1
|
Geng K, Zhan Z, Xue X, Hou C, Li D, Wang Z. Genome‑wide identification of the SWEET gene family in grape ( Vitis vinifera L.) and expression analysis of VvSWEET14a in response to water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1565-1579. [PMID: 39310704 PMCID: PMC11413283 DOI: 10.1007/s12298-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024]
Abstract
Sugars are considered primary metabolites that determine the flavor and quality of grape berries, also playing a crucial role in the plants to resist stress. Sugars Will Eventually be Exported Transporters (SWEETs) gene family has been previously reported to be involved in the growth and development of grape, while the changes in transcriptional levels under water stress remain unclear. In this study, sixteen grape SWEETs members were identified and annotated based on their homologous genes in Arabidopsis and tomato, they were classified into four clades (Clades I to IV) with VvSWEETs by phylogenetic analysis. The highly conserved motifs and gene structures of VvSWEETs indicate that they are closely evolutionary conservation. Chromosomal localization and synteny analysis found that VvSWEETs were unevenly distributed on 11 chromosomes, and the VvSWEET5a, VvSWEET5b, VvSWEET14b and VvSWEET14c existed a relatively recent evolutionary relationship. Promoter cis-acting elements showed that the clade III has more ABRE motif, especially the VvSWEET14a. The regulation of VvSWEETs is mainly influenced by the Dof and MYB families, which are associated with grape ripening, while VvSWEET14a is closely related to the bHLH, MYB, NAC, and bZIP families. RT-qPCR data and subcellular localization show that VvSWEET14a was highly induced under early water stress and is located in the vacuole membrane. The instantaneous transformation assay identified that this gene could promote to transport hexose in the vacuole to maintain normal osmotic pressure. In summary, our study provides a basis for further research on SWEET genes function and regulatory mechanism in the future, and lays the foundation for stress resistance breeding of Vitis vinifera. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01501-1.
Collapse
Affiliation(s)
- Kangqi Geng
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Zhennan Zhan
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Xiaobin Xue
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Chenyang Hou
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Dongmei Li
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Zhenping Wang
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| |
Collapse
|
2
|
Barreales D, Fernandes Â, Barros L, Capitão S, Castro Ribeiro A. Effects of regulated deficit irrigation and foliar kaolin application on quality parameters of almond [Prunus dulcis (Mill.) D.A. Webb]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7227-7240. [PMID: 37354200 DOI: 10.1002/jsfa.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Water stress during the growing season of the almond tree is the factor that most limits its yield. Different strategies have been studied in recent years to reduce its negative effects, such as deficit irrigation and the application of reflective spray compounds. A 3-year experiment (2019-2021) was set in a factorial design in which the effect of regulated deficit irrigation and foliar kaolin spray was evaluated on morphological characteristics (weight, length, width, and thickness of the nut and kernel, shell thickness, kernel yield, double kernels, and damaged kernels), color properties, nutritional value (carbohydrates, fat, proteins and ash) and chemical parameters (free sugars and fatty acids profiles). RESULTS In general, the significant differences between the treatments did not have a similar trend in the 3 years of the study. Regulated deficit irrigation and kaolin had no detrimental impact on almond morphological and color characteristics. The almond free sugars concentration was relatively stable under deficit irrigation and kaolin application. On the other hand, kaolin application positively affected the synthesis of linoleic acid. CONCLUSION Reducing the amount of irrigation water applied to almonds contributes to the sustainability of production without negatively affecting quality and even improving some quality parameters. In general, the foliar application of kaolin did not show significant differences in the evaluated morphological parameters. However, in terms of chemical composition, kaolin led to an increase in the concentration of linoleic acid and sucrose. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- David Barreales
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, León, Spain
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Susana Capitão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - António Castro Ribeiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
3
|
Zhang S, Wang H, Wang T, Zhang J, Liu W, Fang H, Zhang Z, Peng F, Chen X, Wang N. Abscisic acid and regulation of the sugar transporter gene MdSWEET9b promote apple sugar accumulation. PLANT PHYSIOLOGY 2023; 192:2081-2101. [PMID: 36815241 PMCID: PMC10315282 DOI: 10.1093/plphys/kiad119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Enhancing fruit sugar contents, especially for high-flavonoid apples with a sour taste, is one of the main goals of horticultural crop breeders. This study analyzed sugar accumulation and the underlying mechanisms in the F2 progenies of a hybridization between the high-sugar apple (Malus × domestica) variety "Gala" and high-flavonoid apple germplasm "CSR6R6". We revealed that MdSWEET9b (sugars will eventually be exported transporter) helps mediate sugar accumulation in fruits. Functional characterization of MdSWEET9b in yeast mutants lacking sugar transport as well as in overexpressing and CRISPR/Cas9 knockdown apple calli revealed MdSWEET9b could transport sucrose specifically, ultimately promoting normal yeast growth and accumulation of total sugar contents. Moreover, MdWRKY9 bound to the MdSWEET9b promoter and regulated its activity, which responded to abscisic acid (ABA) signaling. Furthermore, MdWRKY9 interacted with MdbZIP23 (basic leucine zipper) and MdbZIP46, key ABA signal transducers, at the protein and DNA levels to enhance its regulatory effect on MdSWEET9b expression, thereby influencing sugar accumulation. Based on the contents of ABA in lines with differing sugar contents and the effects of ABA treatments on fruits and calli, we revealed ABA as one of the main factors responsible for the diversity in apple fruit sugar content. The results of this study have clarified how MdSWEET9b influences fruit sugar accumulation, while also further elucidating the regulatory effects of the ABA-signaling network on fruit sugar accumulation. This work provides a basis for future explorations of the crosstalk between hormone and sugar metabolism pathways.
Collapse
Affiliation(s)
- Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Hui Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Tong Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | | | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| |
Collapse
|
4
|
Bernardi LGP, Boaretto RM, Blain GC, Mattos-Jr D. Particle films improve photosynthesis of citrus trees under excess irradiance by reducing leaf temperature. PHYSIOLOGIA PLANTARUM 2023; 175:e13844. [PMID: 36539940 DOI: 10.1111/ppl.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
High irradiance and increased air temperature during extreme weather conditions affect tree crops and impact the yield and quality of fruits. Moreover, flowering and fruit set of Citrus are likely impaired by UV radiation and/or reduced carbon assimilation, which increase reactive oxygen species production and damage the leaf photosynthetic apparatus. Particle coating films sprayed on leaves have been offered as a way to minimize crop losses due to the climate change scenario, even though the extent of leaf protection is not characterized. We evaluated the use of two protective films on the oxidative stress and leaf photosynthesis of sweet orange trees exposed to varying daylight levels. Trees were maintained under full sun light, sprayed or not (control) with kaolin or calcium carbonate, and under reduced irradiance using either aluminum shade cloth 50% or anti-UV transparent plastic. Kaolin or calcium carbonate reflected 20%-30% of the incident light on the leaf surface compared to leaves not sprayed and under full sunlight. Leaves with coating exhibited improved CO2 assimilation and photosystem II efficiency, and lower leaf temperatures over time. In addition, the coating protected leaves against excess irradiance due to dissipation of excess energy into the photosynthetic apparatus (NPQt). Nonenzymatic mechanisms for UV protection, such as carotenoids, were higher in full sun control plants than in leaf-coated plants. Comparable responses were observed on trees maintained covered either by the cloth or the plastic film. Finally, we conclude that the use of suspension particles mitigates the harmful effects of excess UV irradiance and temperature in sweet orange trees.
Collapse
Affiliation(s)
- Lucas G P Bernardi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| | - Rodrigo M Boaretto
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| | | | - Dirceu Mattos-Jr
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| |
Collapse
|
5
|
Rogiers SY, Greer DH, Liu Y, Baby T, Xiao Z. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. FRONTIERS IN PLANT SCIENCE 2022; 13:1094633. [PMID: 36618637 PMCID: PMC9811181 DOI: 10.3389/fpls.2022.1094633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Compressed vintages, high alcohol and low wine acidity are but a few repercussions of climate change effects on Australian viticulture. While warm and cool growing regions may have different practical concerns related to climate change, they both experience altered berry and must composition and potentially reduced desirable wine characteristics and market value. Storms, drought and uncertain water supplies combined with excessive heat not only depress vine productivity through altered physiology but can have direct consequences on the fruit. Sunburn, shrivelling and altered sugar-flavour-aroma balance are becoming more prevalent while bushfires can result in smoke taint. Moreover, distorted pest and disease cycles and changes in pathogen geographical distribution have altered biotic stress dynamics that require novel management strategies. A multipronged approach to address these challenges may include alternative cultivars and rootstocks or changing geographic location. In addition, modifying and incorporating novel irrigation regimes, vine architecture and canopy manipulation, vineyard floor management, soil amendments and foliar products such as antitranspirants and other film-forming barriers are potential levers that can be used to manage the effects of climate change. The adoption of technology into the vineyard including weather, plant and soil sensors are giving viticulturists extra tools to make quick decisions, while satellite and airborne remote sensing allow the adoption of precision farming. A coherent and comprehensive approach to climate risk management, with consideration of the environment, ensures that optimum production and exceptional fruit quality is maintained. We review the preliminary findings and feasibility of these new strategies in the Australian context.
Collapse
Affiliation(s)
- Suzy Y. Rogiers
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Dennis H. Greer
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Yin Liu
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agriculture Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Tintu Baby
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Zeyu Xiao
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
6
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
7
|
Badim H, Vale M, Coelho M, Granell A, Gerós H, Conde A. Constitutive expression of VviNAC17 transcription factor significantly induces the synthesis of flavonoids and other phenolics in transgenic grape berry cells. FRONTIERS IN PLANT SCIENCE 2022; 13:964621. [PMID: 35968093 PMCID: PMC9372392 DOI: 10.3389/fpls.2022.964621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/08/2022] [Indexed: 05/29/2023]
Abstract
VviNAC17 is a grapevine transcription factor activated by ABA. Because ABA has been proposed as the main signal modulating the secondary metabolism in grape berry skins, here we postulated VviNAC17 as a positive regulator of secondary metabolism in grape cells. To validate the hypothesis, VviNAC17 was constitutively and stably overexpressed in grape berry suspension-cultured cells of Gamay Fréaux cv. by Agrobacterium-mediated transformation. Targeted transcriptional analyses by qPCR showed that several genes involved the phenylpropanoid (VviPAL1), stilbenoid (VviSTS1) and flavonoid pathways (VviDFR, VviLAR1, VviANR, VviLDOX, and VviUFGT1), as well as anthocyanin vacuolar transport and accumulation (VviGST4 and VvMATE1) were significantly upregulated in VviNAC17-overexpressing transgenic cells, which translated in the stimulation of a number of enzymatic activities in those pathways. This was the case of phenylalanine ammonia lyase (PAL) and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) that were about 2-fold and 3.5-fold higher in VviNAC17-overexpressing cells than in control cells. VviNAC17-overexpressing cells accumulated significantly higher amounts of anthocyanins, proanthocyanidins, total flavonoids and total phenolics. These findings confirmed that VviNAC17 is an important positive regulator of secondary metabolism in grapevine contributing to the accumulation of important berry quality-related secondary metabolites.
Collapse
Affiliation(s)
- Hélder Badim
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Mariana Vale
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Marco Coelho
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia, Spain
| | - Hernâni Gerós
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
- Department of Biological Engineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Artur Conde
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Bernardo S, Dinis LT, Machado N, Barros A, Pitarch-Bielsa M, Malheiro AC, Gómez-Cadenas A, Moutinho-Pereira J. Uncovering the effects of kaolin on balancing berry phytohormones and quality attributes of Vitis vinifera grown in warm-temperate climate regions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:782-793. [PMID: 34227127 DOI: 10.1002/jsfa.11413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The application of kaolin particle film is considered a short-term strategy against several environmental stresses in areas with a Mediterranean-like climate. However, it is known that temperature fluctuations and water availability over the season can jeopardize kaolin efficiency in many Mediterranean crops. Hence, this study aims to evaluate the effects of kaolin foliar application on berry phytohormones, antioxidant defence, and oenological parameters at veraison and harvest stages of Touriga-Franca (TF) and Touriga-Nacional (TN) grapevines in two growing seasons (2017 and 2018). The 2017 growing season was considered the driest (-147.1 dryness index) and the warmest (2705 °C growing degree days) of the study. RESULTS In 2017, TF kaolin-treated berries showed lower salicylic acid (-26.6% compared with unsprayed vines) and abscisic acid (ABA) (-10.5%) accumulation at veraison, whereas salicylic acid increased up to 28.8% at harvest. In a less hot season, TN and TF kaolin-treated grapevines showed a twofold in ABA content and a threefold increase in the indole-3-acetic acid content at veraison and lower ABA levels (83.8%) compared with unsprayed vines at harvest. Treated berries showed a decreased sugar content, without compromising malic and tartaric acid levels, and reactive oxygen species accumulation throughout berry ripening. CONCLUSION The results suggest kaolin exerts a delaying effect in triggering ripening-related processes under severe summer stress conditions. Treated berries responded with improved antioxidant defence and phytohormone balance, showing significant interactions between kaolin treatment, variety, and developmental stage in both assessed years. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Bernardo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Lia-Tânia Dinis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Nelson Machado
- CoLAB Vines&Wines - National Collaborative Laboratory for the Portuguese Wine Sector, Associação para o Desenvolvimento da Viticultura Duriense (ADVID), Vila Real, Portugal
| | - Ana Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Marta Pitarch-Bielsa
- Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aureliano C Malheiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Aurelio Gómez-Cadenas
- Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
9
|
de Abreu DP, Roda NDM, de Abreu GP, Bernado WDP, Rodrigues WP, Campostrini E, Rakocevic M. Kaolin Film Increases Gas Exchange Parameters of Coffee Seedlings During Transference From Nursery to Full Sunlight. FRONTIERS IN PLANT SCIENCE 2022; 12:784482. [PMID: 35069643 PMCID: PMC8777232 DOI: 10.3389/fpls.2021.784482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Increases in water use efficiency (WUE) and the reduction of negative impacts of high temperatures associated with high solar radiation are being achieved with the application of fine particle film of calcined and purified kaolin (KF) on the leaves and fruits of various plant species. KF was applied on young Coffea arabica and Coffea canephora plants before their transition from nursery to full sunlight during autumn and summer. The effects of KF were evaluated through the responses of leaf temperature (Tleaf), net CO2 assimilation rate (A), stomatal conductance (g s), transpiration (E), WUE, crop water stress index (CWSI), index of relative stomatal conductance (Ig), initial fluorescence (F0), and photosynthetic index (PI) in the first 2-3 weeks after the plant transitions to the full sun. All measurements were performed at midday. In Coffea plants, KF decreased the Tleaf up to 6.7°C/5.6°C and reduced the CWSI. The plants that were not protected with KF showed lower A, g s, E, and Ig than those protected with KF. C. canephora plants protected with KF achieved higher WUE compared with those not protected by 11.23% in autumn and 95.58% in summer. In both Coffea sp., KF application reduced F0, indicating reduced physical dissociation of the PSII reaction centers from the light-harvesting system, which was supported with increased PI. The use of KF can be recommended as a management strategy in the transition of Coffea seedlings from the nursery shade to the full sunlight, to protect leaves against the excessive solar radiation and high temperatures, especially in C. canephora during the summer.
Collapse
Affiliation(s)
- Deivisson Pelegrino de Abreu
- Laboratory for Plant Genetic Breeding (LMGV), State University of the North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Newton de Matos Roda
- Department of Exact, Environmental and Technological Sciences (CEATEC), Pontifical Catholic University of Campinas, Campinas, Brazil
| | - Gideao Pelegrino de Abreu
- Business School and Polytechnic School, MBA in Business Technology, Data Science and Big Data, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wallace de Paula Bernado
- Laboratory for Plant Genetic Breeding (LMGV), State University of the North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Weverton Pereira Rodrigues
- Laboratory for Plant Genetic Breeding (LMGV), State University of the North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
- Center of Agricultural, Natural and Literary Sciences, State University of the Tocantina Region of Maranhão (UEMASUL), Estreito, Maranhão, Brazil
| | - Eliemar Campostrini
- Laboratory for Plant Genetic Breeding (LMGV), State University of the North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Miroslava Rakocevic
- Laboratory for Plant Genetic Breeding (LMGV), State University of the North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Garrido A, De Vos RCH, Conde A, Cunha A. Light Microclimate-Driven Changes at Transcriptional Level in Photosynthetic Grape Berry Tissues. PLANTS 2021; 10:plants10091769. [PMID: 34579302 PMCID: PMC8465639 DOI: 10.3390/plants10091769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Viticulture practices that change the light distribution in the grapevine canopy can interfere with several physiological mechanisms, such as grape berry photosynthesis and other metabolic pathways, and consequently impact the berry biochemical composition, which is key to the final wine quality. We previously showed that the photosynthetic activity of exocarp and seed tissues from a white cultivar (Alvarinho) was in fact responsive to the light microclimate in the canopy (low and high light, LL and HL, respectively), and that these different light microclimates also led to distinct metabolite profiles, suggesting a berry tissue-specific interlink between photosynthesis and metabolism. In the present work, we analyzed the transcript levels of key genes in exocarps and seed integuments of berries from the same cultivar collected from HL and LL microclimates at three developmental stages, using real-time qPCR. In exocarp, the expression levels of genes involved in carbohydrate metabolism (VvSuSy1), phenylpropanoid (VvPAL1), stilbenoid (VvSTS1), and flavan-3-ol synthesis (VvDFR, VvLAR2, and VvANR) were highest at the green stage. In seeds, the expression of several genes associated with both phenylpropanoid (VvCHS1 and VvCHS3) and flavan-3-ol synthesis (VvDFR and VvLAR2) showed a peak at the véraison stage, whereas that of RuBisCO was maintained up to the mature stage. Overall, the HL microclimate, compared to that of LL, resulted in a higher expression of genes encoding elements associated with both photosynthesis (VvChlSyn and VvRuBisCO), carbohydrate metabolism (VvSPS1), and photoprotection (carotenoid pathways genes) in both tissues. HL also induced the expression of the VvFLS1 gene, which was translated into a higher activity of the FLS enzyme producing flavonol-type flavonoids, whereas the expression of several other flavonoid pathway genes (e.g., VvCHS3, VvSTS1, VvDFR, and VvLDOX) was reduced, suggesting a specific role of flavonols in photoprotection of berries growing in the HL microclimate. This work suggests a possible link at the transcriptional level between berry photosynthesis and pathways of primary and secondary metabolism, and provides relevant information for improving the management of the light microenvironment at canopy level of the grapes.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Correspondence: (A.G.); (A.C.)
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.G.); (A.C.)
| |
Collapse
|
11
|
Walker RP, Bonghi C, Varotto S, Battistelli A, Burbidge CA, Castellarin SD, Chen ZH, Darriet P, Moscatello S, Rienth M, Sweetman C, Famiani F. Sucrose Metabolism and Transport in Grapevines, with Emphasis on Berries and Leaves, and Insights Gained from a Cross-Species Comparison. Int J Mol Sci 2021; 22:7794. [PMID: 34360556 PMCID: PMC8345980 DOI: 10.3390/ijms22157794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In grapevines, as in other plants, sucrose and its constituents glucose and fructose are fundamentally important and carry out a multitude of roles. The aims of this review are three-fold. First, to provide a summary of the metabolism and transport of sucrose in grapevines, together with new insights and interpretations. Second, to stress the importance of considering the compartmentation of metabolism. Third, to outline the key role of acid invertase in osmoregulation associated with sucrose metabolism and transport in plants.
Collapse
Affiliation(s)
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, 35020 Legnaro, Italy;
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, 35020 Legnaro, Italy;
| | - Alberto Battistelli
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 05010 Porano, Italy; (A.B.); (S.M.)
| | | | - Simone D. Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 0Z4, Canada;
| | - Zhi-Hui Chen
- College of Life Science, University of Dundee, Dundee DD1 5EH, UK;
| | - Philippe Darriet
- Cenologie, Institut des Sciences de la Vigne et du Vin (ISVV), 33140 Villenave d’Ornon, France;
| | - Stefano Moscatello
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 05010 Porano, Italy; (A.B.); (S.M.)
| | - Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, 1260 Nyon, Switzerland;
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia;
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy
| |
Collapse
|
12
|
Vasylenko O, Kondratenko T, Havryliuk O, Andrusyk Y, Kutovenko V, Dmytrenko Y, Grevtseva N, Marchyshyna Y. The study of the productivity potential of grape varieties according to the indicators of functional activity of leaves. POTRAVINARSTVO 2021. [DOI: 10.5219/1638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic activity in the leaf of ten grape varieties was studied in the conditions of the northern part of Forest-Steppe of Ukraine. From 2019 to 2020 meteorological data were recorded by the ‟Meteotrekˮ meteorological station. The influence of weather conditions of the spring-summer period at the beginning of the vegetation phases, which in 2019 took place on average 12 days earlier than in 2020, was noted. Analysis of changes in the induction of chlorophyll fluorescence (ICF) in leaves revealed the more efficient use of quantum energy of absorbed light by F0 in the leaves of most varieties was noted in the phase “the beginning of berry ripening”. During the three periods of the study, the varieties Aromatnyj, Zagadka, Ilichevskij rannij, and Kardishah showed a lower content of chlorophyll molecules, which do not have a functional connection with the reaction centers (RC). According to the Fp index the highest intensity of photosynthesis on average for all varieties was observed in the phase “the beginning of ovary growth”, the lowest – “the inflorescence is visible”. The potential productivity of grape plants determined by the ICF coefficient for all varieties was at a very high level and had a weak or moderate correlation with weather conditions during the growing season. The hydrothermal coefficient and Σ act t ≥10 °С had a weak effect on the efficiency of the light phase of photosynthesis (Ki) and a noticeable one (correlation coefficient r = 0.50 – 0.69) on the efficiency of dark photochemical processes (Rfd) in the leaves of most grape varieties.
Collapse
|
13
|
Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. PLANT PHYSIOLOGY 2021; 186:836-852. [PMID: 33724398 PMCID: PMC8195505 DOI: 10.1093/plphys/kiab127] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant-pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant-pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Author for communication:
| | - Hélder Badim
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
| | - Ana Margarida Fortes
- Lisbon Science Faculty, BioISI, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Centre of Biological Engineering (CEB), Department of Engineering, University of Minho, Braga 4710-057, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia 46022, Spain
| |
Collapse
|
14
|
Bernardo S, Dinis LT, Luzio A, Machado N, Vives-Peris V, López-Climent MF, Gómez-Cadenas A, Zacarías L, Rodrigo MJ, Malheiro AC, Correia C, Moutinho-Pereira J. Particle film technology modulates xanthophyll cycle and photochemical dynamics of grapevines grown in the Douro Valley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:647-655. [PMID: 33774469 DOI: 10.1016/j.plaphy.2021.03.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Field-grown grapevines are often exposed to multiple environmental stresses, which challenges wine-growers to develop sustainable measures to sustain vine growth, yield, and quality. Under field conditions this task is demanding, due to differences in the magnitudes of stresses and associated plant responses. In this study we explored the hypothesis that kaolin-particle film application improves grapevine photoprotection through the regulation of xanthophyll cycle genes, limiting the thermal dissipation of excess energy under harsh environmental conditions. Hence, we selected two grapevine varieties, Touriga-Nacional (TN) and Touriga-Franca (TF), grown in the Douro Demarcated Region, and evaluated changes in light dissipation mechanisms, xanthophyll cycle components, and the expression of xanthophyll cycle genes during the 2017 summer season. The results showed that, from veraison to ripening, kaolin triggered the up-regulation of violaxanthin de-epoxidase (VvVDE1) and zeaxanthin epoxidase (VvZEP1) genes, indicating optimised regulation of the xanthophyll cycle. Kaolin treatment also decreased chlorophyll (Chla, Chlb, Chl(a+b)) and carotenoid (Car) accumulation under increasing summer stress conditions in both varieties and lowered the non-photochemical quenching (NPQ) of grapevines on ripening, suggesting a long-term response to summer stress. In addition, kaolin-treated grapevines showed increased Chla/Chlb and lower Chl(a+b)/Car ratios, displaying some features of high light adapted leaves. Overall, this study suggests that kaolin application enabled grapevines to benefit from fluctuating periods of summer stress by managing chlorophyll and carotenoid content and limiting down-regulation of both photochemistry and photoinhibition processes. Under Mediterranean field conditions, kaolin application can be considered an efficient method of minimising summer stress impact on grapevines.
Collapse
Affiliation(s)
- Sara Bernardo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apt. 1013, 5001-801, Vila Real, Portugal
| | - Lia-Tânia Dinis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apt. 1013, 5001-801, Vila Real, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apt. 1013, 5001-801, Vila Real, Portugal
| | - Nelson Machado
- CoLAB Vines&Wines - National Collaborative Laboratory for the Portuguese Wine Sector, Associação para o Desenvolvimento da ViticulturaAssociação para o Desenvolvimento da Viticultura Duriense (ADVID), Régia Douro Park, 5000-033, Vila Real, Portugal
| | - Vicente Vives-Peris
- Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071, Castellón de la Plana, Spain
| | - María F López-Climent
- Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071, Castellón de la Plana, Spain
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980, Valencia, Spain
| | - Maria Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980, Valencia, Spain
| | - Aureliano C Malheiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apt. 1013, 5001-801, Vila Real, Portugal
| | - Carlos Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apt. 1013, 5001-801, Vila Real, Portugal
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apt. 1013, 5001-801, Vila Real, Portugal.
| |
Collapse
|
15
|
Garrido A, Engel J, Mumm R, Conde A, Cunha A, De Vos RCH. Metabolomics of Photosynthetically Active Tissues in White Grapes: Effects of Light Microclimate and Stress Mitigation Strategies. Metabolites 2021; 11:metabo11040205. [PMID: 33808188 PMCID: PMC8067353 DOI: 10.3390/metabo11040205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
The effects of climate change are becoming a real concern for the viticulture sector, with impacts on both grapevine physiology and the quality of the fresh berries and wine. Short-term mitigation strategies, like foliar kaolin application and smart irrigation regimes, have been implemented to overcome these problems. We previously showed that these strategies also influence the photosynthetic activity of the berries themselves, specifically in the exocarp and seed. In the present work, we assessed the modulating effects of both canopy-light microclimate, kaolin and irrigation treatments on the metabolic profiles of the exocarp and seed, as well as the potential role of berry photosynthesis herein. Berries from the white variety Alvarinho were collected at two contrasting light microclimate positions within the vine canopy (HL—high light and LL—low light) from both irrigated and kaolin-treated plants, and their respective controls, at three fruit developmental stages (green, véraison and mature). Untargeted liquid chromatography mass spectrometry (LCMS) profiling of semi-polar extracts followed by multivariate statistical analysis indicate that both the light microclimate and irrigation influenced the level of a series of phenolic compounds, depending on the ripening stage of the berries. Moreover, untargeted gas chromatography mass spectrometry (GCMS) profiling of polar extracts show that amino acid and sugar levels were influenced mainly by the interaction of irrigation and kaolin treatments. The results reveal that both photosynthetically active berry tissues had a distinct metabolic profile in response to the local light microclimate, which suggests a specific role of photosynthesis in these tissues. A higher light intensity within the canopy mainly increased the supply of carbon precursors to the phenylpropanoid/flavonoid pathway, resulting in increased levels of phenolic compounds in the exocarp, while in seeds, light mostly influenced compounds related to carbon storage and seed development. In addition, our work provides new insights into the influence of abiotic stress mitigation strategies on the composition of exocarps and seeds, which are both important tissues for the quality of grape-derived products.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Correspondence: (A.G.); (A.C.)
| | - Jasper Engel
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
- Business Unit Biometris, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Roland Mumm
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
| | - Artur Conde
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.G.); (A.C.)
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
| |
Collapse
|
16
|
Kaolin Application Modulates Grapevine Photochemistry and Defence Responses in Distinct Mediterranean-Type Climate Vineyards. AGRONOMY-BASEL 2021. [DOI: 10.3390/agronomy11030477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
At a local scale, kaolin particle-film technology is considered a short-term adaptation strategy to mitigate the adverse effects of global warming on viticulture. This study aims to evaluate kaolin application effects on photochemistry and related defence responses of Touriga Franca (TF) and Touriga Nacional (TN) grapevines planted at two Portuguese winegrowing regions (Douro and Alentejo) over two summer seasons (2017 and 2018). For this purpose, chlorophyll a fluorescence transient analysis, leaf temperature, foliar metabolites, and the expression of genes related to heat stress (VvHSP70) and stress tolerance (VvWRKY18) were analysed. Kaolin application had an inhibitory effect on VvHSP70 expression, reinforcing its protective role against heat stress. However, VvWRKY18 gene expression and foliar metabolites accumulation revealed lower gene expression in TN-treated leaves and higher in TF at Alentejo, while lipid peroxidation levels decreased in both treated varieties and regions. The positive kaolin effect on the performance index parameter (PIABS) increased at ripening, mainly in TN, suggesting that stress responses can differ among varieties, depending on the initial acclimation to kaolin treatment. Moreover, changes on chlorophyll fluorescence transient analysis were more pronounced at the Douro site in 2017, indicating higher stress severity and impacts at this site, which boosted kaolin efficiency in alleviating summer stress. Under applied contexts, kaolin application can be considered a promising practice to minimise summer stress impacts in grapevines grown in Mediterranean-like climate regions.
Collapse
|
17
|
Wang Y, Cao X, Han Y, Han X, Wang Z, Xue T, Ye Q, Zhang L, Duan X, Wang H, Li H. Kaolin Particle Film Protects Grapevine cv. Cabernet Sauvignon Against Downy Mildew by Forming Particle Film at the Leaf Surface, Directly Acting on Sporangia and Inducing the Defense of the Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:796545. [PMID: 35082814 PMCID: PMC8784833 DOI: 10.3389/fpls.2021.796545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/17/2021] [Indexed: 05/03/2023]
Abstract
Downy mildew is a major threat to viticulture, leading to severe yield loss. The use of traditional copper-based fungicides is effective, but has adverse effects on the environment and human health, making it urgent to develop an environmentally friendly disease management program. Multi-functional kaolin particle film (KPF) is promising as an effective and safer treatment strategy, since this material lacks chemically active ingredients. In this study, ability of Kaolin particle film (KPF) pretreatment to protect grapevine leaves from Plasmopara viticola was tested and the mode of action of KPF was analyzed. KPF application reduced the disease severity and the development of intercellular hyphae. Additionally, there was reduced accumulation of H2O2 and malondialdehyde (MDA) with pretreatment. The observation of ultrastructure on the leaf surface showed KPF deposition and stomatal obstruction, indicating that KPF protected plants against disease by preventing the adhesion of pathogens to the leaf surface and blocking invasion through the stomata. KPF pretreatment also activated host defense responses, as evidenced by increased activities of anti-oxidative enzymes [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] and defense-related enzymes [phenylalanine ammonia-lyase (PAL), chitinases, and β-1,3-glucanases], increased phytohormone signals [abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA)] and the up-regulation of defense genes related to plant defense. Overall, these results demonstrate that KPF treatment counters grapevine downy mildew by protecting leaves and enhancing plant defense responses.
Collapse
Affiliation(s)
- Ying Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Xiao Cao
- College of Enology, Northwest A&F University, Yangling, China
| | - Yulei Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Xing Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhilei Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Tingting Xue
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Qiuhong Ye
- College of Enology, Northwest A&F University, Yangling, China
| | - Liang Zhang
- College of Enology, Northwest A&F University, Yangling, China
| | - Xinyao Duan
- College of Enology, Northwest A&F University, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- *Correspondence: Hua Wang,
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Hua Li,
| |
Collapse
|
18
|
Overview of Kaolin Outcomes from Vine to Wine: Cerceal White Variety Case Study. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kaolin protective effect was assessed in a white grapevine cultivar ‘Cerceal’ in ‘Alentejo’ Region (southeast Portugal) where plants face extreme conditions during the summer season. We addressed the hypothesis that kaolin effects lead to several changes in leaves, fruits, and wine characteristics on the primary and secondary metabolism. Results showed that kaolin reduces leaf temperature which provokes an improvement in physiological parameters such as net photosynthesis and water use efficiency. This protection interferes with berry color, leaving them more yellowish, and an increase in phenolic compounds were observed in all fruit tissues (skin, seed, and pulp). Additionally, both berry and wine characteristics were strongly affected, with an increase of tartaric and malic acid and consequently high total acidity, while the sugar concentration decreased 8.9% in berries provoking a low wine alcohol level. Results also showed that kaolin induces high potassium, magnesium, and iron, and low copper and aluminum concentrations. Moreover, the control wine showed higher content of esters related with hostile notes whereas wine from kaolin treated vines presented higher content of esters associated with fruity notes. Overall, the results strengthen the promising nature of kaolin application as a summer stress mitigation strategy protecting grapevine plants and improving fruit quality and creating more balanced wines.
Collapse
|
19
|
Breia R, Conde A, Conde C, Fortes AM, Granell A, Gerós H. VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:508-516. [PMID: 32688295 DOI: 10.1016/j.plaphy.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 05/23/2023]
Abstract
The Early-Response to Dehydration six-like (ERD6l) is one of the largest families of sugar transporters in plants, however, is also one of the less studied with very few members characterized. In this work, we identified 18 members of the grapevine ERD6l family, analyzed their promoters and putative topology and additionally functionally characterized the member VvERD6l13. VvERD6l13 was strongly up-regulated in grape berries infected with Botrytis cinerea and Erysiphe necator in cv. Trincadeira and Carignan, respectively, suggesting an important role in grape berry-pathogen interaction, as we had hypothesized. In Cabernet Sauvignon Berry suspension cultured cells, VvERD6l13 was also up-regulated, by 4-fold, 48 h after elicitation with mycelium extract of B. cinerea. Besides being expressed in grape berries from various developmental stages, VvERD6l13 is also expressed in leaves, canes, flowers and, noticeably, in roots. Using tobacco and an hxt-null Saccharomyces cerevisiae strain as heterologous expression models, we showed that VvERD6l13 is localized at the plasma membrane and mediates the H+-dependent transport of sucrose (Km = 33 mM) thus confirming VvERD6l13 as a bona fide sugar transporter involved in sugar mobilization in grapevine and transcriptionally induced in response to biotic stress.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | - Carlos Conde
- i3S-Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IBMC-Institute for Molecular and Cell Biology, University of Porto, 4200-135, Porto, Portugal
| | - Ana Margarida Fortes
- University of Lisbon, Lisbon Science Faculty, BioISI, Campo Grande, 1749-016, Lisbon, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
20
|
A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093092] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viticulture and winemaking are important socioeconomic sectors in many European regions. Climate plays a vital role in the terroir of a given wine region, as it strongly controls canopy microclimate, vine growth, vine physiology, yield, and berry composition, which together determine wine attributes and typicity. New challenges are, however, predicted to arise from climate change, as grapevine cultivation is deeply dependent on weather and climate conditions. Changes in viticultural suitability over the last decades, for viticulture in general or the use of specific varieties, have already been reported for many wine regions. Despite spatially heterogeneous impacts, climate change is anticipated to exacerbate these recent trends on suitability for wine production. These shifts may reshape the geographical distribution of wine regions, while wine typicity may also be threatened in most cases. Changing climates will thereby urge for the implementation of timely, suitable, and cost-effective adaptation strategies, which should also be thoroughly planned and tuned to local conditions for an effective risk reduction. Although the potential of the different adaptation options is not yet fully investigated, deserving further research activities, their adoption will be of utmost relevance to maintain the socioeconomic and environmental sustainability of the highly valued viticulture and winemaking sector in Europe.
Collapse
|
21
|
Frioni T, Saracino S, Squeri C, Tombesi S, Palliotti A, Sabbatini P, Magnanini E, Poni S. Understanding kaolin effects on grapevine leaf and whole-canopy physiology during water stress and re-watering. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153020. [PMID: 31450036 DOI: 10.1016/j.jplph.2019.153020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Kaolin applications have been investigated in grapevines to understand cooling effects on leaves and clusters and the relative impact on gas exchange, leaf biochemistry, water use efficiency, glyco-metabolism and hormonal patterns. Several Almost all previous contributions have relied upon single-leaf measurements, leaving uncertainty on whole canopy performances, depending on the complexity of a canopy system vs. individual leaves. In our study, kaolin was sprayed at pre-veraison (DOY 204) on potted mature vines (cv. Sangiovese) and washed off a month later (DOY 233), while control vines were left unsprayed. Within control (C) and kaolin (KL) treated vines, well-watered (WW) and water stress (WS) treatments were also imposed over a 10-day period (DOY 208-217) and all vines were re-watered when the WS reached its peak (stem water potential between -1.3 and -1.6 MPa). Single leaf measurements included leaf surface temperature by thermal imaging (Leaf Tmean), assimilation (Leaf A), transpiration (Leaf E), stomatal conductance (Leaf gs) rates, Fv/Fm fluorescence ratio, pre-dawn and stem water potential. Concurrently, whole canopy gas exchange was monitored continuously from DOY 200-259 using a vine enclosure system and daily net CO2 exchange rate (NCER) and canopy transpiration (Ecanopy) were calculated and then normalized vs. leaf area per vine. Results report that for any of the parameters recorded at both levels (single leaf and whole canopy), there was good agreement in terms of relative changes. In absence of water stress, KL was able to improve leaf cooling, while slightly reducing photosynthetic and water loss rates. More interestingly, data taken under water deficit and upon re-watering support the hypothesis that KL can turn into a protective agent for leaf function. In fact, the lack of photo-inhibition and the maintenance of leaf evaporative cooling found in KL-WS at the peak of water-stress (Fv/Fm > 0.7, Leaf Tmean < 38°C and Ecanopy > 0.5mmol m-2 s-1) warranted a prompter recovery of leaf functions upon re-watering that did not occur in C-WS vines.
Collapse
Affiliation(s)
- Tommaso Frioni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy.
| | - Simone Saracino
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Cecilia Squeri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Sergio Tombesi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alberto Palliotti
- Department of Agricultural, Food and Environmental Sciences DSA(3), Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Paolo Sabbatini
- Department of Horticulture, Michigan State University, 1066 Bogue Street, 48824, East Lansing, MI, USA
| | - Eugenio Magnanini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
22
|
Influence of Foliar Kaolin Application and Irrigation on Photosynthetic Activity of Grape Berries. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Climate changes may cause severe impacts both on grapevine and berry development. Foliar application of kaolin has been suggested as a mitigation strategy to cope with stress caused by excessive heat/radiation absorbed by leaves and grape berry clusters. However, its effect on the light micro-environment inside the canopy and clusters, as well as on the acclimation status and physiological responses of the grape berries, is unclear. The main objective of this work was to evaluate the effect of foliar kaolin application on the photosynthetic activity of the exocarp and seeds, which are the main photosynthetically active berry tissues. For this purpose, berries from high light (HL) and low light (LL) microclimates in the canopy, from kaolin-treated and non-treated, irrigated and non-irrigated plants, were collected at three developmental stages. Photochemical and non-photochemical efficiencies of both tissues were obtained by a pulse amplitude modulated chlorophyll fluorescence imaging analysis. The maximum quantum efficiency (Fv/Fm) data for green HL-grown berries suggest that kaolin application can protect the berry exocarp from light stress. At the mature stage, exocarps of LL grapes from irrigated plants treated with kaolin presented higher Fv/Fm and relative electron transport rates (rETR200) than those without kaolin. However, for the seeds, a negative interaction between kaolin and irrigation were observed especially in HL grapes. These results highlight the impact of foliar kaolin application on the photosynthetic performance of grape berries growing under different light microclimates and irrigation regimes, throughout the season. This provides insights for a more case-oriented application of this mitigation strategy on grapevines.
Collapse
|