1
|
Baer M, Taramino G, Multani D, Sakai H, Jiao S, Fengler K, Hochholdinger F. Maize lateral rootless 1 encodes a homolog of the DCAF protein subunit of the CUL4-based E3 ubiquitin ligase complex. THE NEW PHYTOLOGIST 2023; 237:1204-1214. [PMID: 36345913 DOI: 10.1111/nph.18599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
In maize (Zea mays L.), lateral roots are formed in the differentiation zone of all root types in a multi-step process. The maize mutant lateral rootless 1 (lrt1) is defective in lateral root formation in primary and seminal roots but not in shoot-borne roots. We cloned the lrt1 gene by mapping in combination with BSA-seq and subsequent validation via CRISPR/Cas9. The lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus. DDB1-CUL4-ASSOCIATED FACTOR proteins are encoded by an evolutionary old gene family already present in nonseed plants. They are adaptors that bind substrate proteins and promote their ubiquitylation, thus typically marking them for subsequent degradation in the 26S proteasome. Gene expression studies demonstrated that lrt1 transcripts are expressed preferentially in the meristematic zone of all root types of maize. Downregulation of the rum1 gene in lrt1 mutants suggests that lrt1 acts upstream of the lateral root regulator rum1. Our results demonstrate that DCAF proteins play a key role in root-type-specific lateral root formation in maize. Together with its role in nitrogen acquisition in nitrogen-poor soil, lrt1 could be a promising target for maize improvement.
Collapse
Affiliation(s)
- Marcel Baer
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | | | | | | | | | | | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| |
Collapse
|
2
|
Rivas MÁ, Friero I, Alarcón MV, Salguero J. Auxin-Cytokinin Balance Shapes Maize Root Architecture by Controlling Primary Root Elongation and Lateral Root Development. FRONTIERS IN PLANT SCIENCE 2022; 13:836592. [PMID: 35548278 PMCID: PMC9081935 DOI: 10.3389/fpls.2022.836592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
The root system is responsible for water and nutrients uptake from the soil, and therefore, its extension is basic for an efficient acquisition. The maize root system is formed by different types of roots, and the lateral root branching substantially increases the surface for nutrient uptake. Therefore, the regulation of lateral root formation is fundamental in the development of root functions. Root architecture is basically controlled by auxin and cytokinins, which antagonize in the formation of lateral roots (LR) along the primary root axis, with auxin, a stimulator, and cytokinins inhibitors of LR development. This interaction has been analyzed in several zones along the primary root where LRs in different developmental stages were located. The root has been divided into several zones, such as meristem, elongation zone, and mature zone, according to the developmental processes occurring in each one. As Arabidopsis root elongated more slowly than maize root, these zones are shorter, and its delimitation is more difficult. However, these zones have previously been delimitated clearly in maize, and therefore, they analyze the effect of exogenous hormones in several LR developmental stages. The inhibitory effect of cytokinin on lateral root formation was observed in already elongated primary root zones in which initial events to form new lateral roots are taking place. Contrarily, auxin increased LR formation in the primary root segments elongated in the presence of the hormone. The inhibitory effect of cytokinin was reversed by auxin in a concentration-dependent manner when both hormones were combined. However, auxin is unable to recover LR development in primary root zones that have been previously elongated only in the presence of cytokinin. This antagonistic auxin-cytokinin effect on LR development depended on the balance between both hormones, which controls the root system architecture and determines the formation of LR during the process of initiation.
Collapse
Affiliation(s)
- M. Ángeles Rivas
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
| | - Iván Friero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
| | - M. Victoria Alarcón
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias “La Orden-Valdesequera”, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Junta de Extremadura, Badajoz, Spain
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Julio Salguero,
| |
Collapse
|
3
|
Alarcón MV, Salguero J, Lloret PG. Auxin Modulated Initiation of Lateral Roots Is Linked to Pericycle Cell Length in Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:11. [PMID: 30733725 PMCID: PMC6354204 DOI: 10.3389/fpls.2019.00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/07/2019] [Indexed: 05/21/2023]
Abstract
Auxin is essential for the regulation of root system architecture by controlling primary root elongation and lateral root (LR) formation. Exogenous auxin has been reported to inhibit primary root elongation and promote the formation of LRs. In this study, LR formation in the Zea mays primary root was quantitatively evaluated after exogenous auxin treatment by comparing the effects of auxin on two selected zones elongated either before or after auxin application. We determined two main variables in both zones: the LR density per unit of root length (LRD), and the mean phloem pericycle cell length. The total number of phloem pericycle cells (PPCs) per unit of root length was then calculated. Considering that each LR primordium is initiated from four founder cells (FCs), the percentage of PPCs (%PPC) that behave as FCs in a specific root zone was estimated by dividing the number of pericycle cells by four times the LRD. This index was utilized to describe LR initiation. Root zones elongated in the presence of a synthetic auxin (1-naphthalene acetic acid, NAA) at low concentrations (0.01 μM) showed reduced cell length and increased LRD. However, a high concentration of NAA (0.1 μM) strongly reduced both cell length and LRD. In contrast, both low and high levels of NAA stimulated LRD in zones elongated before auxin application. Analysis of the percentage of FCs in the phloem pericycle in zones elongated in the presence or absence of NAA showed that low concentrations of NAA increased the %PFC, indicating that LR initiation is promoted at new sites; however, high concentrations of NAA elicited a considerable reduction in this variable in zones developed in the presence of auxin. As these zones are composed of short pericycle cells, we propose that short pericycle cells are incapable to participate in LR primordium initiation and that auxin modulated initiation of LRs is linked to pericycle cell length.
Collapse
Affiliation(s)
- M. Victoria Alarcón
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias “La Orden-Valdesequera”, CICYTEX, Junta de Extremadura, Badajoz, Spain
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
| | - Pedro G. Lloret
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
4
|
Molero de Ávila ME, Alarcón MV, Uriarte D, Mancha LA, Moreno D, Francisco-Morcillo J. Histochemical and immunohistochemical analysis of enzymes involved in phenolic metabolism during berry development in Vitis vinifera L. PROTOPLASMA 2019; 256:25-38. [PMID: 29926200 DOI: 10.1007/s00709-018-1278-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Phenolics are involved in many of plants' biological functions. In particular, they play important roles in determining the quality of grape berries and the wine made from them, and can also act as antioxidants with beneficial effects for human health. Several enzymes are involved in the synthesis of phenolic compounds. Among them, stilbene synthase (STS) is a key to the biosynthesis of stilbenes, which are considered to be important secondary metabolites in plants. Other enzymes, such as polyphenol oxidase (PPO) and peroxidase (POD), are involved in the degradation of phenolics, and become activated during late stages of berry ripening. In the present study, Vitis vinifera L. berries were sampled at eight stages of development, from 10 days after anthesis to late harvest. The PPO and POD enzymatic activities were determined at each stage. The presence of STS, PPO, and POD proteins in the grape exocarp and mesocarp was detected immunohistochemically and histochemically. The amount and intensity of the immunohistochemical and histochemical signals correlate with the variations in enzyme activities throughout fruit development. Strong STS immunoreactivity was detected until the onset of ripening. Labeled tissue increased gradually from mesocarp to exocarp, showing an intense signal in epidermis. At subcellular level, STS was mainly detected in cytoplasm grains and cell walls. The amount of PPO immunoreactivity increased progressively until the end of ripening. The PPO signal was detected in hypodermal layers and, to a lesser extent, in mesocarp parenchyma cells, especially in cytoplasm grains and cell walls. Finally, POD activity was stronger at the onset of ripening, and the POD histochemical signal was mainly detected in the cell walls of both exocarp and mesocarp tissue.
Collapse
Affiliation(s)
- María Eugenia Molero de Ávila
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain
| | - María Victoria Alarcón
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", CICYTEX, Junta de Extremadura, Guadajira, 06187, Badajoz, Spain
| | - David Uriarte
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", CICYTEX, Junta de Extremadura, Guadajira, 06187, Badajoz, Spain
| | - Luis Alberto Mancha
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", CICYTEX, Junta de Extremadura, Guadajira, 06187, Badajoz, Spain
| | - Daniel Moreno
- Departamento de Enología, INTAEX, CICYTEX, Junta de Extremadura, 06071, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
5
|
Ilina EL, Kiryushkin AS, Semenova VA, Demchenko NP, Pawlowski K, Demchenko KN. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player? ANNALS OF BOTANY 2018; 122:873-888. [PMID: 29684107 PMCID: PMC6215038 DOI: 10.1093/aob/mcy052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/20/2018] [Indexed: 05/24/2023]
Abstract
Background and Aims In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Methods Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. Key Results The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Conclusions Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.
Collapse
Affiliation(s)
- Elena L Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alexey S Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Victoria A Semenova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nikolay P Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee, Saint-Petersburg, Russia
| |
Collapse
|
6
|
Hochholdinger F, Yu P, Marcon C. Genetic Control of Root System Development in Maize. TRENDS IN PLANT SCIENCE 2018; 23:79-88. [PMID: 29170008 DOI: 10.1016/j.tplants.2017.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 05/21/2023]
Abstract
The maize root system comprises structurally and functionally different root types. Mutant analyses have revealed that root-type-specific genetic regulators intrinsically determine the maize root system architecture. Molecular cloning of these genes has demonstrated that key elements of auxin signal transduction, such as LOB domain (LBD) and Aux/IAA proteins, are instrumental for seminal, shoot-borne, and lateral root initiation. Moreover, genetic analyses have demonstrated that genes related to exocytotic vesicle docking, cell wall loosening, and cellulose synthesis and organization control root hair elongation. The identification of upstream regulators, protein interaction partners, and downstream targets of these genes together with cell-type-specific transcriptome analyses have provided novel insights into the regulatory networks controlling root development and architecture in maize.
Collapse
Affiliation(s)
- Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
7
|
Alarcón MV, Salguero J. Transition zone cells reach G2 phase before initiating elongation in maize root apex. Biol Open 2017; 6:909-913. [PMID: 28495964 PMCID: PMC5483028 DOI: 10.1242/bio.025015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Root elongation requires cell divisions in the meristematic zone and cell elongation in the elongation zone. The boundary between dividing and elongating cells is called the transition zone. In the meristem zone, initial cells are continuously dividing, but on the basal side of the meristem cells exit the meristem through the transition zone and enter in the elongation zone, where they stop division and rapidly elongate. Throughout this journey cells are accompanied by changes in cell cycle progression. Flow cytometry analysis showed that meristematic cells are in cycle, but exit when they enter the elongation zone. In addition, the percentage of cells in G2 phase (4C) strongly increased from the meristem to the elongation zone. However, we did not observe remarkable changes in the percentage of cells in cell cycle phases along the entire elongation zone. These results suggest that meristematic cells in maize root apex stop the cell cycle in G2 phase after leaving the meristem. Summary: Meristematic root cells stop cycling in G2 phase before entering the elongation zone. Remarkable changes in the percentage of cells in the cell cycle phases take place in the transition zone, indicating this zone is a boundary between mitotic and elongation cell processes.
Collapse
Affiliation(s)
- M Victoria Alarcón
- Departamento de Hortofruticultura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Gobierno de Extremadura, Badajoz 06187, Spain
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz 06007, Spain
| |
Collapse
|