmonate-responsive transcripts. Instead, induction of a glutathione synthetase gene GSH2 and reduction of a phytochelatin synthase gene PCS1 as well as increased accumulation of glutathione and cysteine were observed in response to cesium. Exogenous application of glutathione or concomitant treatments of its biosynthetic intermediates indeed alleviated cesium stress. Interestingly, concomitant treatments of glutathione biosynthetic intermediates together with a glutathione biosynthesis inhibitor did not cancel the alleviatory effects against cesium suggesting the existence of a glutathione-independent pathway. Taken together, our findings demonstrate that plants exposed to cesium increase glutathione accumulation to alleviate the deleterious effects of cesium and that exogenous application of sulphur-containing compounds promotes this innate process.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Eri Adams, ; Ryoung Shin,
| | - Takae Miyazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Eri Adams, ; Ryoung Shin,
| |
Collapse
|
6
|
Eggermont L, Verstraeten B, Van Damme EJM. Genome-Wide Screening for Lectin Motifs in Arabidopsis thaliana. THE PLANT GENOME 2017; 10. [PMID: 28724081 DOI: 10.3835/plantgenome2017.02.0010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For more than three decades, served as a model for plant biology research. At present only a few protein families have been studied in detail in . This study focused on all sequences with lectin motifs in the genome of . Based on amino acid sequence similarity (BLASTp searches), 217 putative lectin genes were retrieved belonging to 9 out of 12 different lectin families. The domain organization and genomic distribution for each lectin family were analyzed. Domain architecture analysis revealed that most of these lectin gene sequences are linked to other domains, often belonging to protein families with catalytic activity. Many protein domains identified are known to play a role in stress signaling and defense, suggesting a major contribution of the putative lectins in development and plant defense. This genome-wide screen for different lectin motifs will help to unravel the functional characteristics of lectins. In addition, phylogenetic trees and WebLogos were created and showed that most lectin sequences that share the same domain architecture evolved together. Furthermore, the amino acids responsible for carbohydrate binding are largely conserved. Our results provide information about the evolutionary relationships and functional divergence of the lectin motifs in .
Collapse
|
7
|
Boulahia K, Carol P, Planchais S, Abrous-Belbachir O. Phaseolus vulgaris L. Seedlings Exposed to Prometryn Herbicide Contaminated Soil Trigger an Oxidative Stress Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3150-60. [PMID: 27019272 DOI: 10.1021/acs.jafc.6b00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Herbicides from the family of S-triazines, such as prometryn, have been widely used in crop production and can constitute an environmental pollution in both water and soil. As a valuable crop, the common bean (Phaseolus vulgaris L.) is grown all over the world and could be exposed to such herbicides. We wanted to investigate the possible stress sustained by the common bean growing in prometryn-polluted soil. Two situations were observed: when soil was treated with ≥100 μM prometryn, some, but not all, measured growth parameters were affected in a dose-dependent manner. Growth was reduced, and photosynthetic pigments and photosynthetic products were less accumulated when soil was treated with ≥100 μM prometryn. Reactive oxygen species (ROS) produced had a deleterious effect, as seen by the accumulation of oxidized lipid in the form of malondialdehyde (MDA). Higher prometryn (500 μM) concentrations had a disastrous effect, reducing antioxidant activities. At a low (10 μM) concentration, prometryn increased antioxidant enzymatic activities without affecting plant growth or MDA production. Gene expression of proline metabolism genes and proline accumulation confirm that bean plants respond to a stress according to the prometryn concentration. Physiological responses such as antioxidative enzymes APX, CAT, and the enzyme implicated in the metabolization of xenobiotics, GST, were increased at 10 and 100 μM, which indicated a prevention of deleterious effects of prometryn, suggesting that bean is a suitable material both for herbicide pollution sensing and as a crop on a low level of herbicide pollution.
Collapse
Affiliation(s)
- Kerima Boulahia
- Biology Laboratory and Physiology of Organisms (LBPO), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , B.P. 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria
| | - Pierre Carol
- Institute of Ecology and Environmental Sciences of Paris (iEES), UMR 7618, UPMC CNRS, University Pierre et Marie Curie , Paris, France
| | - Séverine Planchais
- Institute of Ecology and Environmental Sciences of Paris (iEES), UMR 7618, UPMC CNRS, University Pierre et Marie Curie , Paris, France
| | - Ouzna Abrous-Belbachir
- Biology Laboratory and Physiology of Organisms (LBPO), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , B.P. 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria
| |
Collapse
|
8
|
Gul A, Ahad A, Akhtar S, Ahmad Z, Rashid B, Husnain T. Microarray: gateway to unravel the mystery of abiotic stresses in plants. Biotechnol Lett 2015; 38:527-43. [PMID: 26667130 DOI: 10.1007/s10529-015-2010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Environmental factors, such as drought, salinity, extreme temperature, ozone poisoning, metal toxicity etc., significantly affect crops. To study these factors and to design a possible remedy, biological experimental data concerning these crops requires the quantification of gene expression and comparative analyses at high throughput level. Development of microarrays is the platform to study the differential expression profiling of the targeted genes. This technology can be applied to gene expression studies, ranging from individual genes to whole genome level. It is now possible to perform the quantification of the differential expression of genes on a glass slide in a single experiment. This review documents recently published reports on the use of microarrays for the identification of genes in different plant species playing their role in different cellular networks under abiotic stresses. The regulation pattern of differentially-expressed genes, individually or in group form, may help us to study different pathways and functions at the cellular and molecular level. These studies can provide us with a lot of useful information to unravel the mystery of abiotic stresses in important crop plants.
Collapse
Affiliation(s)
- Ambreen Gul
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Ammara Ahad
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Sidra Akhtar
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Zarnab Ahmad
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Bushra Rashid
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan.
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| |
Collapse
|
9
|
Nazar R, Umar S, Khan NA. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. PLANT SIGNALING & BEHAVIOR 2015; 10:e1003751. [PMID: 25730495 PMCID: PMC4622964 DOI: 10.1080/15592324.2014.1003751] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 05/18/2023]
Abstract
Ascorbate (AsA)-glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants.
Collapse
Key Words
- APX, Ascorbate peroxidase
- ATP-sulfurylase
- ATPS, ATP-sulfurylase
- AsA-GSH, Ascorbate-glutathione
- CAT, Catalase
- Cys, Cysteine
- DAS, Days after sowing
- DHA, Dehydroascorbate
- DHAR, Dehydroascorbate reductase
- Fv/Fm, maximal PS II photochemical efficiency
- GR, Glutathione reductase
- GSH, Reduced glutathione
- GSSG, Oxidized glutathione
- ROS, Reactive oxygen species
- RuBP, ribulose 1, 5-bisphosphate
- S, sulfur
- SAT, Serine acetyl transferase
- TBARS, Thiobarbituric acid reactive substances
- WUE, water use efficiency.
- ascorbate
- glutathione
- gs, stomatal conductance
- oxidative stress
- photosynthesis
- salicylic acid
- salt stress
Collapse
Affiliation(s)
- Rahat Nazar
- Department of Botany; Jamia Hamdard University; New Delhi, India
| | - Shahid Umar
- Department of Botany; Jamia Hamdard University; New Delhi, India
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Section; Department of Botany; Aligarh Muslim University; Aligarh, India
| |
Collapse
|
10
|
Calderwood A, Morris RJ, Kopriva S. Predictive sulfur metabolism - a field in flux. FRONTIERS IN PLANT SCIENCE 2014; 5:646. [PMID: 25477892 PMCID: PMC4235266 DOI: 10.3389/fpls.2014.00646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/02/2014] [Indexed: 05/08/2023]
Abstract
The key role of sulfur metabolites in response to biotic and abiotic stress in plants, as well as their importance in diet and health has led to a significant interest and effort in trying to understand and manipulate the production of relevant compounds. Metabolic engineering utilizes a set of theoretical tools to help rationally design modifications that enhance the production of a desired metabolite. Such approaches have proven their value in bacterial systems, however, the paucity of success stories to date in plants, suggests that challenges remain. Here, we review the most commonly used methods for understanding metabolic flux, focusing on the sulfur assimilatory pathway. We highlight known issues with both experimental and theoretical approaches, as well as presenting recent methods for integrating different modeling strategies, and progress toward an understanding of flux at the whole plant level.
Collapse
Affiliation(s)
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes CentreNorwich, UK
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne BiocenterCologne, Germany
| |
Collapse
|
11
|
Cohen H, Israeli H, Matityahu I, Amir R. Seed-specific expression of a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE in Arabidopsis stimulates metabolic and transcriptomic responses associated with desiccation stress. PLANT PHYSIOLOGY 2014; 166:1575-92. [PMID: 25232013 PMCID: PMC4226362 DOI: 10.1104/pp.114.246058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With an aim to elucidate novel metabolic and transcriptional interactions associated with methionine (Met) metabolism in seeds, we have produced transgenic Arabidopsis (Arabidopsis thaliana) seeds expressing a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE, a key enzyme of Met synthesis. Metabolic profiling of these seeds revealed that, in addition to higher levels of Met, the levels of many other amino acids were elevated. The most pronounced changes were the higher levels of stress-related amino acids (isoleucine, leucine, valine, and proline), sugars, intermediates of the tricarboxylic acid cycle, and polyamines and lower levels of polyols, cysteine, and glutathione. These changes reflect stress responses and an altered mitochondrial energy metabolism. The transgenic seeds also had higher contents of total proteins and starch but lower water contents. In accordance with the metabolic profiles, microarray analysis identified a strong induction of genes involved in defense mechanisms against osmotic and drought conditions, including those mediated by the signaling cascades of ethylene and abscisic acid. These changes imply that stronger desiccation processes occur during seed development. The expression levels of transcripts controlling the levels of Met, sugars, and tricarboxylic acid cycle metabolites were also significantly elevated. Germination assays showed that the transgenic seeds had higher germination rates under salt and osmotic stresses and in the presence of ethylene substrate and abscisic acid. However, under oxidative conditions, the transgenic seeds displayed much lower germination rates. Altogether, the data provide new insights on the factors regulating Met metabolism in Arabidopsis seeds and on the mechanisms by which elevated Met levels affect seed composition and behavior.
Collapse
Affiliation(s)
- Hagai Cohen
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Hadasa Israeli
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Ifat Matityahu
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| |
Collapse
|