1
|
Wang X, Komatsu S. The Role of Phytohormones in Plant Response to Flooding. Int J Mol Sci 2022; 23:6383. [PMID: 35742828 PMCID: PMC9223812 DOI: 10.3390/ijms23126383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Climatic variations influence the morphological, physiological, biological, and biochemical states of plants. Plant responses to abiotic stress include biochemical adjustments, regulation of proteins, molecular mechanisms, and alteration of post-translational modifications, as well as signal transduction. Among the various abiotic stresses, flooding stress adversely affects the growth of plants, including various economically important crops. Biochemical and biological techniques, including proteomic techniques, provide a thorough understanding of the molecular mechanisms during flooding conditions. In particular, plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by an elaborate hormonal signaling network. With the help of these findings, the main objective is to identify plant responses to flooding and utilize that information for the development of flood-tolerant plants. This review provides an insight into the role of phytohormones in plant response mechanisms to flooding stress, as well as different mitigation strategies that can be successfully administered to improve plant growth during stress exposure. Ultimately, this review will expedite marker-assisted genetic enhancement studies in crops for developing high-yield lines or varieties with flood tolerance.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
2
|
Shohat H, Eliaz NI, Weiss D. Gibberellin in tomato: metabolism, signaling and role in drought responses. MOLECULAR HORTICULTURE 2021; 1:15. [PMID: 37789477 PMCID: PMC10515025 DOI: 10.1186/s43897-021-00019-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/05/2021] [Indexed: 10/05/2023]
Abstract
The growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato (Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central response suppressor. The role of these components in tomato plant development and response to the environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants with improved performance under both irrigation and water-limited conditions.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Natanella Illouz Eliaz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel.
| |
Collapse
|
3
|
Gualano L, Moriconi JI, Oliferuk S, Silva M, Tranquilli GE, Santa-María GE. Barley plants carrying the altered function Sln1d allele display modified responses to low phosphorus supply: implications for phosphorus utilisation efficiency. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:780-792. [PMID: 33715765 DOI: 10.1071/fp19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The module GA-GID1-DELLA (Gibberellin-Gibberellin Receptor-DELLA proteins) provides a point for the integration of signals potentially relevant in determining nutrient utilisation and acquisition efficiencies. In this study, we explored the role of components of this module during the acclimation of barley plants (Hordeum vulgare L.) to different phosphorus (P) supplies by using two related genotypes, harbouring either the WT or the Sln1d alleles of the DELLA-coding gene Sln1. Dwarf Sln1d plants exhibited reduced shoot P utilisation efficiency (PUtE) and better performance at low levels of P supply. The superior PUtE displayed by WT plants disappeared when corrected by internal P concentration, indicating that multiple analyses are necessary to fully understand the meaning of PUtE estimates. Over a wide range of external supplies of P, Sln1d plants displayed enhanced P concentration, which was associated with low relative growth rate, high biomass partitioning to roots and high P-uptake-rate, thus suggesting that the effect of the Sln1d allele on P dynamics is not simply a consequence of slow growth habit. An enhanced P concentration was also found in a mutant with defective GAs-synthesis. Our results suggest that components of the GA-GID1-DELLAs module contribute to set the acclimation response of barley plants to low P supply through both P-dynamics dependent and P-dynamics independent mechanisms.
Collapse
Affiliation(s)
- Leonardo Gualano
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130, Buenos Aires, Argentina
| | - Jorge I Moriconi
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130, Buenos Aires, Argentina
| | - Sonia Oliferuk
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130, Buenos Aires, Argentina
| | - Martha Silva
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130, Buenos Aires, Argentina
| | - Gabriela E Tranquilli
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigación de Recursos Naturales, Instituto de Recursos Biológicos. Castelar. N. Repetto y Los Reseros s/n. Hurlingham, 1686, Provincia de Buenos Aires, Argentina
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130, Buenos Aires, Argentina; and Corresponding author.
| |
Collapse
|
4
|
Groszmann M, Chandler PM, Ross JJ, Swain SM. Manipulating Gibberellin Control Over Growth and Fertility as a Possible Target for Managing Wild Radish Weed Populations in Cropping Systems. FRONTIERS IN PLANT SCIENCE 2020; 11:190. [PMID: 32265944 PMCID: PMC7096587 DOI: 10.3389/fpls.2020.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Wild radish is a major weed of Australian cereal crops. A rapid establishment, fast growth, and abundant seed production are fundamental to its success as an invasive species. Wild radish has developed resistance to a number of commonly used herbicides increasing the problem. New innovative approaches are needed to control wild radish populations. Here we explore the possibility of pursuing gibberellin (GA) biosynthesis as a novel molecular target for controlling wild radish, and in doing so contribute new insights into GA biology. By characterizing ga 3-oxidase (ga3ox) mutants in Arabidopsis, a close taxonomic relative to wild radish, we showed that even mild GA deficiencies cause considerable reductions in growth and fecundity. This includes an explicit requirement for GA biosynthesis in successful female fertility. Similar defects were reproducible in wild radish via chemical inhibition of GA biosynthesis, confirming GA action as a possible new target for controlling wild radish populations. Two possible targeting approaches are considered; the first would involve developing a species-specific inhibitor that selectively inhibits GA production in wild radish over cereal crops. The second, involves making crop species insensitive to GA repression, allowing the use of existing broad spectrum GA inhibitors to control wild radish populations. Toward the first concept, we cloned and characterized two wild radish GA3OX genes, identifying protein differences that appear sufficient for selective inhibition of dicot over monocot GA3OX activity. We developed a novel yeast-based approach to assay GA3OX activity as part of the molecular characterization, which could be useful for future screening of inhibitory compounds. For the second approach, we demonstrated that a subset of GA associated sln1/Rht-1 overgrowth mutants, recently generated in cereals, are insensitive to GA reductions brought on by the general GA biosynthesis inhibitor, paclobutrazol. The location of these mutations within sln1/Rht-1, offers additional insight into the functional domains of these important GA signaling proteins. Our early assessment suggests that targeting the GA pathway could be a viable inclusion into wild radish management programs that warrants further investigation. In drawing this conclusion, we provided new insights into GA regulated reproductive development and molecular characteristics of GA metabolic and signaling proteins.
Collapse
Affiliation(s)
- Michael Groszmann
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Peter M. Chandler
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - John J. Ross
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Steve M. Swain
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Gonin M, Bergougnoux V, Nguyen TD, Gantet P, Champion A. What Makes Adventitious Roots? PLANTS (BASEL, SWITZERLAND) 2019; 8:E240. [PMID: 31336687 PMCID: PMC6681363 DOI: 10.3390/plants8070240] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.
Collapse
Affiliation(s)
- Mathieu Gonin
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Thu D Nguyen
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pascal Gantet
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Antony Champion
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| |
Collapse
|