1
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
2
|
Zhang ZY, Dong D, Bösking T, Dang T, Liu C, Sun W, Xie M, Hecht S, Li T. Solar Azo-Switches for Effective E→Z Photoisomerization by Sunlight. Angew Chem Int Ed Engl 2024; 63:e202404528. [PMID: 38722260 DOI: 10.1002/anie.202404528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.
Collapse
Affiliation(s)
- Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongfang Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tom Bösking
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, 52056, Aachen, Germany
| | - Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhao Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjin Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Stefan Hecht
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, 52056, Aachen, Germany
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Kosugi M, Ohtani S, Hara K, Toyoda A, Nishide H, Ozawa SI, Takahashi Y, Kashino Y, Kudoh S, Koike H, Minagawa J. Characterization of the far-red light absorbing light-harvesting chlorophyll a/ b binding complex, a derivative of the distinctive Lhca gene family in green algae. FRONTIERS IN PLANT SCIENCE 2024; 15:1409116. [PMID: 38916036 PMCID: PMC11194369 DOI: 10.3389/fpls.2024.1409116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa's unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.
Collapse
Affiliation(s)
- Makiko Kosugi
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Ohtani
- Faculty of Education, Shimane University, Matsue, Japan
| | - Kojiro Hara
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, National Institutes of Natural Science, Okazaki, Japan
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | | | - Sakae Kudoh
- National Institute of Polar Research, Research Organization of Information and Systems, Tokyo, Japan
- Department of Polar Science, School of Multidisciplinary Science, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
4
|
Madhuri S, Lepetit B, Fürst AH, Kroth PG. A Knockout of the Photoreceptor PtAureo1a Results in Altered Diel Expression of Diatom Clock Components. PLANTS (BASEL, SWITZERLAND) 2024; 13:1465. [PMID: 38891274 PMCID: PMC11174801 DOI: 10.3390/plants13111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Plants and algae use light not only for driving photosynthesis but also to sense environmental cues and to adjust their circadian clocks via photoreceptors. Aureochromes are blue-light-dependent photoreceptors that also function as transcription factors, possessing both a LOV and a bZIP domain. Aureochromes so far have only been detected in Stramenopile algae, which include the diatoms. Four paralogues of aureochromes have been identified in the pennate model diatom Phaeodactylum tricornutum: PtAureo1a, 1b, 1c, and 2. While it was shown recently that diatoms have a diel rhythm, the molecular mechanisms and components regulating it are still largely unknown. Diel gene expression analyses of wild-type P. tricornutum, a PtAureo1a knockout strain, and the respective PtAureo1 complemented line revealed that all four aureochromes have a different diel regulation and that PtAureo1a has a strong co-regulatory influence on its own transcription, as well as on that of other genes encoding different blue-light photoreceptors (CPF1, 2 and 4), proteins involved in photoprotection (Lhcx1), and specific bHLH transcription factors (RITMO1). Some of these genes completely lost their circadian expression in the PtAureo1a KO mutant. Our results suggest a major involvement of aureochromes in the molecular clock of diatoms.
Collapse
Affiliation(s)
| | | | | | - Peter G. Kroth
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany; (S.M.); (B.L.); (A.H.F.)
| |
Collapse
|
5
|
Rredhi A, Petersen J, Wagner V, Vuong T, Li W, Li W, Schrader L, Mittag M. The UV-A Receptor CRY-DASH1 Up- and Downregulates Proteins Involved in Different Plastidial Pathways. J Mol Biol 2024; 436:168271. [PMID: 37699454 DOI: 10.1016/j.jmb.2023.168271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Algae encode up to five different types of cryptochrome photoreceptors. So far, relatively little is known about the biological functions of the DASH (Drosophila, Arabidopsis, Synechocystis and Homo)-type cryptochromes. The green alga Chlamydomonas reinhardtii encodes two of them. CRY-DASH1 also called DCRY1 has its maximal absorption peak in the UV-A range. It is localized in the chloroplast and plays an important role in balancing the photosynthetic machinery. Here, we performed a comparative analysis of chloroplast proteins from wild type and a knockout mutant of CRY-DASH1 named cry-dash1mut, using label-free quantitative proteomics as well as immunoblotting. Our results show upregulation of enzymes involved in specific pathways in the mutant including key enzymes of chlorophyll and carotenoid biosynthesis consistent with increased levels of photosynthetic pigments in cry-dash1mut. There is also an increase in certain redox as well as photosystem I and II proteins, including D1. Strikingly, CRY-DASH1 is coregulated in a D1 deletion mutant, where its amount is increased. In contrast, key proteins of the central carbon metabolism, including glycolysis/gluconeogenesis, dark fermentation and the oxidative pentose phosphate pathway are downregulated in cry-dash1mut. Similarly, enzymes of histidine biosynthesis are downregulated in cry-dash1mut leading to a reduction in the amount of free histidine. Yet, transcripts encoding for several of these proteins are at a similar level in the wild type and cry-dash1mut or even opposite. We show that CRY-DASH1 can bind to RNA, taking the psbA RNA encoding D1 as target. These data suggest that CRY-DASH1 regulates plastidial metabolic pathways at the posttranscriptional level.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/1anPetersen
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/trangha593
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
6
|
Richtová J, Bazalová O, Horák A, Tomčala A, Gonepogu VG, Oborník M, Doležel D. Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia. FRONTIERS IN PLANT SCIENCE 2023; 14:1226027. [PMID: 38143581 PMCID: PMC10739334 DOI: 10.3389/fpls.2023.1226027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Most organisms on Earth are affected by periodic changes in their environment. The circadian clock is an endogenous device that synchronizes behavior, physiology, or biochemical processes to an approximately 24-hour cycle, allowing organisms to anticipate the periodic changes of day and night. Although circadian clocks are widespread in organisms, the actual molecular components differ remarkably among the clocks of plants, animals, fungi, and prokaryotes. Chromera velia is the closest known photosynthetic relative of apicomplexan parasites. Formation of its motile stage, zoospores, has been described as associated with the light part of the day. We examined the effects on the periodic release of the zoospores under different light conditions and investigated the influence of the spectral composition on zoosporogenesis. We performed a genomic search for homologs of known circadian clock genes. Our results demonstrate the presence of an almost 24-hour free-running cycle of zoosporogenesis. We also identified the blue light spectra as the essential compound for zoosporogenesis. Further, we developed a new and effective method for zoospore separation from the culture and estimated the average motility speed and lifespan of the C. velia zoospores. Our genomic search identified six cryptochrome-like genes, two genes possibly related to Arabidopsis thaliana CCA/LHY, whereas no homolog of an animal, cyanobacterial, or fungal circadian clock gene was found. Our results suggest that C. velia has a functional circadian clock, probably based mainly on a yet undefined mechanism.
Collapse
Affiliation(s)
- Jitka Richtová
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
| | - Olga Bazalová
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Entomology, České Budějovice, Czechia
| | - Aleš Horák
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Aleš Tomčala
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, Vodňany, Czechia
| | - Vijaya Geetha Gonepogu
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Miroslav Oborník
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - David Doležel
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Entomology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
7
|
Kreiss M, Haas FB, Hansen M, Rensing SA, Hoecker U. Co-action of COP1, SPA and cryptochrome in light signal transduction and photomorphogenesis of the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:159-175. [PMID: 36710658 DOI: 10.1111/tpj.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.
Collapse
Affiliation(s)
- Melanie Kreiss
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Maike Hansen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| |
Collapse
|
8
|
Ahmad S, Tan M, Hamid S. DNA repair mechanisms: Exploring potentials of nutraceutical. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
9
|
Falciatore A, Bailleul B, Boulouis A, Bouly JP, Bujaldon S, Cheminant-Navarro S, Choquet Y, de Vitry C, Eberhard S, Jaubert M, Kuras R, Lafontaine I, Landier S, Selles J, Vallon O, Wostrikoff K. Light-driven processes: key players of the functional biodiversity in microalgae. C R Biol 2022; 345:15-38. [PMID: 36847462 DOI: 10.5802/crbiol.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.
Collapse
|
10
|
Direct experimental observation of blue-light-induced conformational change and intermolecular interactions of cryptochrome. Commun Biol 2022; 5:1103. [PMID: 36257983 PMCID: PMC9579160 DOI: 10.1038/s42003-022-04054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptochromes are blue light receptors that mediate circadian rhythm and magnetic sensing in various organisms. A typical cryptochrome consists of a conserved photolyase homology region domain and a varying carboxyl-terminal extension across species. The structure of the flexible carboxyl-terminal extension and how carboxyl-terminal extension participates in cryptochrome’s signaling function remain mostly unknown. In this study, we uncover the potential missing link between carboxyl-terminal extension conformational changes and downstream signaling functions. Specifically, we discover that the blue-light induced opening of carboxyl-terminal extension in C. reinhardtii animal-like cryptochrome can structurally facilitate its interaction with Rhythm Of Chloroplast 15, a circadian-clock-related protein. Our finding is made possible by two technical advances. Using single-molecule Förster resonance energy transfer technique, we directly observe the displacement of carboxyl-terminal extension by about 15 Å upon blue light excitation. Combining structure prediction and solution X-ray scattering methods, we propose plausible structures of full-length cryptochrome under dark and lit conditions. The structures provide molecular basis for light active conformational changes of cryptochrome and downstream regulatory functions. Refined structures, protein-docking analysis and single molecule assays provides insights into light-induced conformational changes in the cryptochrome CraCRY.
Collapse
|
11
|
An ML, Miao JL. Genetic and Molecular Characterization of a Dash Cryptochrome Homologous Gene from Antarctic Diatom Phaeodactylum tricornutum ICE-H. Mol Biol 2022. [DOI: 10.1134/s0026893322060024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Molecular Cloning and Expression Analysis of the Cryptochrome Gene CiPlant-CRY1 in Antarctic Ice Alga Chlamydomonas sp. ICE-L. PLANTS 2022; 11:plants11172213. [PMID: 36079595 PMCID: PMC9460571 DOI: 10.3390/plants11172213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Cryptochrome (CRY) is a kind of flavin-binding protein that can sense blue light and near-ultraviolet light, and participates in the light response of organisms and the regulation of the circadian clock. The complete open reading frame (ORF) of CiPlant-CRY1 (GenBank ID OM389130.1), encoding one kind of CRY, was cloned from the Antarctic ice alga Chlamydomonas sp. ICE-L. The quantitative real-time PCR study showed that the expression level of the CiPlant-CRY1 gene was the highest at 5 °C and salinity of 32‰. CiPlant-CRY1 was positively regulated by blue or yellow light, suggesting that it is involved in the establishment of photomorphology. The CiPlant-CRY1 gene can respond to polar day and polar night, indicating its expression is regulated by circadian rhythm. The expression level of CiPlant-CRY1 was most affected by UVB irradiation, which may be related to the adaptation of ice algae to a strong ultraviolet radiation environment. Moreover, the recombinant protein of CiPlant-CRY1 was expressed by prokaryotic expression. This study may be important for exploring the light-induced rhythm regulation of Antarctic ice algae in the polar marine environment.
Collapse
|
13
|
Shankar U, Lenka SK, Leigh Ackland M, Callahan DL. Review of the structures and functions of algal photoreceptors to optimize bioproduct production with novel bioreactor designs for strain improvement. Biotechnol Bioeng 2022; 119:2031-2045. [PMID: 35441370 DOI: 10.1002/bit.28116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
Microalgae are important renewable feedstock to produce biodiesel and high-value chemicals. Different wavelengths of light influence the growth and metabolic activities of algae. Recent research has identified the light-sensing proteins called photoreceptors that respond to blue or red light. Structural elucidations of algal photoreceptors have gained momentum over recent years. These include channelrhodopsins, PHOT proteins, animal-like cryptochromes, blue-light sensors utilizing flavin-adenine dinucleotide (BLUF) proteins. Pulsing light has also been investigated as a means to optimize energy inputs into bioreactors. This review summarizes the current structural and functional basis of photoreceptor modulation to optimize the growth, production of carotenoids and other high-value metabolites from microalgae. The review also encompasses novel photobioreactor designs that implement different light regimes including light wavelengths and time to optimize algal growth and desired metabolite profiles for high-value products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uttara Shankar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - M Leigh Ackland
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Damien L Callahan
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
14
|
Krischer J, König S, Weisheit W, Mittag M, Büchel C. The C-terminus of a diatom plant-like cryptochrome influences the FAD redox state and binding of interaction partners. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1934-1948. [PMID: 35034113 DOI: 10.1093/jxb/erac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
A plant-like cryptochrome of diatom microalgae, CryP, acts as a photoreceptor involved in transcriptional regulation. It contains FAD and 5,10-methenyltetrahydrofolate as chromophores. Here, we demonstrate that the unstructured C-terminal extension (CTE) of CryP has an influence on the redox state of the flavin. In CryP lacking the CTE, the flavin is in the oxidized state (FADox), whereas it is a neutral radical (FADH•) in the full-length protein. When the CTE of CryP is coupled to another diatom cryptochrome that naturally binds FADox, this chimera also binds FADH•. In full-length CryP, FADH• is the most stable redox state and oxidation to FADox is extremely slow, whereas reduction to FADH2 is reversible in the dark in approximately 1 h. We also identified novel interaction partners of this algal CRY and characterized two of them in depth regarding their binding activities. BolA, a putative transcription factor, binds to monomeric and to dimeric CryP via the CTE, independent of the redox state of the flavin. In contrast, an unknown protein, ID42612, which occurs solely in heterokont algae, binds only to CryP dimers. This binding is independent of the CTE and shows slight differences in strength depending on the flavin's redox state.
Collapse
Affiliation(s)
- Julia Krischer
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Sarah König
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Wolfram Weisheit
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
15
|
Goett-Zink L, Kottke T. Plant Cryptochromes Illuminated: A Spectroscopic Perspective on the Mechanism. Front Chem 2021; 9:780199. [PMID: 34900940 PMCID: PMC8653763 DOI: 10.3389/fchem.2021.780199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plant cryptochromes are central blue light receptors for the control of land plant and algal development including the circadian clock and the cell cycle. Cryptochromes share a photolyase homology region with about 500 amino acids and bind the chromophore flavin adenine dinucleotide. Characteristic for plant cryptochromes is a conserved aspartic acid close to flavin and an exceptionally long C-terminal extension. The mechanism of activation by excitation and reduction of the chromophore flavin adenine dinucleotide has been controversially discussed for many years. Various spectroscopic techniques have contributed to our understanding of plant cryptochromes by providing high time resolution, ambient conditions and even in-cell approaches. As a result, unifying and differing aspects of photoreaction and signal propagation have been revealed in comparison to members from other cryptochrome subfamilies. Here, we review the insight from spectroscopy on the flavin photoreaction in plant cryptochromes and present the current models on the signal propagation from flavin reduction to dissociation of the C-terminal extension.
Collapse
Affiliation(s)
- Lukas Goett-Zink
- Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Department of Chemistry, Bielefeld University, Bielefeld, Germany.,Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
16
|
Petersen J, Rredhi A, Szyttenholm J, Oldemeyer S, Kottke T, Mittag M. The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:766509. [PMID: 34790217 PMCID: PMC8591175 DOI: 10.3389/fpls.2021.766509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/11/2021] [Indexed: 05/25/2023]
Abstract
Algae are photosynthetic eukaryotic (micro-)organisms, lacking roots, leaves, and other organs that are typical for land plants. They live in freshwater, marine, or terrestrial habitats. Together with the cyanobacteria they contribute to about half of global carbon fixation. As primary producers, they are at the basis of many food webs and they are involved in biogeochemical processes. Algae are evolutionarily distinct and are derived either by primary (e.g., green and red algae) or secondary endosymbiosis (e.g., diatoms, dinoflagellates, and brown algae). Light is a key abiotic factor needed to maintain the fitness of algae as it delivers energy for photosynthesis, regulates algal cell- and life cycles, and entrains their biological clocks. However, excess light can also be harmful, especially in the ultraviolet range. Among the variety of receptors perceiving light information, the cryptochromes originally evolved as UV-A and blue-light receptors and have been found in all studied algal genomes so far. Yet, the classification, biophysical properties, wavelength range of absorbance, and biological functions of cryptochromes are remarkably diverse among algal species, especially when compared to cryptochromes from land plants or animals.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Sabine Oldemeyer
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Tilman Kottke
- Department of Chemistry, Bielefeld University, Bielefeld, Germany
- Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
17
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
18
|
Rredhi A, Petersen J, Schubert M, Li W, Oldemeyer S, Li W, Westermann M, Wagner V, Kottke T, Mittag M. DASH cryptochrome 1, a UV-A receptor, balances the photosynthetic machinery of Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2021; 232:610-624. [PMID: 34235760 DOI: 10.1111/nph.17603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Drosophila, Arabidopsis, Synechocystis, Homo (DASH) cryptochromes belong to the cryptochrome/photolyase family and can act as DNA repair enzymes. In bacteria and fungi, they also can play regulatory roles, but in plants their biological functions remain elusive. Here, we characterize CRY-DASH1 from the green alga Chlamydomonas reinhardtii. We perform biochemical and in vitro photochemical analysis. For functional characterization, a knock-out mutant of cry-dash1 is used. CRY-DASH1 protein is localized in the chloroplast and accumulates at midday. Although the photoautotrophic growth of the mutant is significantly reduced compared to the wild-type (WT), the mutant has increased levels of photosynthetic pigments and a higher maximum photochemical efficiency of photosystem II (PS II). Hyper-stacking of thylakoid membranes occurs together with an increase in proteins of the PS II reaction center, D1 and its antenna CP43, but not of their transcripts. CRY-DASH1 binds fully reduced flavin adenine dinucleotide and the antenna 5,10-methenyltetrahydrofolate, leading to an absorption peak in the UV-A range. Supplementation of white light with UV-A increases photoautotrophic growth of the WT but not of the cry-dash1 mutant. These results suggest a balancing function of CRY-DASH1 in the photosynthetic machinery and point to its role as a photoreceptor for the UV-A range separated from the absorption of photosynthetic pigments.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Melvin Schubert
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Jena, 07743, Germany
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
- Medical School OWL, Bielefeld University, Bielefeld, 33615, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|
19
|
Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc Natl Acad Sci U S A 2021; 118:2011038118. [PMID: 33547239 PMCID: PMC8017926 DOI: 10.1073/pnas.2011038118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most organisms coordinate key biological events to coincide with the day/night cycle. These diel oscillations are entrained through the activity of light-sensitive photoreceptors that allow organisms to respond rapidly to changes in light exposure. In the ocean, the plankton community must additionally contend with dramatic changes in the quantity and quality of light over depth. Here, we show that the predominantly blue-light field in the open-ocean environment may have driven expansion of blue light-sensitive regulatory elements in open-ocean eukaryotic plankton derived from secondary and tertiary endosymbiosis. The diel transcription of genes encoding light-sensitive elements indicate that photosynthetic and heterotrophic marine protists respond to and anticipate fluctuating light conditions in the dynamic marine environment. The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.
Collapse
|
20
|
Makita Y, Suzuki S, Fushimi K, Shimada S, Suehisa A, Hirata M, Kuriyama T, Kurihara Y, Hamasaki H, Okubo-Kurihara E, Yoshitake K, Watanabe T, Sakuta M, Gojobori T, Sakami T, Narikawa R, Yamaguchi H, Kawachi M, Matsui M. Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton. Nat Commun 2021; 12:3593. [PMID: 34135337 PMCID: PMC8209157 DOI: 10.1038/s41467-021-23741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.
Collapse
Affiliation(s)
- Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Aya Suehisa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Manami Hirata
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hidefumi Hamasaki
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan
| | - Emiko Okubo-Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Watanabe
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Hokkaido, Japan
| | - Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tomoko Sakami
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Minami-ise, Mie, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan.
| |
Collapse
|
21
|
Vanoni MA. Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together. Open Biol 2021; 11:210010. [PMID: 33947244 PMCID: PMC8097209 DOI: 10.1098/rsob.210010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Iron-sulfur (Fe-S) flavoproteins form a broad and growing class of complex, multi-domain and often multi-subunit proteins coupling the most ancient cofactors (the Fe-S clusters) and the most versatile coenzymes (the flavin coenzymes, FMN and FAD). These enzymes catalyse oxidoreduction reactions usually acting as switches between donors of electron pairs and acceptors of single electrons, and vice versa. Through selected examples, the enzymes' structure−function relationships with respect to rate and directionality of the electron transfer steps, the role of the apoprotein and its dynamics in modulating the electron transfer process will be discussed.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
22
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
23
|
Iha C, Dougan KE, Varela JA, Avila V, Jackson CJ, Bogaert KA, Chen Y, Judd LM, Wick R, Holt KE, Pasella MM, Ricci F, Repetti SI, Medina M, Marcelino VR, Chan CX, Verbruggen H. Genomic adaptations to an endolithic lifestyle in the coral-associated alga Ostreobium. Curr Biol 2021; 31:1393-1402.e5. [PMID: 33548192 DOI: 10.1016/j.cub.2021.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/21/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
The green alga Ostreobium is an important coral holobiont member, playing key roles in skeletal decalcification and providing photosynthate to bleached corals that have lost their dinoflagellate endosymbionts. Ostreobium lives in the coral's skeleton, a low-light environment with variable pH and O2 availability. We present the Ostreobium nuclear genome and a metatranscriptomic analysis of healthy and bleached corals to improve our understanding of Ostreobium's adaptations to its extreme environment and its roles as a coral holobiont member. The Ostreobium genome has 10,663 predicted protein-coding genes and shows adaptations for life in low and variable light conditions and other stressors in the endolithic environment. This alga presents a rich repertoire of light-harvesting complex proteins but lacks many genes for photoprotection and photoreceptors. It also has a large arsenal of genes for oxidative stress response. An expansion of extracellular peptidases suggests that Ostreobium may supplement its energy needs by feeding on the organic skeletal matrix, and a diverse set of fermentation pathways allows it to live in the anoxic skeleton at night. Ostreobium depends on other holobiont members for vitamin B12, and our metatranscriptomes identify potential bacterial sources. Metatranscriptomes showed Ostreobium becoming a dominant agent of photosynthesis in bleached corals and provided evidence for variable responses among coral samples and different Ostreobium genotypes. Our work provides a comprehensive understanding of the adaptations of Ostreobium to its extreme environment and an important genomic resource to improve our comprehension of coral holobiont resilience, bleaching, and recovery.
Collapse
Affiliation(s)
- Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Katherine E Dougan
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, and APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Viridiana Avila
- Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kenny A Bogaert
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Gent, Belgium
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ryan Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Marisa M Pasella
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Francesco Ricci
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mónica Medina
- Pennsylvania State University, University Park, PA 16802, USA
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
24
|
Sanmartín P, Grove R, Carballeira R, Viles H. Impact of colour on the bioreceptivity of granite to the green alga Apatococcus lobatus: Laboratory and field testing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141179. [PMID: 32758748 DOI: 10.1016/j.scitotenv.2020.141179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Recent work has demonstrated that surface colour affects the formation of cyanobacterial subaerial biofilms on polycarbonate coupons and, in turn, influences their bioreceptivity. To explore whether colour is important on other substrates, the influence of colour on the primary bioreceptivity of granite to the terrestrial green alga Apatococcus lobatus (Trebouxiophyceae, Chlorophyta) has been assessed. Two granitoids (Grissal and Rosa Porriño) with the same texture, and very similar chemical composition, open porosity and surface roughness, but different coloration related to feldspars (i.e. greyish and reddish) were used to conduct bioreceptivity studies in parallel field and laboratory tests. Light microscopy, colour spectrophotometry, PAM fluorometry, and optical profilometry were used to evaluate colonisation and its impacts. Short-term results (after 7 and 10 weeks of colonisation by a mono-species biofilm) from both lab and field trials, showed significantly more algae growth on reddish granite (Rosa Porriño) than on greyish granite (Grissal). Also, optical profilometry and light microscopy demonstrated that on both granites algal aggregates developed in hollows. We attribute the roughly double levels of A. lobatus growth on reddish vs greyish granite to differences in the amount of radiant energy absorbed and the higher levels of red wavelength light (known to encourage algal growth) reflected from the reddish surface.
Collapse
Affiliation(s)
- Patricia Sanmartín
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK; Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Richard Grove
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | - Rafael Carballeira
- Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Heather Viles
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| |
Collapse
|
25
|
Miles JA, Davies TA, Hayman RD, Lorenzen G, Taylor J, Anjarwalla M, Allen SJR, Graham JWD, Taylor PC. A Case Study of Eukaryogenesis: The Evolution of Photoreception by Photolyase/Cryptochrome Proteins. J Mol Evol 2020; 88:662-673. [PMID: 32979052 PMCID: PMC7560933 DOI: 10.1007/s00239-020-09965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/05/2020] [Indexed: 11/23/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotes, is still poorly understood. Herein, we show how a detailed all-kingdom phylogenetic analysis overlaid with a map of key biochemical features can provide valuable clues. The photolyase/cryptochrome family of proteins are well known to repair DNA in response to potentially harmful effects of sunlight and to entrain circadian rhythms. Phylogenetic analysis of photolyase/cryptochrome protein sequences from a wide range of prokaryotes and eukaryotes points to a number of horizontal gene transfer events between ancestral bacteria and ancestral eukaryotes. Previous experimental research has characterised patterns of tryptophan residues in these proteins that are important for photoreception, specifically a tryptophan dyad, a canonical tryptophan triad, an alternative tryptophan triad, a tryptophan tetrad and an alternative tetrad. Our results suggest that the spread of the different triad and tetrad motifs across the kingdoms of life accompanied the putative horizontal gene transfers and is consistent with multiple bacterial contributions to eukaryogenesis.
Collapse
Affiliation(s)
- Jennifer A Miles
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Thomas A Davies
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Robert D Hayman
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Georgia Lorenzen
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jamie Taylor
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Mubeena Anjarwalla
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sammie J R Allen
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - John W D Graham
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Paul C Taylor
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
26
|
Matsuo T, Iida T, Ohmura A, Gururaj M, Kato D, Mutoh R, Ihara K, Ishiura M. The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008814. [PMID: 32555650 PMCID: PMC7299327 DOI: 10.1371/journal.pgen.1008814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/29/2020] [Indexed: 01/20/2023] Open
Abstract
The circadian clocks in chlorophyte algae have been studied in two model organisms, Chlamydomonas reinhardtii and Ostreococcus tauri. These studies revealed that the chlorophyte clocks include some genes that are homologous to those of the angiosperm circadian clock. However, the genetic network architectures of the chlorophyte clocks are largely unknown, especially in C. reinhardtii. In this study, using C. reinhardtii as a model, we characterized RHYTHM OF CHLOROPLAST (ROC) 75, a clock gene encoding a putative GARP DNA-binding transcription factor similar to the clock proteins LUX ARRHYTHMO (LUX, also called PHYTOCLOCK 1 [PCL1]) and BROTHER OF LUX ARRHYTHMO (BOA, also called NOX) of the angiosperm Arabidopsis thaliana. We observed that ROC75 is a day/subjective day-phase-expressed nuclear-localized protein that associates with some night-phased clock genes and represses their expression. This repression may be essential for the gating of reaccumulation of the other clock-related GARP protein, ROC15, after its light-dependent degradation. The restoration of ROC75 function in an arrhythmic roc75 mutant under constant darkness leads to the resumption of circadian oscillation from the subjective dawn, suggesting that the ROC75 restoration acts as a morning cue for the C. reinhardtii clock. Our study reveals a part of the genetic network of C. reinhardtii clock that could be considerably different from that of A. thaliana.
Collapse
Affiliation(s)
- Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- * E-mail:
| | - Takahiro Iida
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Ayumi Ohmura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Malavika Gururaj
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Daisaku Kato
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Risa Mutoh
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Masahiro Ishiura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
27
|
Abstract
Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein-protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
28
|
Cloning, expression, and characterization of a novel plant type cryptochrome gene from the green alga Haematococcus pluvialis. Protein Expr Purif 2020; 172:105633. [PMID: 32259580 DOI: 10.1016/j.pep.2020.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 11/20/2022]
Abstract
A full-length cDNA sequence of plant type CRY (designated Hae-P-CRY) was cloned from the green alga Haematococcus pluvialis. The cDNA sequence was 3608 base pairs (bp) in length, which contained a 2988-bp open reading frame encoding 995 amino acids with molecular mass of 107.7 kDa and isoelectric point of 6.19. Multiple alignment analysis revealed that the deduced amino acid sequence of Hae-P-CRY shared high identity of 47-66% with corresponding plant type CRYs from other eukaryotes. The catalytic motifs of plant type CRYs were detected in the amino acid sequence of Hae-P-CRY including the typical PHR and CTE domains. Phylogenetic analysis showed that the Hae-P-CRY was grouped together with other plant type CRYs from green algae and higher plants, which distinguished from other distinct groups. The transcriptional level of Hae-P-CRY was strongly decreased after 0-4 h under HL stress. In addition, the Hae-P-CRY gene was heterologously expressed in Escherichia coli BL21 (DE3) and successfully purified. The typical spectroscopic characteristics of plant type CRYs were present in Hae-P-CRY indicated that it may be an active enzyme, which provided valuable clue for further functional investigation in the green alga H. pluvialis. These results lay the foundation for further function and interaction protein identification involved in CRYs mediated signal pathway under HL stress in H. pluvialis.
Collapse
|
29
|
Oldemeyer S, Haddad AZ, Fleming GR. Interconnection of the Antenna Pigment 8-HDF and Flavin Facilitates Red-Light Reception in a Bifunctional Animal-like Cryptochrome. Biochemistry 2019; 59:594-604. [PMID: 31846308 DOI: 10.1021/acs.biochem.9b00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptochromes are ubiquitous flavin-binding light sensors closely related to DNA-repairing photolyases. The animal-like cryptochrome CraCRY from the green alga Chlamydomonas reinhardtii challenges the paradigm of cryptochromes as pure blue-light receptors by acting as a (6-4) photolyase, using 8-hydroxy-5-deazaflavin (8-HDF) as a light-harvesting antenna with a 17.4 Å distance to flavin and showing spectral sensitivity up to 680 nm. The expanded action spectrum is attributed to the presence of the flavin neutral radical (FADH•) in the dark, despite a rapid FADH• decay observed in vitro in samples exclusively carrying flavin. Herein, the red-light response of CraCRY carrying flavin and 8-HDF was studied, revealing a 3-fold prolongation of the FADH• lifetime in the presence of 8-HDF. Millisecond time-resolved ultraviolet-visible spectroscopy showed the red-light-induced formation and decay of an absorbance band at 458 nm concomitant with flavin reduction. Time-resolved Fourier transform infrared (FTIR) spectroscopy and density functional theory attributed these changes to the deprotonation of 8-HDF, challenging the paradigm of 8-HDF being permanently deprotonated in photolyases. FTIR spectra showed changes in the hydrogen bonding network of asparagine 395, a residue suggested to indirectly control flavin protonation, indicating the involvement of N395 in the stabilization of FADH•. Fluorescence spectroscopy revealed a decrease in the energy transfer efficiency of 8-HDF upon flavin reduction, possibly linked to 8-HDF deprotonation. The discovery of the interdependence of flavin and 8-HDF beyond energy transfer processes highlights the essential role of the antenna, introducing a new concept enabling CraCRY and possibly other bifunctional cryptochromes to fulfill their dual function.
Collapse
Affiliation(s)
- Sabine Oldemeyer
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Andrew Z Haddad
- Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Graham R Fleming
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Kavli Energy Nanoscience Institute , Berkeley , California 94720 , United States
| |
Collapse
|
30
|
Lacombat F, Espagne A, Dozova N, Plaza P, Müller P, Brettel K, Franz-Badur S, Essen LO. Ultrafast Oxidation of a Tyrosine by Proton-Coupled Electron Transfer Promotes Light Activation of an Animal-like Cryptochrome. J Am Chem Soc 2019; 141:13394-13409. [PMID: 31368699 DOI: 10.1021/jacs.9b03680] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The animal-like cryptochrome of Chlamydomonas reinhardtii (CraCRY) is a recently discovered photoreceptor that controls the transcriptional profile and sexual life cycle of this alga by both blue and red light. CraCRY has the uncommon feature of efficient formation and longevity of the semireduced neutral form of its FAD cofactor upon blue light illumination. Tyrosine Y373 plays a crucial role by elongating , as fourth member, the electron transfer (ET) chain found in most other cryptochromes and DNA photolyases, which comprises a conserved tryptophan triad. Here, we report the full mechanism of light-induced FADH• formation in CraCRY using transient absorption spectroscopy from hundreds of femtoseconds to seconds. Electron transfer starts from ultrafast reduction of excited FAD to FAD•- by the proximal tryptophan (0.4 ps) and is followed by delocalized migration of the produced WH•+ radical along the tryptophan triad (∼4 and ∼50 ps). Oxidation of Y373 by coupled ET to WH•+ and deprotonation then proceeds in ∼800 ps, without any significant kinetic isotope effect, nor a pH effect between pH 6.5 and 9.0. The FAD•-/Y373• pair is formed with high quantum yield (∼60%); its intrinsic decay by recombination is slow (∼50 ms), favoring reduction of Y373• by extrinsic agents and protonation of FAD•- to form the long-lived, red-light absorbing FADH• species. Possible mechanisms of tyrosine oxidation by ultrafast proton-coupled ET in CraCRY, a process about 40 times faster than the archetypal tyrosine-Z oxidation in photosystem II, are discussed in detail.
Collapse
Affiliation(s)
- Fabien Lacombat
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Agathe Espagne
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Nadia Dozova
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Pascal Plaza
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Pavel Müller
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex , France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex , France
| | - Sophie Franz-Badur
- Department of Chemistry, Center for Synthetic Microbiology , Philipps University , 35032 Marburg , Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Center for Synthetic Microbiology , Philipps University , 35032 Marburg , Germany
| |
Collapse
|
31
|
Time-Resolved Infrared and Visible Spectroscopy on Cryptochrome aCRY: Basis for Red Light Reception. Biophys J 2019; 117:490-499. [PMID: 31326107 DOI: 10.1016/j.bpj.2019.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
Cryptochromes function as flavin-binding photoreceptors in bacteria, fungi, algae, land plants, and insects. The discovery of an animal-like cryptochrome in the green alga Chlamydomonas reinhardtii has expanded the spectral range of sensitivity of these receptors from ultraviolet A/blue light to almost the complete visible spectrum. The broadened light response has been explained by the presence of the flavin neutral radical as a chromophore in the dark. Concomitant with photoconversion of the flavin, an unusually long-lived tyrosyl radical with a red-shifted ultraviolet-visible spectrum is formed, which is essential for the function of the receptor. In this study, the microenvironment of this key residue, tyrosine 373, was scrutinized using time-resolved Fourier transform infrared spectroscopy on several variants of animal-like cryptochrome and density functional theory for band assignment. The reduced tyrosine takes on distinct hydrogen bond scenarios depending on the presence of the C-terminal extension and of a neighboring cysteine. Upon radical formation, all variants showed a signal at 1400 cm-1, which we assigned to the ν7'a marker band of the CO stretching mode. The exceptionally strong downshift of this band cannot be attributed to a loss of hydrogen bonding only. Time-resolved ultraviolet-visible spectroscopy on W322F, a mutant of the neighboring tryptophan residue, revealed a decrease of the tyrosyl radical lifetime by almost two orders of magnitude, along with a shift of the absorbance maximum from 416 to 398 nm. These findings strongly support the concept of a π-π stacking as an apolar interaction between Y373 and W322 to be responsible for the characteristics of the tyrosyl radical. This concept of radical stabilization has been unknown to cryptochromes so far but might be highly relevant for other homologs with a tetrad of tryptophans and tyrosines as electron donors.
Collapse
|
32
|
Franz S, Ignatz E, Wenzel S, Zielosko H, Putu E, Maestre-Reyna M, Tsai MD, Yamamoto J, Mittag M, Essen LO. Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii. Nucleic Acids Res 2019; 46:8010-8022. [PMID: 30032195 PMCID: PMC6125616 DOI: 10.1093/nar/gky621] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Photolyases and cryptochromes form an almost ubiquitous family of blue light photoreceptors involved in the repair and maintenance of DNA integrity or regulatory control. We found that one cryptochrome from the green alga Chlamydomonas reinhardtii (CraCRY) is capable of both, control of transcript levels and the sexual cycle of the alga in a positive (germination) and negative manner (mating ability), as well as catalyzing the repair of UV-DNA lesions. Its 1.6 Å crystal structure shows besides the FAD chromophore an aromatic tetrad that is indispensable in animal-like type I cryptochromes for light-driven change of their signaling-active redox state and formation of a stable radical pair. Given CraCRY’s catalytic activity as (6-4) photolyase in vivo and in vitro, we present the first co-crystal structure of a cryptochrome with duplex DNA comprising a (6-4) pyrimidine–pyrimidone lesion. This 2.9 Å structure reveals a distinct conformation for the catalytic histidine His1, H357, that challenges previous models of a single-photon driven (6-4) photolyase mechanism.
Collapse
Affiliation(s)
- Sophie Franz
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Elisabeth Ignatz
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Sandra Wenzel
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Hannah Zielosko
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | | | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Taipei 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Taipei 115, Taiwan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
- LOEWE Center of Synthetic Microbiology, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
- To whom correspondence should be addressed. Tel: +49 6421/28 22032; Fax: +49 6421/28 22012;
| |
Collapse
|
33
|
Luan H, Yao J, Chen Z, Duan D. The 40S Ribosomal Protein S6 Response to Blue Light by Interaction with SjAUREO in Saccharina japonica. Int J Mol Sci 2019; 20:E2414. [PMID: 31096691 PMCID: PMC6566693 DOI: 10.3390/ijms20102414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Blue light (BL) plays an important role in regulation of the growth and development of aquatic plants and land plants. Aureochrome (AUREO), the recent BL photoreceptor identified in photosynthetic stramenopile algae, is involved in the photomorphogenesis and early development of Saccharina japonica porophytes (kelp). However the factors that interact with the SjAUREO under BL conditions specifically are not clear. Here in our study, three high quality cDNA libraries with CFU over 5 × 106 and a recombination rate of 100% were constructed respectively through white light (WL), BL and darkness (DK) treatments to the juvenile sporophytes. Based on the constructed cDNA libraries, the interactors of SjAUREO were screened and analyzed. There are eighty-four genes encoding the sixteen predicted proteins from the BL cDNA library, sixty-eight genes encoding eighteen predicted proteins from the DK cDNA library, and seventy-four genes encoding nineteen proteins from the WL cDNA library. All the predicted proteins are presumed to interact with SjAUREO when co-expressed with SjAUREO seperately. The 40S ribosomal protein S6 (RPS6), which only exists in the BL treated cDNA library except for two other libraries, and which is essential for cell proliferation and is involved in cell cycle progression, was selected for detailed analysis. We showed that its transcription was up-regulated by BL, and was highly transcribed in the basal blade (meristem region) of juvenile sporophytes but less in the distal part. Taken together, our results indicated that RPS6 was highly involved in BL-mediated kelp cellular division and photomorphogenesis by interacting with SjAUREO.
Collapse
Affiliation(s)
- Hexiang Luan
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jianting Yao
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhihang Chen
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- University of the Chinese Academy of Sciences, Beijing 100093, China.
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
34
|
Tian Y, Gao S, von der Heyde EL, Hallmann A, Nagel G. Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases. BMC Biol 2018; 16:144. [PMID: 30522480 PMCID: PMC6284317 DOI: 10.1186/s12915-018-0613-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two—the channelrhodopsins—were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics. Results Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called “two-component cyclase opsins” (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery. Conclusions Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery. Electronic supplementary material The online version of this article (10.1186/s12915-018-0613-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuehui Tian
- Botanik I, Julius-Maximilians-Universität Würzburg, Biozentrum, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Shiqiang Gao
- Botanik I, Julius-Maximilians-Universität Würzburg, Biozentrum, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany.
| | - Eva Laura von der Heyde
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Georg Nagel
- Botanik I, Julius-Maximilians-Universität Würzburg, Biozentrum, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany.
| |
Collapse
|
35
|
Kar RK, Borin VA, Ding Y, Matysik J, Schapiro I. Spectroscopic Properties of Lumiflavin: A Quantum Chemical Study. Photochem Photobiol 2018; 95:662-674. [DOI: 10.1111/php.13023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Rajiv Kumar Kar
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry Hebrew University of Jerusalem Jerusalem Israel
| | - Veniamin A. Borin
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry Hebrew University of Jerusalem Jerusalem Israel
| | - Yonghong Ding
- Institute of Analytical Chemistry University of Leipzig Leipzig Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry University of Leipzig Leipzig Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
36
|
Abstract
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry, City College of New York , New York , New York 10031 , United States.,Ph.D. Programs in Biochemistry, Chemistry, and Biology , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , 95447 Bayreuth , Germany.,Research Center for Bio-Macromolecules , Universität Bayreuth , 95447 Bayreuth , Germany.,Bayreuth Center for Biochemistry & Molecular Biology , Universität Bayreuth , 95447 Bayreuth , Germany
| |
Collapse
|
37
|
Wagner V, Mittag M. Growth of Chlamydomonas reinhardtii under Circadian Conditions. Bio Protoc 2018. [DOI: 10.21769/bioprotoc.2982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
38
|
Affiliation(s)
- Maria Mittag
- Friedrich Schiller University Jena, Jena, Germany.
| | | |
Collapse
|
39
|
Essen LO, Franz S, Banerjee A. Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:27-37. [PMID: 28756992 DOI: 10.1016/j.jplph.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Blue-light reception plays a pivotal role for algae to adapt to changing environmental conditions. In this review we summarize the current structural and mechanistic knowledge about flavin-dependent algal photoreceptors. We especially focus on the cryptochrome and aureochrome type photoreceptors in the context of their evolutionary divergence. Despite similar photochemical characteristics to orthologous photoreceptors from higher plants and animals the algal blue-light photoreceptors have developed a set of unique structural and mechanistic features that are summarized below.
Collapse
Affiliation(s)
- Lars-Oliver Essen
- Department of Biochemistry, Philipps-University, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology, Philipps-University, 35043 Marburg, Germany.
| | - Sophie Franz
- Department of Biochemistry, Philipps-University, 35043 Marburg, Germany
| | - Ankan Banerjee
- Department of Biochemistry, Philipps-University, 35043 Marburg, Germany
| |
Collapse
|
40
|
Kroth PG, Wilhelm C, Kottke T. An update on aureochromes: Phylogeny - mechanism - function. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:20-26. [PMID: 28797596 DOI: 10.1016/j.jplph.2017.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 05/20/2023]
Abstract
Light is important for algae, as it warrants metabolic independence via photosynthesis. In addition to the absorption of light by the photosystems, algae possess a variety of specific photoreceptors that allow the quantification of the light fluxes as well as the assessment of light qualities. About a decade ago, aureochromes have been described in the xanthophyte alga Vaucheria frigida. These proteins represent a new type of blue light photoreceptor as they possess both a light-oxygen-voltage (LOV) domain for light reception as well as a basic region leucine zipper (bZIP) domain for DNA binding, indicating that they represent light-driven transcription factors. Aureochromes so far have been detected only in a single group of algae, photosynthetic stramenopiles, but not in any other prokaryotic or eukaryotic organisms. Recent biophysical work on aureochromes in the absence and the presence of DNA revealed the mechanism of allosteric communication between the sensor and effector domains despite their unusual inversed arrangement. Different molecular models have been proposed to describe the effect of light on DNA binding. Functional characterization of mutants of the diatom Phaeodactylum tricornutum, in which the aureochrome genes have been silenced or deleted, indicate that different aureochromes may have different functions, being involved in central processes like light acclimation and regulation of the cell cycle.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
41
|
König S, Juhas M, Jäger S, Kottke T, Büchel C. The cryptochrome-photolyase protein family in diatoms. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:15-19. [PMID: 28720252 DOI: 10.1016/j.jplph.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
The cryptochrome - photolyase family (CPF) consists of homologous flavoproteins having completely different functions involving DNA repair, circadian rhythm and/or photoreception. From the original photolyases, working either as (6-4) or cyclobutane pyrimidine dimer photolyases, the animal- and plant-type cryptochromes, respectively, evolved and also the more intermediate DASH cryptochromes. Whereas animal cryptochromes work mostly in clock-related functions, plant cryptochromes are also directly involved in developmental processes such as hypocotyl elongation or flower induction. In diatoms, all types of cryptochromes and photolyases were predicted from genome sequences. However, up to now only two proteins have been characterised in more detail, CPF1 and CryP. CPF1 is related to animal-type cryptochromes, but works as a (6-4) photolyase in addition to having photoreceptor functions. It was shown to interact with the CLOCK:Bmal1 heterodimer in a heterologous system, and thus is probably involved in clock-related processes. Moreover, CPF1 directly influences transcription. The latter was also true for CryP, which is a cryptochrome distantly related to plant-type cryptochromes. In addition, CryP influences light-harvesting protein accumulation. For all diatom cryptochromes, down-stream signalling has to proceed via interaction partners different from the classical proteins involved in cryptochrome signalling in higher plants, because these candidates are missing in diatoms.
Collapse
Affiliation(s)
- Sarah König
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Matthias Juhas
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefanie Jäger
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany.
| |
Collapse
|