1
|
Yuan H, Cheng M, Fan F, Zheng X, Wang R, Si F, Luo X, Li N, Li S. OsGRF6-OsYUCCA1/OsWRKY82 Signaling Cascade Upgrade Grain Yield and Bacterial Blight Resistance in Rice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407733. [PMID: 39441559 PMCID: PMC11633520 DOI: 10.1002/advs.202407733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
As a major crop in the world, the sustainable development of rice is often severely restricted by bacterial blight. Breeding crops with resistance is an efficient way to control bacterial blight. However, enhancing resistance often incurs a fitness penalty, making it challenging to simultaneously increase bacterial blight resistance and yield potential. In this study, it is found that OsGRF6, besides being a high-yield gene, can significantly improve rice bacterial blight resistance. Compared with wild-type, the lesion lengths of transgenic material overexpressing OsGRF6 are significantly reduced after inoculation with Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, OsGRF6 can directly bind to the promoters of OsYUCCA1 and OsWRKY82, upregulating their transcription and thereby increasing rice bacterial blight resistance and yield. Haplotypic analysis based on the promoter and genome sequence combined with evolutionary analysis revealed that OsGRF6 is mainly comprised by the OsGRF6XI and OsGRF6GJ subtypes. The superior haplotype OsGRF6Hap4 increased its transcriptional activity and contributed to bacterial blight resistance and rice yield. Together, this study provides theoretical support for further revealing the synergistic regulatory mechanism and genetic improvement of rice high yield and bacterial blight resistance, offering a new strategy for developing disease-resistant cultivars.
Collapse
Affiliation(s)
- Huanran Yuan
- State Key Laboratory of Hybrid RiceKey Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of AgricultureEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhan430072China
- Hubei Shizhen LaboratoryHubei University of Chinese MedicineWuhan430065China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid RiceKey Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of AgricultureEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid RiceKey Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of AgricultureEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Xingfei Zheng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic ImprovementFood Crop InstituteHubei Academy of Agricultural SciencesWuhanHubei430064China
| | - Ruihua Wang
- State Key Laboratory of Hybrid RiceKey Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of AgricultureEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Fengfeng Si
- State Key Laboratory of Hybrid RiceKey Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of AgricultureEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Xiong Luo
- State Key Laboratory of Hybrid RiceKey Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of AgricultureEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Nengwu Li
- State Key Laboratory of Hybrid RiceKey Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of AgricultureEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Shaoqing Li
- State Key Laboratory of Hybrid RiceKey Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of AgricultureEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhan430072China
| |
Collapse
|
2
|
Xiong D, Wang J, Wang R, Wang Y, Li Y, Sun G, Yao S. A point mutation in VIG1 boosts development and chilling tolerance in rice. Nat Commun 2024; 15:8212. [PMID: 39294143 PMCID: PMC11410800 DOI: 10.1038/s41467-024-52510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
The rice paddy-direct seeding system has been widely adopted due to its low cost and convenience, whereas its application is mainly constrained by low seedling vigor, cold sensitivity, eventually resulting in reduced grain yield. Here, we show vig1a and vig1b, two allelic mutants of OsbZIP01, that both demonstrate greatly enhanced seedling vigor and chilling tolerance but differ in final grain production. The vig1a phenotype can be obtained via simultaneous mutation of the genes OsbZIP01 and OsbZIP18, or by selectively manipulating the basic region of OsbZIP01. Destroying the leucine zipper region of OsbZIP01 in vig1a turns vig1a to be vig1b. Further analysis reveals that OsbZIP01 and OsbZIP18 function cooperatively in diverse crucial biological programs that determine seedling establishment, chilling tolerance, and grain yield through their interactions. These findings provide a strategy toward simultaneously improving seedling vigor, chilling tolerance, and grain yield for rice production.
Collapse
Affiliation(s)
- Dunpin Xiong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Juan Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ruci Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yueming Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ge Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Cao C, Guo S, Deng P, Yang S, Xu J, Hu T, Hu Z, Chen D, Zhang H, Navea IP, Chin JH, Zhang W, Jing W. The BEL1-like homeodomain protein OsBLH4 regulates rice plant height, grain number, and heading date by repressing the expression of OsGA2ox1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1369-1385. [PMID: 38824648 DOI: 10.1111/tpj.16857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Gibberellins (GAs) play crucial roles in regulating plant architecture and grain yield of crops. In rice, the inactivation of endogenous bioactive GAs and their precursors by GA 2-oxidases (GA2oxs) regulates stem elongation and reproductive development. However, the regulatory mechanisms of GA2ox gene expression, especially in rice reproductive organs, are unknown. The BEL1-like homeodomain protein OsBLH4, a negative regulatory factor for the rice OsGA2ox1 gene, was identified in this study. Loss of OsBLH4 function results in decreased bioactive GA levels and pleiotropic phenotypes, including reduced plant height, decreased grain number per panicle, and delayed heading date, as also observed in OsGA2ox1-overexpressing plants. Consistent with the mutant phenotype, OsBLH4 was predominantly expressed in shoots and young spikelets; its encoded protein was exclusively localized in the nucleus. Molecular analysis demonstrated that OsBLH4 directly bound to the promoter region of OsGA2ox1 to repress its expression. Genetic assays revealed that OsBLH4 acts upstream of OsGA2ox1 to control rice plant height, grain number, and heading date. Taken together, these results indicate a crucial role for OsBLH4 in regulating rice plant architecture and yield potential via regulation of bioactive GA levels, and provide a potential strategy for genetic improvements of rice.
Collapse
Affiliation(s)
- Chengjuan Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuaiqiang Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ping Deng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Xianghu Laboratory, Hangzhou, China
| | - Shiyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengfei Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhijuan Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Di Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ian Paul Navea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | - Wenhua Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Luo S, Zheng S, Li Z, Cao J, Wang B, Xu Y, Chong K. Monosaccharide transporter OsMST6 is activated by transcription factor OsERF120 to enhance chilling tolerance in rice seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4038-4051. [PMID: 38490694 DOI: 10.1093/jxb/erae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
Chilling stress caused by extreme weather is threatening global rice (Oryza sativa L.) production. Identifying components of the signal transduction pathways underlying chilling tolerance in rice would advance molecular breeding. Here, we report that OsMST6, which encodes a monosaccharide transporter, positively regulates the chilling tolerance of rice seedlings. mst6 mutants showed hypersensitivity to chilling, while OsMST6 overexpression lines were tolerant. During chilling stress, OsMST6 transported more glucose into cells to modulate sugar and abscisic acid signaling pathways. We showed that the transcription factor OsERF120 could bind to the DRE/CRT element of the OsMST6 promoter and activate the expression of OsMST6 to positively regulate chilling tolerance. Genetically, OsERF120 was functionally dependent on OsMST6 when promoting chilling tolerance. In summary, OsERF120 and OsMST6 form a new downstream chilling regulatory pathway in rice in response to chilling stress, providing valuable findings for molecular breeding aimed at achieving global food security.
Collapse
Affiliation(s)
- Shengtao Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangshuang Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhitao Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Cao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Kishore Sahoo R, Jeughale KP, Sarkar S, Selvaraj S, Singh NR, Swain N, Balasubramaniasai C, Chidambaranathan P, Katara JL, Nayak AK, Samantaray S. Growing Conditions and Varietal Ecologies Differently Regulates the Growth-regulating-factor (GRFs) Gene Family in Rice. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3697. [PMID: 38827337 PMCID: PMC11139448 DOI: 10.30498/ijb.2024.394984.3697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/31/2023] [Indexed: 06/04/2024]
Abstract
Background Growth-regulating factors (GRFs) are crucial in rice for controlling plant growth and development. Among the rice cultivation practices, aerobic methods are water efficient but result in significant yield reduction relative to non-aerobic cultivation. Therefore, mechanistic insights into aerobic rice cultivation are important for improving the aerobic performance of rice. Objectives This study aimed to examine the evolution of GRFs in different rice species, analyse the phenotypic differences between aerobic and non-aerobic conditions in three rice varieties, and assess the expression of GRFs in these varieties under both aerobic and non-aerobic conditions. Materials and Methods This study comprehensively examined the GRFs gene family in 11 rice species (Oryza barthii, Oryza brachyantha, Oryza glaberrima, Oryza glumipatula, Oryza sativa subsp. indica, Oryza longistaminata, Oryza meridionalis, Oryza nivara, Oryza punctata, Oryza rufipogon, Oryza sativa subsp. japonica) focusing on phylogenetic analysis. Additionally, the expression patterns of 12 GRFs were investigated in three distinct genotypes of O. sativa subsp. indica rice, under both non-aerobic and aerobic conditions. Results Three major phylogenetic clades were formed based on conserved motifs in the 123 GRFs proteins in eleven rice species. Further, novel motifs were identified especially in O. longistaminata indicative of the species level evolutionary differences in rice. Among the trait performance, the number of tillers was reduced by ~ 36% under aerobic conditions, but the reduction was found to be less in CR Dhan 201, an aerobic variety. Besides, three GRFs namely GRF3, GRF4, and GRF7 were found to be distinct in expression between aerobic and non-aerobic conditions. Conclusion Three GRF genes namely GRF3, GRF4, and GRF7 could be associated with the aerobic adaptation in rice.
Collapse
Affiliation(s)
- Raj Kishore Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
- Department of Botany, Ravenshaw University, Cuttack, India
| | | | - Suman Sarkar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | | | | | - Nibedita Swain
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | | | | | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Amaresh Kumar Nayak
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, India
| | | |
Collapse
|
6
|
Niu Y, Fan S, Cheng B, Li H, Wu J, Zhao H, Huang Z, Yan F, Qi B, Zhang L, Zhang G. Comparative transcriptomics and co-expression networks reveal cultivar-specific molecular signatures associated with reproductive-stage cold stress in rice. PLANT CELL REPORTS 2023; 42:707-722. [PMID: 36723676 DOI: 10.1007/s00299-023-02984-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The resistance of Huaidao5 results from the high constitutive expression of tolerance genes, while that of Huaidao9 is due to the cold-induced resistance in flag leaves and panicles. The regulation mechanism of rice seedlings' cold tolerance is relatively clear, and knowledge of its underlying mechanisms at the reproductive stage is limited. We performed differential expression and co-expression network analyses to transcriptomes from panicle and flag leaf tissues of a cold-tolerant cultivar (Huaidao5), and a sensitive cultivar (Huaidao9), under reproductive-stage cold stress. The results revealed that the expression levels of genes in stress-related pathways such as MAPK signaling pathway, diterpenoid biosynthesis, glutathione metabolism, plant-pathogen interaction and plant hormone signal transduction were constitutively highly expressed in Huaidao5, especially in panicles. Moreover, the Hudaidao5's panicle sample-specific (under cold) module contained some genes related to rice yield, such as GW5L, GGC2, SG1 and CTPS1. However, the resistance of Huaidao9 was derived from the induced resistance to cold in flag leaves and panicles. In the flag leaves, the responses included a series of stress response and signal transduction, while in the panicles nitrogen metabolism was severely affected, especially 66 endosperm-specific genes. Through integrating differential expression with co-expression networks, we predicted 161 candidate genes (79 cold-responsive genes common to both cultivars and 82 cold-tolerance genes associated with differences in cold tolerance between cultivars) potentially affecting cold response/tolerance, among which 85 (52.80%) were known to be cold-related genes. Moreover, 52 (65.82%) cold-responsive genes (e.g., TIFY11C, LSK1 and LPA) could be confirmed by previous transcriptome studies and 72 (87.80%) cold-tolerance genes (e.g., APX5, OsFbox17 and OsSTA109) were located within QTLs associated with cold tolerance. This study provides an efficient strategy for further discovery of mechanisms of cold tolerance in rice.
Collapse
Affiliation(s)
- Yuan Niu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Song Fan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Baoshan Cheng
- Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu Province, Huai'an, 223001, China.
| | - Henan Li
- Shanghai Bioelectronica Limited Liability Company, Shanghai, 200131, China
| | - Jiang Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Hongliang Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhiwei Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Feiyu Yan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Bo Qi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Linqing Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Guoliang Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
- State Key Laboratory of Soil and Agricultural Sustainable Development, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Attapulgite Clay Resource Utilization, Huai'an, 223003, China.
| |
Collapse
|
7
|
Feng J, Li Z, Luo W, Liang G, Xu Y, Chong K. COG2 negatively regulates chilling tolerance through cell wall components altered in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:19. [PMID: 36680595 DOI: 10.1007/s00122-023-04261-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.
Collapse
Affiliation(s)
- Jinglei Feng
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Li
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Luo
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yunyuan Xu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
8
|
Zhang T, Wang J, Luo R, Man J, Long Q, Xu N. OsHLS1 regulates plant height and development by controlling active gibberellin accumulation in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111508. [PMID: 36283578 DOI: 10.1016/j.plantsci.2022.111508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, we identified a gene related to plant height, leaf, and premature senescence in rice, and named it OsHLS1. Through bioinformatics analysis, it was found that this gene belongs to a new gene family-HLS family, and this gene family exists widely in higher plants. Expression of OsHLS1 was significantly brought about by gibberellin (GA). Subcellular localization showed that OsHLS1 was located in the nucleus. oshls1-3 displayed a GA-deficient phenotype, with dwarf plants. In addition, oshls1-3 also showed premature senescence, shorter and narrower leaves, and pollen abortion. Exogenous GA3 can restore the plant height of oshls1-3. Histomorphological analysis showed that the gene affected the progress of internode cells in the first and third nodes under the rice panicle. Through the verification of the homologous gene AT4G25690 in Arabidopsis, it was found that the mutant at4g25690 lines also showed plant dwarfing, premature senescence, and shortening and narrowing of leaves and pollen abortion. OsHLS1 affected the expression levels of genes involved in the GA metabolic pathway and affected the content of active GA, thereby regulating plant height development in rice. In conclusion, we suggest that OsHLS1 regulates plant height and development by controlling the accumulation of active gibberellins in rice.
Collapse
Affiliation(s)
- Tonghua Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jiafu Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Rui Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jianmin Man
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qing Long
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
9
|
Nowicka B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3430. [PMID: 36559545 PMCID: PMC9781743 DOI: 10.3390/plants11243430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Due to the growing human population, the increase in crop yield is an important challenge for modern agriculture. As abiotic and biotic stresses cause severe losses in agriculture, it is also crucial to obtain varieties that are more tolerant to these factors. In the past, traditional breeding methods were used to obtain new varieties displaying demanded traits. Nowadays, genetic engineering is another available tool. An important direction of the research on genetically modified plants concerns the modification of phytohormone metabolism. This review summarizes the state-of-the-art research concerning the modulation of phytohormone content aimed at the stimulation of plant growth and the improvement of stress tolerance. It aims to provide a useful basis for developing new strategies for crop yield improvement by genetic engineering of phytohormone metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Genome-Wide Identification and Analysis of the Growth-Regulating Factor Family in Zanthoxylum armatum DC and Functional Analysis of ZaGRF6 in Leaf Size and Longevity Regulation. Int J Mol Sci 2022; 23:ijms23169043. [PMID: 36012309 PMCID: PMC9409285 DOI: 10.3390/ijms23169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors that play an important role in plant growth and development. In this study, fifteen GRF gene members containing QLQ and WRC domains were identified in Zanthoxylum armatum. Phylogenetic and collinearity analysis showed that ZaGRFs were closely related to CsGRFs and AtGRFs, and distantly related to OsGRFs. There are a large number of cis-acting elements related to hormone response and stress induction in the GRF gene promoter region of Z. armatum. Tissue-specific expression analysis showed that except for ZaGRF7, all the ZaGRFs were highly expressed in young parts with active growth and development, including terminal buds, seeds, and young flowers, suggesting their key roles in Z. armatum growth and development. Eight ZaGRFs were selected to investigate the transcriptional response to auxin, gibberellin and drought treatments. A total of six ZaGRFs in the NAA treatment, four ZaGRFs in the GA3 treatment, and six ZaGRFs in the PEG treatment were induced and significantly up-regulated. Overexpression of ZaGRF6 increased branching and chlorophyll content and delayed senescence of transgenic Nicotiana benthamiana. ZaGRF6 increased the expression of CRF2 and suppressed the expression of ARR4 and CKX1, indicating that ZaGRF6 is involved in cytokinin metabolism and signal transduction. These research results lay a foundation for further analysis of the GRF gene function of Z. armatum and provide candidate genes for growth, development, and stress resistance breeding of Z. armatum.
Collapse
|
11
|
Tian Y, Zhao Y, Sun Y, El-Kassaby YA, Song G, Mi Y, Han J, Li Y. PagGRF11 Overexpression Promotes Stem Development and Dwarfing in Populus. Int J Mol Sci 2022; 23:ijms23147858. [PMID: 35887208 PMCID: PMC9323871 DOI: 10.3390/ijms23147858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Poplar is not only an important woody plant, but also a model species for molecular plant studies. We identified PagGRF11 (pAxG07Gg0005700), a homolog of the Arabidopsis AtGRF1 (AT4G37740) and AtGRF2 (AT2G22840) gene. We transformed the poplar clone "84K" with PagGRF11, and the transgenic overexpressed plants (PagGRF11-OE) showed plant height reduction (dwarfing), stem diameter increase, internode shortening, and larger leaf area. The Arabidopsis overexpression line grf-oe (Overexpression of PagGRF11 in Arabidopsis), mutant line atgrf (a loss-of-function mutant of the AtGRF1 gene of Arabidopsis thaliana), and mutant trans-complementary line atgrf+oe (overexpression of PagGRF11 in mutant plants (atgrf)) also showed different leaf size phenotypes. Further, tissue sections revealed that increased xylem production was the main cause of stem thickening. Transcriptome differential expression analysis of PagGRF11 overexpressed and control plants showed that PagGRF11 promoted CCCH39(C3H39) expression. The expression profile of CCCH39 in different tissues showed that it was highly expressed in xylem. Yeast single hybrid and instantaneous double luciferase assay results showed that PagGRF11 directly transcribed and activated CCCH39 expression through interaction with cis-acting element GARE (TCTGTTG), thus promoting xylem development. This is the first finding that GRF positively regulates xylem development through CCCH39 expression activation and further suggests that PagGRF11 is a potential target for increasing wood yield.
Collapse
Affiliation(s)
- Yanting Tian
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Ye Zhao
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Yuhan Sun
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada;
| | - Guoyong Song
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yueqi Mi
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Juan Han
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
| | - Yun Li
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.T.); (Y.Z.); (Y.S.); (Y.M.); (J.H.)
- Correspondence:
| |
Collapse
|
12
|
Full-Length Transcriptome Sequencing Reveals the Impact of Cold Stress on Alternative Splicing in Quinoa. Int J Mol Sci 2022; 23:ijms23105724. [PMID: 35628539 PMCID: PMC9144462 DOI: 10.3390/ijms23105724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Quinoa is a cold-resistant and nutrient-rich crop. To decipher the cold stress response of quinoa, the full-length transcriptomes of the cold-resistant quinoa variety CRQ64 and the cold-sensitive quinoa variety CSQ5 were compared. We identified 55,389 novel isoforms and 6432 novel genes in these transcriptomes. Under cold stress, CRQ64 had more differentially expressed genes (DEGs) and differentially alternative splicing events compared to non-stress conditions than CSQ5. DEGs that were specifically present only in CRQ64 were significantly enriched in processes which contribute to osmoregulation and ROS homeostasis in plants, such as sucrose metabolism and phenylpropanoid biosynthesis. More genes with differential alternative splicing under cold stress were enriched in peroxidase functions in CRQ64. In total, 5988 transcription factors and 2956 long non-coding RNAs (LncRNAs) were detected in this dataset. Many of these had altered expression patterns under cold stress compared to non-stress conditions. Our transcriptome results demonstrate that CRQ64 undergoes a wider stress response than CSQ5 under cold stress. Our results improved the annotation of the quinoa genome and provide new insight into the mechanisms of cold resistance in quinoa.
Collapse
|
13
|
Genetic Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life (Basel) 2022; 12:life12050700. [PMID: 35629367 PMCID: PMC9147279 DOI: 10.3390/life12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop species. With the current trajectory of global climate change, low temperatures are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly understood. This study reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic processes and elements. This review also highlights possible strategies for improving cold tolerance in wheat.
Collapse
|
14
|
Kameniarová M, Černý M, Novák J, Ondrisková V, Hrušková L, Berka M, Vankova R, Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:887103. [PMID: 35755673 PMCID: PMC9221075 DOI: 10.3389/fpls.2022.887103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old Arabidopsis thaliana (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol m-2s-1), blue, or red (20 μmol m-2s-1) light conditions. An upregulated expression of CBF1, inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Collapse
Affiliation(s)
- Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Jan Novák
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Lenka Hrušková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Bretislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
15
|
Li J, Zhang Z, Chong K, Xu Y. Chilling tolerance in rice: Past and present. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153576. [PMID: 34875419 DOI: 10.1016/j.jplph.2021.153576] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Rice is generally sensitive to chilling stress, which seriously affects growth and yield. Since early in the last century, considerable efforts have been made to understand the physiological and molecular mechanisms underlying the response to chilling stress and improve rice chilling tolerance. Here, we review the research trends and advances in this field. The phenotypic and biochemical changes caused by cold stress and the physiological explanations are briefly summarized. Using published data from the past 20 years, we reviewed the past progress and important techniques in the identification of quantitative trait loci (QTL), novel genes, and cellular pathways involved in rice chilling tolerance. The advent of novel technologies has significantly advanced studies of cold tolerance, and the characterization of QTLs, key genes, and molecular modules have sped up molecular design breeding for cold tolerance in rice varieties. In addition to gene function studies based on overexpression or artificially generated mutants, elucidating natural allelic variation in specific backgrounds is emerging as a novel approach for the study of cold tolerance in rice, and the superior alleles identified using this approach can directly facilitate breeding.
Collapse
Affiliation(s)
- Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zeyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
16
|
Phan H, Schläppi M. Low Temperature Antioxidant Activity QTL Associate with Genomic Regions Involved in Physiological Cold Stress Tolerance Responses in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:genes12111700. [PMID: 34828305 PMCID: PMC8618774 DOI: 10.3390/genes12111700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Boosting cold stress tolerance in crop plants can minimize stress-mediated yield losses. Asian rice (Oryza sativa L.), one of the most consumed cereal crops, originated from subtropical regions and is generally sensitive to low temperature environments. Within the two subspecies of rice, JAPONICA, and INDICA, the cold tolerance potential of its accessions is highly variable and depends on their genetic background. Yet, cold stress tolerance response mechanisms are complex and not well understood. This study utilized 370 accessions from the Rice Diversity Panel 1 (RDP1) to investigate and correlate four cold stress tolerance response phenotypes: membrane damage, seedling survivability, and catalase and anthocyanin antioxidative activity. Most JAPONICA accessions, and admixed accessions within JAPONICA, had lower membrane damage, higher antioxidative activity, and overall, higher seedling survivability compared to INDICA accessions. Genome-wide association study (GWAS) mapping was done using the four traits to find novel quantitative trait loci (QTL), and to validate and fine-map previously identified QTL. A total of 20 QTL associated to two or more traits were uncovered by our study. Gene Ontology (GO) term enrichment analyses satisfying four layers of filtering retrieved three potential pathways: signal transduction, maintenance of plasma membrane and cell wall integrity, and nucleic acids metabolism as general mechanisms of cold stress tolerance responses involving antioxidant activity.
Collapse
|