1
|
Roy S, Kapoor R, Mathur P. Revisiting Changes in Growth, Physiology and Stress Responses of Plants under the Effect of Enhanced CO2 and Temperature. PLANT & CELL PHYSIOLOGY 2024; 65:4-19. [PMID: 37935412 DOI: 10.1093/pcp/pcad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Climate change has universally affected the whole ecosystem in a unified manner and is known to have improbable effects on agricultural productivity and food security. Carbon dioxide (CO2) and temperature are the major environmental factors that have been shown to increase sharply during the last century and are directly responsible for affecting plant growth and development. A number of previous investigations have deliberated the positive effects of elevated CO2 on plant growth and development of various C3 crops, while detrimental effects of enhanced temperature on different crop plants like rice, wheat, maize and legumes are generally observed. A combined effect of elevated CO2 and temperature has yet to be studied in great detail; therefore, this review attempts to delineate the interactive effects of enhanced CO2 and temperature on plant growth, development, physiological and molecular responses. Elevated CO2 maintains leaf photosynthesis rate, respiration, transpiration and stomatal conductance in the presence of elevated temperature and sustains plant growth and productivity in the presence of both these environmental factors. Concomitantly, their interaction also affects the nutritional quality of seeds and leads to alterations in the composition of secondary metabolites. Elevated CO2 and temperature modulate phytohormone concentration in plants, and due to this fact, both environmental factors have substantial effects on abiotic and biotic stresses. Elevated CO2 and temperature have been shown to have mitigating effects on plants in the presence of other abiotic stress agents like drought and salinity, while no such pattern has been observed in the presence of biotic stress agents. This review focuses on the interactive effects of enhanced CO2 and temperature on different plants and is the first of its kind to deliver their combined responses in such detail.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013, India
| |
Collapse
|
2
|
Ganugi P, Caffi T, Gabrielli M, Secomandi E, Fiorini A, Zhang L, Bellotti G, Puglisi E, Fittipaldi MB, Asinari F, Tabaglio V, Trevisan M, Lucini L. A 3-year application of different mycorrhiza-based plant biostimulants distinctively modulates photosynthetic performance, leaf metabolism, and fruit quality in grapes ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1236199. [PMID: 37711298 PMCID: PMC10497758 DOI: 10.3389/fpls.2023.1236199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
The use of microbial biostimulants in agriculture is recognized as a sustainable approach to promoting crop productivity and quality due to improved nutrient uptake, enhanced stress tolerance, and improved ability to cope with non-optimal environments. The present paper aimed to comparatively investigate the effect of seven different commercial mycorrhizal-based treatments in terms of yield, phytochemical components, and technological traits of Malvasia di Candia Aromatica grape (Vitis vinifera L.) plants. Metabolomic analysis and photosynthetic performance were first investigated in leaves to point out biochemical differences related to plant growth. Higher photosynthetic efficiency and better PSII functioning were found in biostimulant-treated vines, reflecting an overall decrease in photoinhibition compared to untreated plants. Untargeted metabolomics followed by multivariate statistics highlighted a robust reprogramming of primary (lipids) and secondary (alkaloids and terpenoids) metabolites in treated plants. The analysis of berry yield and chemical components exhibited significant differences depending on the biostimulant product. Generally, berries obtained from treated plants displayed improved contents of polyphenols and sugars, while yield remained unchanged. These results elucidated the significant role of microbial biostimulants in determining the quality of grape berries and eliciting biochemical changes in vines.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Mario Gabrielli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elena Secomandi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sciences, Technologies and Society, University School for Advanced Studies, IUSS, Pavia, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Florencia Asinari
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
3
|
Gardiman M, De Rosso M, De Marchi F, Flamini R. Metabolomic profiling of different clones of vitis vinifera L. cv. "Glera" and "Glera lunga" grapes by high-resolution mass spectrometry. Metabolomics 2023; 19:25. [PMID: 36976385 DOI: 10.1007/s11306-023-01997-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
INTRODUCTION Prosecco wine production has been strongly extended in the last decade and several new clones have been introduced. "Glera" (minimum 85%) and "Glera lunga" are grape varieties of great economic impact used to produce Prosecco wines. Study of grape berry secondary metabolites is effective in the classification of vine varieties and clones. High-resolution mass spectrometry provides complete panorama of these metabolites in single analysis and coupling to statistical multivariate analysis is successfully applied in vine chemotaxonomy. OBJECTIVES update and deepen the knowledge on the "Glera" and "Glera lunga" berry grapes chemotaxonomy and investigate some of the most produced and marketed clones by using the modern analytical and statistical tools. METHODS five clones of "Glera" and two of "Glera lunga" grown in the same vineyard with same agronomical practices were studied for three vintages. Grape berry metabolomics was characterized by UHPLC/QTOF and multivariate statistical analysis was performed on the signals of main metabolites of oenological interest. RESULTS "Glera" and "Glera lunga" showed different monoterpene profiles ("Glera" is richer in glycosidic linalool and nerol) and differences in polyphenols (catechin, epicatechin and procyanidins, trans-feruloyltartaric acid, E-ε-viniferin, isorhamnetin-glucoside, quercetin galactoside). Vintage affected the accumulation of these metabolites in berry. No statistical differentiation among the clones of each variety, was found. CONCLUSIONS Coupling HRMS metabolomics/statistical multivariate analysis enabled clear differentiation between the two varieties. The examined clones of same variety showed similar metabolomic profiles and enological characteristics, but vineyard planting using different clones can result in more consistent final wines reducing the vintage variability linked to genotype × environment interaction.
Collapse
Affiliation(s)
- Massimo Gardiman
- Council for Agricultural Research and Economics - Research Center for Viticulture & Enology (CREA-VE), Conegliano (TV), 31015, Italy
| | - Mirko De Rosso
- Council for Agricultural Research and Economics - Research Center for Viticulture & Enology (CREA-VE), Conegliano (TV), 31015, Italy
| | - Fabiola De Marchi
- Council for Agricultural Research and Economics - Research Center for Viticulture & Enology (CREA-VE), Conegliano (TV), 31015, Italy
| | - Riccardo Flamini
- Council for Agricultural Research and Economics - Research Center for Viticulture & Enology (CREA-VE), Conegliano (TV), 31015, Italy.
| |
Collapse
|
4
|
Efficient Assessment and Large-Scale Conservation of Intra-Varietal Diversity of Ancient Grapevine Varieties: Case Study Portugal. PLANTS 2022; 11:plants11151917. [PMID: 35893621 PMCID: PMC9332054 DOI: 10.3390/plants11151917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
There are thousands of ancient grapevine varieties in Europe, each one having a high level of intra-varietal diversity with regard to important economic traits (yield, soluble solids content, acidity, anthocyanins, and others). However, this potential has become exposed to a process of genetic erosion since the middle of the last century. The main objective of this work is to present experimental strategies for conservation and utilization of intra-varietal diversity. A concrete example is given about the actions performed in Portugal since 1978. Two main approaches for the conservation of intra-varietal diversity were performed: (1) strict conservation (in pots and in the field without experimental design) for future generations; and (2) conservation and, simultaneously, evaluation of the intra-varietal variability for selection to fulfil the immediate needs of the grape and wine sector (in the field with experimental design). More than 30,000 accessions of Portuguese autochthonous varieties are conserved. Using the theory of mixed models, intra-varietal diversity of the yield was found for the 59 varieties studied. The conservation and the evaluation of the intra-varietal diversity for quantitative traits will allow to extract high economic value, as well as to ensure its utilization to meet the objectives of the vine and wine sector.
Collapse
|
5
|
Kizildeniz T, Pascual I, Hilbert G, Irigoyen JJ, Morales F. Is Tempranillo Blanco Grapevine Different from Tempranillo Tinto Only in the Color of the Grapes? An Updated Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:1662. [PMID: 35807617 PMCID: PMC9269498 DOI: 10.3390/plants11131662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Tempranillo Blanco is a somatic variant of Tempranillo Tinto that appeared as a natural, spontaneous mutation in 1988 in a single shoot of a single plant in an old vineyard. It was vegetatively propagated, and currently wines from Tempranillo Blanco are commercially available. The mutation that originated Tempranillo Blanco comprised single-nucleotide variations, chromosomal deletions, and reorganizations, losing hundreds of genes and putatively affecting the functioning and regulation of many others. The most evident, visual change in Tempranillo Blanco is the anthocyanin lost, producing this grapevine variety bunches of colorless grapes. This review aims to summarize from the available literature differences found between Tempranillo Blanco and Tinto in addition to the color of the grapes, in a climate change context and using fruit-bearing cuttings grown in temperature-gradient greenhouses as research-oriented greenhouses. The differences found include changes in growth, water use, bunch mass, grape quality (both technological and phenolic maturity), and some aspects of their photosynthetic response when grown in an atmosphere of elevated CO2 concentration and temperature, and low water availability. Under field conditions, Tempranillo Blanco yields less than Tempranillo Tinto, the lower weight of their bunches being related to a lower pollen viability and berry and seed setting.
Collapse
Affiliation(s)
- Tefide Kizildeniz
- Universidad de Navarra, Plant Stress Physiology Group (Environmental Biology Department), Associated Unit to CSIC, EEAD, Zaragoza, Faculties of Sciences and Pharmacy, Irunlarrea 1, 31008 Pamplona, Navarra, Spain; (T.K.); (I.P.); (J.J.I.)
| | - Inmaculada Pascual
- Universidad de Navarra, Plant Stress Physiology Group (Environmental Biology Department), Associated Unit to CSIC, EEAD, Zaragoza, Faculties of Sciences and Pharmacy, Irunlarrea 1, 31008 Pamplona, Navarra, Spain; (T.K.); (I.P.); (J.J.I.)
| | - Ghislaine Hilbert
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France;
| | - Juan José Irigoyen
- Universidad de Navarra, Plant Stress Physiology Group (Environmental Biology Department), Associated Unit to CSIC, EEAD, Zaragoza, Faculties of Sciences and Pharmacy, Irunlarrea 1, 31008 Pamplona, Navarra, Spain; (T.K.); (I.P.); (J.J.I.)
| | - Fermín Morales
- Instituto de Agrobiotecnologia (IDAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| |
Collapse
|
6
|
Arias LA, Berli F, Fontana A, Bottini R, Piccoli P. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:835425. [PMID: 35693157 PMCID: PMC9178254 DOI: 10.3389/fpls.2022.835425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Grapevine berry quality for winemaking depends on complex and dynamic relationships between the plant and the environment. Winemakers around the world are demanding a better understanding of the factors that influence berry growth and development. In the last decades, an increment in air temperature, CO2 concentration and dryness occurred in wine-producing regions, affecting the physiology and the biochemistry of grapevines, and by consequence the berry quality. The scientific community mostly agrees in a further raise as a result of climate change during the rest of the century. As a consequence, areas most suitable for viticulture are likely to shift into higher altitudes where mean temperatures are suitable for grape cultivation. High altitude can be defined as the minimum altitude at which the grapevine growth and development are differentially affected. At these high altitudes, the environments are characterized by high thermal amplitudes and great solar radiations, especially ultraviolet-B (UV-B). This review summarizes the environmental contribution of global high altitude-related climatic variables to the grapevine physiology and wine composition, for a better evaluation of the possible establishment of vineyards at high altitude in climate change scenarios.
Collapse
Affiliation(s)
- Leonardo A. Arias
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, CONICET, Chacras de Coria, Argentina
| | - Federico Berli
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, CONICET, Chacras de Coria, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, CONICET, Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto Argentino de Veterinaria, Ambiente y Salud, Universidad Juan Agustín Maza, Guaymallén, Argentina
| | - Patricia Piccoli
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, CONICET, Chacras de Coria, Argentina
| |
Collapse
|
7
|
Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The changes in the state of the climate have a high impact on perennial fruit crops thus threatening food availability. Indeed, climatic factors affect several plant aspects, such as phenological stages, physiological processes, disease-pest frequency, yield, and qualitative composition of the plant tissues and derived products. To mitigate the effects of climatic parameters variability, plants implement several strategies of defense, by changing phenological trends, altering physiology, increasing carbon sequestration, and metabolites synthesis. This review was divided into two sections. The first provides data on climate change in the last years and a general consideration on their impact, mitigation, and resilience in the production of food crops. The second section reviews the consequences of climate change on the industry of two woody fruit crops models (evergreen and deciduous trees). The research focused on, citrus, olive, and loquat as evergreen trees examples; while grape, apple, pear, cherry, apricot, almond, peach, kiwi, fig, and persimmon as deciduous species. Perennial fruit crops originated by a complex of decisions valuable in a long period and involving economic and technical problems that farmers may quickly change in the case of annual crops. However, the low flexibility of woody crops is balanced by resilience in the long-life cycle.
Collapse
|
8
|
Gashu K, Song C, Dubey AK, Acuña T, Sagi M, Agam N, Bustan A, Fait A. The Effect of Topo-Climate Variation on the Secondary Metabolism of Berries in White Grapevine Varieties ( Vitis vinifera). FRONTIERS IN PLANT SCIENCE 2022; 13:847268. [PMID: 35350300 PMCID: PMC8958008 DOI: 10.3389/fpls.2022.847268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Exploiting consistent differences in radiation and average air temperature between two experimental vineyards (Ramat Negev, RN and Mitzpe Ramon, MR), we examined the impact of climate variations on total carotenoids, redox status, and phenylpropanoid metabolism in the berries of 10 white wine grapevine (Vitis vinifera) cultivars across three consecutive seasons (2017-2019). The differences in carotenoid and phenylpropanoid contents between sites were seasonal and varietal dependent. However, the warmer RN site was generally associated with higher H2O2 levels and carotenoid degradation, and lower flavonol contents than the cooler MR site. Enhanced carotenoid degradation was positively correlated with radiation and daily degree days, leading to a greater drop in content from véraison to harvest in Colombard, Sauvignon Blanc, and Semillon berries. Analyses of berry H2O2 and phenylpropanoids suggested differences between cultivars in the links between H2O2 and flavonol contents. Generally, however, grapes with higher H2O2 content seem to have lower flavonol contents. Correlative network analyses revealed that phenylpropanoids at the warmer RN site are tightly linked to the radiation and temperature regimes during fruit ripening, indicating potentially harmful effect of warmer climates on berry quality. Specifically, flavan-3-ols were negatively correlated with radiation at RN. Principal component analysis showed that Muscat Blanc, Riesling, Semillon, and Sauvignon Blanc were the most site sensitive cultivars. Our results suggest that grapevine biodiversity is likely the key to withstand global warming hazards.
Collapse
Affiliation(s)
- Kelem Gashu
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Chao Song
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Arvind Kumar Dubey
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Tania Acuña
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Sagi
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Nurit Agam
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Amnon Bustan
- Ramat Negev Desert Agro-Research Center, Ramat Negev Works Ltd., Halutza, Israel
| | - Aaron Fait
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
9
|
Aguilera P, Ortiz N, Becerra N, Turrini A, Gaínza-Cortés F, Silva-Flores P, Aguilar-Paredes A, Romero JK, Jorquera-Fontena E, Mora MDLL, Borie F. Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress Under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Front Microbiol 2022; 13:826571. [PMID: 35317261 PMCID: PMC8934398 DOI: 10.3389/fmicb.2022.826571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
The crop Vitis vinifera (L.) is of great economic importance as Chile is one of the main wine-producing countries, reaching a vineyard area of 145,000 ha. This vine crop is usually very sensitive to local condition changes and agronomic practices; therefore, strategies to counteract the expected future decrease in water level for agricultural irrigation, temperature increase, extreme water stress (abiotic stress), as well as increase in pathogenic diseases (biotic stress) related to climate change will be of vital importance for this crop. Studies carried out in recent years have suggested that arbuscular mycorrhizal fungi (AMF) can provide key ecosystem services to host plants, such as water uptake implementation and enhanced absorption of nutrients such as P and N, which are key factors for improving the nutritional status of the vine. AMF use in viticulture will contribute also to sustainable agronomic management and bioprotection against pathogens. Here we will present (1) the current status of grapevines in Chile, (2) the main problems in grapevines related to water stress and associated with climate change, (3) the importance of AMF to face water stress and pathogens, and (4) the application of AMF as a biotechnological and sustainable tool in vineyards.
Collapse
Affiliation(s)
- Paula Aguilera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nancy Ortiz
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ninozhka Becerra
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Patricia Silva-Flores
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Talca, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ana Aguilar-Paredes
- Programa de Restauración Biológica de Suelos, Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (CERES), Quillota, Chile
- Vicerrectoría de Investigación y Estudios Avanzados, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Karlo Romero
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
| | - María de La Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
10
|
Kizildeniz T, Pascual I, Irigoyen JJ, Morales F. Future CO 2 , warming and water deficit impact white and red Tempranillo grapevine: Photosynthetic acclimation to elevated CO 2 and biomass allocation. PHYSIOLOGIA PLANTARUM 2021; 172:1779-1794. [PMID: 33704796 DOI: 10.1111/ppl.13388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 05/20/2023]
Abstract
Due to the CO2 greenhouse effect, elevated atmospheric concentration leads to higher temperatures, accompanied by episodes of less water availability in semiarid and arid areas or drought periods. Studies investigating these three factors (CO2 , temperature and water availability) simultaneously in grapevine are scarce. The present work aims to analyze the combined effects of high CO2 (700 ppm), high temperature (ambient +4°C) and drought on the photosynthetic activity, biomass allocation, leaf non-structural carbon composition, and carbon/nitrogen (C/N) ratio in grapevine. Two grapevine cultivars, red berry Tempranillo and white berry Tempranillo, were used, the latter being a natural, spontaneous mutant of the red cultivar. The experiment was performed on fruit-bearing cuttings during a 3-month period, from June (fruit set) to August (maturity). The plants were grown in research-oriented facilities, temperature-gradient greenhouses, where temperature, CO2 , and water supply can be modified in a combined way. Drought had the strongest effect on biomass accumulation compared to the other environmental variables, and root biomass allocation was increased under water deficit. CO2 and temperature effects were smaller and depended on cultivar, and on interactions with the other factors. Acclimation effects were observed on both cultivars as photosynthetic rates under high atmospheric CO2 were reduced by long-term exposition to elevated CO2 . Exposure to such high CO2 resulted in increased starch concentration and reduced C/N ratio in leaves. A correlation between the intensity of the reduction in photosynthetic rates and the accumulation of starch in the leaves was found after prolonged exposure to elevated CO2 .
Collapse
Affiliation(s)
- Tefide Kizildeniz
- Universidad de Navarra, Plant Stress Physiology Group (Department of Environmental Biology), Associated Unit to CSIC, EEAD, Zaragoza and ICVV, Logroño, Faculties of Sciences and Pharmacy, Pamplona, Spain
| | - Inmaculada Pascual
- Universidad de Navarra, Plant Stress Physiology Group (Department of Environmental Biology), Associated Unit to CSIC, EEAD, Zaragoza and ICVV, Logroño, Faculties of Sciences and Pharmacy, Pamplona, Spain
| | - Juan José Irigoyen
- Universidad de Navarra, Plant Stress Physiology Group (Department of Environmental Biology), Associated Unit to CSIC, EEAD, Zaragoza and ICVV, Logroño, Faculties of Sciences and Pharmacy, Pamplona, Spain
| | - Fermín Morales
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Spain
| |
Collapse
|
11
|
Arrizabalaga-Arriazu M, Gomès E, Morales F, Irigoyen JJ, Pascual I, Hilbert G. Impact of 2100-Projected Air Temperature, Carbon Dioxide, and Water Scarcity on Grape Primary and Secondary Metabolites of Different Vitis vinifera cv. Tempranillo Clones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6172-6185. [PMID: 34033469 DOI: 10.1021/acs.jafc.1c01412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exploration of the grapevine (Vitis vinifera L.) intra-varietal diversity can be an interesting approach for the adaptation of viticulture to climate change. We evaluated the response of four Tempranillo clones to simulated year-2100-expected air temperature, CO2, and relative humidity (RH) conditions: climate change (CC; 28 °C/18 °C, 700 μmol mol-1 CO2, and 35%/53% RH) vs current situation conditions (CS; 24 °C/14 °C, 400 μmol mol-1 CO2, and 45%/63% RH), under two irrigation regimes, "well-watered" (WW) vs "water deficit" (WD). The treatments were applied to fruit-bearing cuttings grown under research-oriented greenhouse controlled conditions. CC increased sugar accumulation and hastened grape phenology, an effect that was mitigated by water deficit. Both CC and water deficit modified amino acid concentrations and accumulation profiles with different intensities, depending on the clone. Combined CC and water deficit decreased anthocyanins and the anthocyanin to total soluble solids (TSS) ratio. The results suggest differences in the response of the clones to the 2100-projected conditions, which are not always solely explained by differences observed in the ripening dynamics. Among the clones studied, RJ43 and CL306 were the most affected by CC/WD conditions; meanwhile, 1084 was globally less affected than the other clones.
Collapse
Affiliation(s)
- Marta Arrizabalaga-Arriazu
- Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Eric Gomès
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain
| | - Juan José Irigoyen
- Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
| | - Inmaculada Pascual
- Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
| | - Ghislaine Hilbert
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| |
Collapse
|
12
|
Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, Walker RP, Famiani F, Castellarin SD. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario-A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:643258. [PMID: 33828576 PMCID: PMC8020818 DOI: 10.3389/fpls.2021.643258] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
Temperature, water, solar radiation, and atmospheric CO2 concentration are the main abiotic factors that are changing in the course of global warming. These abiotic factors govern the synthesis and degradation of primary (sugars, amino acids, organic acids, etc.) and secondary (phenolic and volatile flavor compounds and their precursors) metabolites directly, via the regulation of their biosynthetic pathways, or indirectly, via their effects on vine physiology and phenology. Several hundred secondary metabolites have been identified in the grape berry. Their biosynthesis and degradation have been characterized and have been shown to occur during different developmental stages of the berry. The understanding of how the different abiotic factors modulate secondary metabolism and thus berry quality is of crucial importance for breeders and growers to develop plant material and viticultural practices to maintain high-quality fruit and wine production in the context of global warming. Here, we review the main secondary metabolites of the grape berry, their biosynthesis, and how their accumulation and degradation is influenced by abiotic factors. The first part of the review provides an update on structure, biosynthesis, and degradation of phenolic compounds (flavonoids and non-flavonoids) and major aroma compounds (terpenes, thiols, methoxypyrazines, and C13 norisoprenoids). The second part gives an update on the influence of abiotic factors, such as water availability, temperature, radiation, and CO2 concentration, on berry secondary metabolism. At the end of the paper, we raise some critical questions regarding intracluster berry heterogeneity and dilution effects and how the sampling strategy can impact the outcome of studies on the grapevine berry response to abiotic factors.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
- *Correspondence: Markus Rienth
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Philippe Darriet
- Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux, France
- Institut des Sciences de la Vigne et du Vin CS 50008, Villenave d'Ornon, France
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista Burbidge
- Agriculture and Food (Commonwealth Scientific and Industrial Research Organisation), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Faculty of Land and Food Systems, Wine Research Centre, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Antolín MC, Toledo M, Pascual I, Irigoyen JJ, Goicoechea N. The Exploitation of Local Vitis vinifera L. Biodiversity as a Valuable Tool to Cope with Climate Change Maintaining Berry Quality. PLANTS 2020; 10:plants10010071. [PMID: 33396405 PMCID: PMC7824074 DOI: 10.3390/plants10010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.
Collapse
|
14
|
Gashu K, Sikron Persi N, Drori E, Harcavi E, Agam N, Bustan A, Fait A. Temperature Shift Between Vineyards Modulates Berry Phenology and Primary Metabolism in a Varietal Collection of Wine Grapevine. FRONTIERS IN PLANT SCIENCE 2020; 11:588739. [PMID: 33391301 PMCID: PMC7774500 DOI: 10.3389/fpls.2020.588739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 05/31/2023]
Abstract
Global climate change and the expected increase in temperature are altering the relationship between geography and grapevine (V. vinifera) varietal performance, and the implications of which are yet to be fully understood. We investigated berry phenology and biochemistry of 30 cultivars, 20 red and 10 white, across three seasons (2017-2019) in response to a consistent average temperature difference of 1.5°C during the growing season between two experimental sites. The experiments were conducted at Ramat Negev (RN) and Ramon (MR) vineyards, located in the Negev desert, Israel. A significant interaction between vineyard location, season, and variety affected phenology and berry indices. The warmer RN site was generally associated with an advanced phenological course for the white cultivars, which reached harvest up to 2 weeks earlier than at the MR site. The white cultivars also showed stronger correlation between non-consecutive phenological stages than did the red ones. In contrast, harvest time of red cultivars considerably varied according to seasons and sites. Warmer conditions extended fruit developmental phases, causing berry shriveling and cluster collapse in a few cultivars such as Pinot Noir, Ruby Cabernet, and Tempranillo. Analyses of organic acid content suggested differences between red and white cultivars in the content of malate, tartrate, and citrate in response to the temperature difference between sites. However, generally, cultivars at lower temperatures exhibited lower concentrations of pulp organic acids at véraison, but acid degradation until harvest was reduced, compared to the significant pace of acid decline at the warmer site. Sugars showed the greatest differences between sites in both white and red berries at véraison, but differences were seasonal dependent. At harvest, cultivars of both groups exhibited significant variation in hexose/sucrose ratio, and the averages of which varied from 1.6 to 2.9. Hexose/sucrose ratio was significantly higher among the red cultivars at the warmer RN, while this tendency was very slight among white cultivars. White cultivars seem to harbor a considerable degree of resilience due to a combination of earlier and shorter ripening phase, which avoids most of the summer heat. Taken together, our study demonstrates that the extensive genetic capacity of V. vinifera bears significant potential and plasticity to withstand the temperature increase associated with climate change.
Collapse
Affiliation(s)
- Kelem Gashu
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Noga Sikron Persi
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Elyashiv Drori
- Department of Chemical Engineering, Ariel University, Ariel, Israel
- The Grape and Wine Research Center, Eastern Regional R&D Center, Ariel, Israel
| | - Eran Harcavi
- Ministry of Agriculture and Rural Development, Agricultural Extension Service – Shaham, Beit Dagan, Israel
| | - Nurit Agam
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Amnon Bustan
- Ramat Negev Desert Agro-Research Center, Ramat Negev Works Ltd., Haluza, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
15
|
Arrizabalaga-Arriazu M, Gomès E, Morales F, Irigoyen JJ, Pascual I, Hilbert G. High Temperature and Elevated Carbon Dioxide Modify Berry Composition of Different Clones of Grapevine ( Vitis vinifera L.) cv. Tempranillo. FRONTIERS IN PLANT SCIENCE 2020; 11:603687. [PMID: 33335536 PMCID: PMC7736076 DOI: 10.3389/fpls.2020.603687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/06/2020] [Indexed: 05/09/2023]
Abstract
Tempranillo is a grapevine (Vitis vinifera L.) variety extensively used for world wine production which is expected to be affected by environmental parameters modified by ongoing global climate changes, i.e., increases in average air temperature and rise of atmospheric CO2 levels. Apart from determining their effects on grape development and biochemical characteristics, this paper considers the intravarietal diversity of the cultivar Tempranillo as a tool to develop future adaptive strategies to face the impact of climate change on grapevine. Fruit-bearing cuttings of five clones (RJ43, CL306, T3, VN31, and 1084) were grown in temperature gradient greenhouses (TGGs), from fruit set to maturity, under two temperature regimes (ambient temperature vs. ambient temperature plus 4°C) and two CO2 levels (ambient, ca. 400 ppm, vs. elevated, 700 ppm). Treatments were applied separately or in combination. The analyses carried out included berry phenological development, the evolution in the concentration of must compounds (organic acids, sugars, and amino acids), and total skin anthocyanins. Elevated temperature hastened berry ripening, sugar accumulation, and malic acid breakdown, especially when combined with high CO2. Climate change conditions reduced the amino acid content 2 weeks after mid-veraison and seemed to delay amino acidic maturity. Elevated CO2 reduced the decoupling effect of temperature on the anthocyanin to sugar ratio. The impact of these factors, taken individually or combined, was dependent on the clone analyzed, thus indicating certain intravarietal variability in the response of Tempranillo to these climate change-related factors.
Collapse
Affiliation(s)
- Marta Arrizabalaga-Arriazu
- Universidad de Navarra, Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Pamplona, Spain
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Eric Gomès
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Juan José Irigoyen
- Universidad de Navarra, Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Pamplona, Spain
| | - Inmaculada Pascual
- Universidad de Navarra, Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Pamplona, Spain
| | - Ghislaine Hilbert
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
- *Correspondence: Ghislaine Hilbert,
| |
Collapse
|