1
|
Qonaah IA, Simon AL, Warner D, Rostron RM, Bruce TJA, Ray RV. Rapid screening for resistance to Sitobion avenae (F.) and Rhopalosiphum padi (L.) in winter wheat seedlings and selection of efficient assessment methods. PEST MANAGEMENT SCIENCE 2024. [PMID: 39425459 DOI: 10.1002/ps.8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Sitobion avenae (F.) and Rhopalosiphum padi (L.) are harmful pests of wheat [Triticum aestivum (L.)]. No genetic resistance against the aphids has been identified in commercial wheat varieties and resistance phenotyping can be time-consuming and laborious. Here, we tested a high-throughput phenotyping method to screen 29 commercial winter wheat varieties for alate antixenosis and antibiosis. We validated this method using comprehensive behavioural analyses, including alate attraction to volatile organic compounds (VOCs) and a feeding bioassay using an electrical penetration graph (EPG), subsequently highlighting possible sources of resistance. RESULTS We observed differences in alate behaviour upon assessing alate settlement on wheat seedlings and attraction towards VOCs, revealing the importance of visual and early post-alighting cues for alate host selection. Aphid settlement was four times higher on the most preferred variety than on the least preferred variety. Using an EPG bioassay, we identified phloem feeding and stylet derailment parameters linked to resistance. We found antibiosis assessment on detached leaves to be an inadequate screen because it produced results inconsistent with intact leaves assessment. Alate and nymph mortality were identified as key traits signifying antibiosis, showing significant positive relationships with alate reproduction and nymph mean relative growth rate. CONCLUSIONS Overall, antixenosis and antibiosis varietal responses were consistent for both aphid species. Alate settlement on wheat seedlings was a more efficient antixenosis screen than an olfactometer assay using VOCs. In addition to assessing alate and nymph survival for antibiosis, this allows for more rapid phenotyping of large numbers of genotypes to identify novel aphid resistance genes for varietal improvement. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ilma A Qonaah
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Amma L Simon
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | | | - Rosanna M Rostron
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | | | - Rumiana V Ray
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
2
|
Wang J, Ma Z, Fu D, Wu Y, Zhou Z, Li C, Shen J. Identification, Cloning, and Characterization of Two Acupuncture-Injury-Inducing Promoters in Rice. Int J Mol Sci 2024; 25:10564. [PMID: 39408894 PMCID: PMC11476359 DOI: 10.3390/ijms251910564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
As an important global food crop, rice is damaged by a variety of piercing-sucking pests. Identifying a broad-spectrum promoter induced by the physical signal of sucking pests and applying it to transgenic breeding to mitigate the damage caused by different sucking pests will significantly improve the efficiency of our breeding. This study compared the transcriptome changes in two rice varieties under needle-wounding stress to investigate their differential responses to mechanical damage. The results showed that the insect-susceptible variety TN1 exhibited more differentially expressed genes (DEGs) and greater changes in expression levels after needle treatment, indicating a more active internal gene regulatory network. GO and KEGG enrichment analysis further revealed that TN1 not only exhibited changes in genes related to the extracellular environment, but also mobilized more genes associated with stress response and defense. By screening the differentially expressed genes, we identified two promoters (P1 and P2) with inducible expression characteristics in both the resistant and susceptible rice varieties. These promoters were able to effectively drive the expression of the insect resistance gene OsLecRK1* and enhance the resistance of transgenic plants against the brown planthopper. This study provides promoter resources for the development of insect-resistant transgenic crops.
Collapse
Affiliation(s)
- Jianyu Wang
- School of Life Sciences, Hubei University, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan 430062, China; (J.W.); (D.F.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China;
| | - Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Dong Fu
- School of Life Sciences, Hubei University, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan 430062, China; (J.W.); (D.F.)
| | - Yan Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China;
| | - Zaihui Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Changyan Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China;
| | - Junhao Shen
- School of Life Sciences, Hubei University, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan 430062, China; (J.W.); (D.F.)
| |
Collapse
|
3
|
Zhou JS, Xu HK, Drucker M, Ng JCK. Adaptation of feeding behaviors on two Brassica species by colonizing and noncolonizing Bemisia tabaci (Hemiptera: Aleyrodidae) NW whiteflies. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:20. [PMID: 39225033 PMCID: PMC11369500 DOI: 10.1093/jisesa/ieae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Bemisia tabaci New World (NW) (Gennadius) (Hemiptera: Aleyrodidae), a whitefly in the B. tabaci species complex, is polyphagous on many plant species. Yet, it has been displaced, albeit not entirely, by other whitefly species. Potential causes could include issues with adaptation, feeding, and the colonization of new-hosts; however, insights that would help clarify these possibilities are lacking. Here, we sought to address these gaps by performing electropenetrography (EPG) recordings of NW whiteflies, designated "Napus" and "Rapa," reared on 2 colony hosts, Brassica napus and B. rapa, respectively. Analysis of 17 probing and pathway (pw) phase-related EPG variables revealed that the whiteflies exhibited unique probing behaviors on their respective colony hosts, with some deterrence being encountered on B. rapa. Upon switching to B. rapa and B. napus, the probing patterns of Napus and Rapa whiteflies, respectively, adapted quickly to these new-hosts to resemble that of whiteflies feeding on their colony hosts. Results for 3 of the EPG variables suggested that B. rapa's deterrence against Napus whitefly was significant prior to the phloem phase. This also suggested that adaptation by Rapa whitefly improved its pw probing on B. rapa. Based on analysis of 24 phloem phase-related EPG variables, Napus and Rapa whiteflies performed equally well once they entered phloem phase and exhibited comparable phloem acceptability on both the colony- and new-hosts. These findings demonstrate that NW whiteflies reared on a colony host are highly adaptable to feeding on a new host despite encountering some deterrence during the nonphloem phases in B. rapa plant.
Collapse
Affiliation(s)
- Jaclyn S Zhou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Huaying Karen Xu
- Department of Statistics, University of California, Riverside, CA, USA
| | - Martin Drucker
- Virus Vector Interactions, UMR 1131 SVQV, INRAE, Université de Strasbourg, Colmar, France
| | - James C K Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Center for Infectious Disease and Vector Research, University of California, Riverside, CA, USA
| |
Collapse
|
4
|
Morin S, Atkinson PW, Walling LL. Whitefly-Plant Interactions: An Integrated Molecular Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:503-525. [PMID: 37816261 DOI: 10.1146/annurev-ento-120120-093940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly-plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense-signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.
Collapse
Affiliation(s)
- Shai Morin
- Department of Entomology, Hebrew University of Jerusalem, Rehovot, Israel;
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, California, USA;
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA;
| |
Collapse
|
5
|
Paulmann MK, Wegner L, Gershenzon J, Furch ACU, Kunert G. Pea Aphid ( Acyrthosiphon pisum) Host Races Reduce Heat-Induced Forisome Dispersion in Vicia faba and Trifolium pratense. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091888. [PMID: 37176952 PMCID: PMC10181200 DOI: 10.3390/plants12091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Although phloem-feeding insects such as aphids can cause significant damage to plants, relatively little is known about early plant defenses against these insects. As a first line of defense, legumes can stop the phloem mass flow through a conformational change in phloem proteins known as forisomes in response to Ca2+ influx. However, specialized phloem-feeding insects might be able to suppress the conformational change of forisomes and thereby prevent sieve element occlusion. To investigate this possibility, we triggered forisome dispersion through application of a local heat stimulus to the leaf tips of pea (Pisum sativum), clover (Trifolium pratense) and broad bean (Vicia faba) plants infested with different pea aphid (Acyrthosiphon pisum) host races and monitored forisome responses. Pea aphids were able to suppress forisome dispersion, but this depended on the infesting aphid host race, the plant species, and the age of the plant. Differences in the ability of aphids to suppress forisome dispersion may be explained by differences in the composition and quantity of the aphid saliva injected into the plant. Various mechanisms of how pea aphids might suppress forisome dispersion are discussed.
Collapse
Affiliation(s)
- Maria K Paulmann
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Linus Wegner
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
- Institute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35292 Giessen, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Alexandra C U Furch
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
6
|
Sadon P, Corre MN, Lugan R, Boissot N. Aphid adaptation to cucurbits: sugars, cucurbitacin and phloem structure in resistant and susceptible melons. BMC PLANT BIOLOGY 2023; 23:239. [PMID: 37147560 PMCID: PMC10161555 DOI: 10.1186/s12870-023-04248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Aphis gossypii, a strictly phloemophagaous aphid, colonize hundreds of plant families, and a group of clones formed a cucurbit-specialised host-race. Cucurbits are unique in having evolved a specific extra-fascicular phloem (EFP), which carries defence-related metabolites such as cucurbitacin, whereas the fascicular phloem (FP) is common to all higher plants and carries primary metabolites, such as raffinose-family oligosaccharides (RFOs). Both cucurbitacins (in the EFP) and galactinol (in the FP) have been suggested to be toxic to aphids. We investigated these hypotheses in cucurbit-specialized A. gossypii fed on melon plants with or without aphid-resistance conferred by the NLR gene Vat. We selected a plant-aphid system with (i) Vat-mediated resistance not triggered, (ii) Vat-mediated resistance triggered by an aphid clone adapted to the presence of Vat resistant alleles and (iii) Vat-mediated resistance triggered by a non-adapted aphid clone. RESULTS We quantified cucurbitacin B, its glycosylated derivative, and sugars, in melon plants and aphids that fed on. The level of cucurbitacin in plants was unrelated to both aphid infestation and aphid resistance. Galactinol was present at higher quantities in plants when Vat-mediated resistance was triggered, but its presence did not correlate with aphid performance. Finally, we showed that cucurbit-specialized A. gossypii fed from the FP but could also occasionally access the EFP without sustainably feeding from it. However, the clone not adapted to Vat-mediated resistance were less able to access the FP when the Vat resistance was triggered. CONCLUSION We concluded that galactinol accumulation in resistant plants does not affect aphids, but may play a role in aphid adaptation to fasting and that Cucurbitacin in planta is not a real threat to Aphis gossypii. Moreover, the specific phloem of Cucurbits is involved neither in A. gossypii cucurbit specialisation nor in adaptation to Vat-dependent resistance.
Collapse
Affiliation(s)
- Pierre Sadon
- Génétique et Amélioration des Fruits et Légumes, National Institute for Agriculture, Food and Environment, INRAE, Domaine St-Maurice, 84143, Montfavet, Cedex, France
| | - Marie-Noëlle Corre
- Génétique et Amélioration des Fruits et Légumes, National Institute for Agriculture, Food and Environment, INRAE, Domaine St-Maurice, 84143, Montfavet, Cedex, France
| | - Raphael Lugan
- Plantes et Systèmes de cultures Horticoles, National Institute for Agriculture, Food and Environment, INRAE, Domaine St Paul, 84914, Avignon, Cedex, France
| | - Nathalie Boissot
- Génétique et Amélioration des Fruits et Légumes, National Institute for Agriculture, Food and Environment, INRAE, Domaine St-Maurice, 84143, Montfavet, Cedex, France.
| |
Collapse
|
7
|
Bettinelli P, Nicolini D, Costantini L, Stefanini M, Hausmann L, Vezzulli S. Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar 'Merzling'. Int J Mol Sci 2023; 24:3568. [PMID: 36834979 PMCID: PMC9961920 DOI: 10.3390/ijms24043568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Black rot (BR), caused by Guignardia bidwellii, is an emergent fungal disease threatening viticulture and affecting several mildew-tolerant varieties. However, its genetic bases are not fully dissected yet. For this purpose, a segregating population derived from the cross 'Merzling' (hybrid, resistant) × 'Teroldego' (V. vinifera, susceptible) was evaluated for BR resistance at the shoot and bunch level. The progeny was genotyped with the GrapeReSeq Illumina 20K SNPchip, and 7175 SNPs were combined with 194 SSRs to generate a high-density linkage map of 1677 cM. The QTL analysis based on shoot trials confirmed the previously identified Resistance to Guignardia bidwellii (Rgb)1 locus on chromosome 14, which explained up to 29.2% of the phenotypic variance, reducing the genomic interval from 2.4 to 0.7 Mb. Upstream of Rgb1, this study revealed a new QTL explaining up to 79.9% of the variance for bunch resistance, designated Rgb3. The physical region encompassing the two QTLs does not underlie annotated resistance (R)-genes. The Rgb1 locus resulted enriched in genes belonging to phloem dynamics and mitochondrial proton transfer, while Rgb3 presented a cluster of pathogenesis-related Germin-like protein genes, promoters of the programmed cell death. These outcomes suggest a strong involvement of mitochondrial oxidative burst and phloem occlusion in BR resistance mechanisms and provide new molecular tools for grapevine marker-assisted breeding.
Collapse
Affiliation(s)
- Paola Bettinelli
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige, TN, Italy
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Daniela Nicolini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Laura Costantini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Marco Stefanini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Ludger Hausmann
- JKI Institute for Grapevine Breeding, Geilweilerhof, 76833 Siebeldingen, Germany
| | - Silvia Vezzulli
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| |
Collapse
|
8
|
Louf JF, Alexander SLM. Poroelastic plant-inspired structures & materials to sense, regulate flow, and move. BIOINSPIRATION & BIOMIMETICS 2022; 18:015002. [PMID: 36317663 DOI: 10.1088/1748-3190/ac9e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Despite their lack of a nervous system and muscles, plants are able to feel, regulate flow, and move. Such abilities are achieved through complex multi-scale couplings between biology, chemistry, and physics, making them difficult to decipher. A promising approach is to decompose plant responses in different blocks that can be modeled independently, and combined later on for a more holistic view. In this perspective, we examine the most recent strategies for designing plant-inspired soft devices that leverage poroelastic principles to sense, manipulate flow, and even generate motion. We will start at the organism scale, and study how plants can use poroelasticity to carry informationin-lieuof a nervous system. Then, we will go down in size and look at how plants manage to passively regulate flow at the microscopic scale using valves with encoded geometric non-linearities. Lastly, we will see at an even smaller scale, at the nanoscopic scale, how fibers orientation in plants' tissues allow them to induce motion using water instead of muscles.
Collapse
Affiliation(s)
- Jean-François Louf
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States of America
| | - Symone L M Alexander
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States of America
| |
Collapse
|
9
|
Noll GA, Furch ACU, Rose J, Visser F, Prüfer D. Guardians of the phloem - forisomes and beyond. THE NEW PHYTOLOGIST 2022; 236:1245-1260. [PMID: 36089886 DOI: 10.1111/nph.18476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The phloem is a highly specialized vascular tissue that forms a fundamentally important transport and signaling pathway in plants. It is therefore a system worth protecting. The main function of the phloem is to transport the products of photosynthesis throughout the whole plant, but it also transports soluble signaling molecules and propagates electrophysiological signals. The phloem is constantly threatened by mechanical injuries, phloem-sucking pests and parasites, and the spread of pathogens, which has led to the evolution of efficient defense mechanisms. One such mechanism involves structural phloem proteins, which are thought to facilitate sieve element occlusion following injury and to defend the plant against pathogens. In leguminous plants, specialized structural phloem proteins known as forisomes form unique mechanoproteins via sophisticated molecular interaction and assembly mechanisms, thus enabling reversible sieve element occlusion. By understanding the structure and function of forisomes and other structural phloem proteins, we can develop a toolbox for biotechnological applications in material science and medicine. Furthermore, understanding the involvement of structural phloem proteins in plant defense mechanisms will allow phloem engineering as a new strategy for the development of crop varieties that are resistant to pests, pathogens and parasites.
Collapse
Affiliation(s)
- Gundula A Noll
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Muenster, Germany
| | - Alexandra C U Furch
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany
| | - Judith Rose
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany
| | - Franziska Visser
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany
| | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Muenster, Germany
| |
Collapse
|
10
|
Sin WC, Lam HM, Ngai SM. Identification of Diverse Stress-Responsive Xylem Sap Peptides in Soybean. Int J Mol Sci 2022; 23:ijms23158641. [PMID: 35955768 PMCID: PMC9369194 DOI: 10.3390/ijms23158641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.
Collapse
|
11
|
van Bel AJE, Schulz A, Patrick JW. New mosaic fragments toward reconstructing the elusive phloem system. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153754. [PMID: 35753158 DOI: 10.1016/j.jplph.2022.153754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Aart J E van Bel
- Institut of Phytopathology, Centre for Biosystems, Land Use and Nutrition, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392 Gieβen, Germany.
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - John W Patrick
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan NSW 2308, Australia
| |
Collapse
|
12
|
Bernardini C, Santi S, Mian G, Levy A, Buoso S, Suh JH, Wang Y, Vincent C, van Bel AJE, Musetti R. Increased susceptibility to Chrysanthemum Yellows phytoplasma infection in Atcals7ko plants is accompanied by enhanced expression of carbohydrate transporters. PLANTA 2022; 256:43. [PMID: 35842878 PMCID: PMC9288947 DOI: 10.1007/s00425-022-03954-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 05/19/2023]
Abstract
MAIN CONCLUSION Loss of CALS7 appears to confer increased susceptibility to phytoplasma infection in Arabidopsis, altering expression of genes involved in sugar metabolism and membrane transport. Callose deposition around sieve pores, under control of callose synthase 7 (CALS7), has been interpreted as a mechanical response to limit pathogen spread in phytoplasma-infected plants. Wild-type and Atcals7ko mutants were, therefore, employed to unveil the mode of involvement of CALS7 in the plant's response to phytoplasma infection. The fresh weights of healthy and CY-(Chrysanthemum Yellows) phytoplasma-infected Arabidopsis wild type and mutant plants indicated two superimposed effects of the absence of CALS7: a partial impairment of photo-assimilate transport and a stimulated phytoplasma proliferation as illustrated by a significantly increased phytoplasma titre in Atcal7ko mutants. Further studies solely dealt with the effects of CALS7 absence on phytoplasma growth. Phytoplasma infection affected sieve-element substructure to a larger extent in mutants than in wild-type plants, which was also true for the levels of some free carbohydrates. Moreover, infection induced a similar upregulation of gene expression of enzymes involved in sucrose cleavage (AtSUS5, AtSUS6) and transmembrane transport (AtSWEET11) in mutants and wild-type plants, but an increased gene expression of carbohydrate transmembrane transporters (AtSWEET12, AtSTP13, AtSUC3) in infected mutants only. It remains still unclear how the absence of AtCALS7 leads to gene upregulation and how an increased intercellular mobility of carbohydrates and possibly effectors contributes to a higher susceptibility. It is also unclear if modified sieve-pore structures in mutants allow a better spread of phytoplasmas giving rise to higher titre.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Giovanni Mian
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Amit Levy
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Joon Hyuk Suh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Christopher Vincent
- Horticultural Sciences Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Aart J E van Bel
- Institute of Phytopathology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rita Musetti
- Department of Land, Environment, Agriculture and Forestry (TESAF), Università di Padova, via dell' Università, 16, 35020, Legnaro, PD, Italy.
| |
Collapse
|
13
|
Twayana M, Girija AM, Mohan V, Shah J. Phloem: At the center of action in plant defense against aphids. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153695. [PMID: 35468314 DOI: 10.1016/j.jplph.2022.153695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The location of the phloem deep inside the plant, the high hydrostatic pressure in the phloem, and the composition of phloem sap, which is rich in sugar with a high C:N ratio, allows phloem sap feeding insects to occupy a unique ecological niche. The anatomy and physiology of aphids, a large group of phytophagous insects that use their mouthparts, which are modified into stylets, to consume large amounts of phloem sap, has allowed aphids to successfully exploit this niche, however, to the detriment of agriculture and horticulture. The ability to reproduce asexually, a short generation time, the development of resistance to commonly used insecticides, and their ability to vector viral diseases makes aphids among the most damaging pests of plants. Here we review how plants utilize their ability to occlude sieve elements and accumulate antibiotic and antinutritive factors in the phloem sap to limit aphid infestation. In addition, we summarize progress on understanding how plants perceive aphids to activate defenses in the phloem.
Collapse
Affiliation(s)
- Moon Twayana
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Anil M Girija
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Vijee Mohan
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| |
Collapse
|
14
|
Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding. INSECTS 2022; 13:insects13050409. [PMID: 35621745 PMCID: PMC9147889 DOI: 10.3390/insects13050409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Potato is one of the most universally cultivated horticultural crops and is vulnerable to a range of herbivorous insects. One of them is the brown marmorated stink bug, an invasive polyphagous sap-sucking agricultural insect pest that penetrates the phloem to sieve elements and removes sap via a specialized mouthpart, the stylet. By using the chlorophyll fluorescence imaging methodology, we examined potato photosystem II (PSII) photochemistry responses in the area of feeding on the whole leaf area. Highly increased reactive oxygen species (ROS) generation was observed as rapidly as 3 min after feeding to initiate defence responses and can be considered the primary plant defence response mechanism against herbivores. Our experimental results confirmed that chlorophyll fluorescence imaging methodology can detect spatial heterogeneity of PSII efficiency at the whole leaf surface and is a promising tool for investigating plant response mechanisms of sap-sucking insect herbivores. We suggest that PSII responses to insect feeding underlie ROS-dependent signalling. We conclude that the potato PSII response mechanism to sap-sucking insect herbivores is described by the induction of the defence response to reduce herbivory damage, instead of induction of tolerance, through a compensatory photosynthetic response mechanism that is observed after chewing insect feeding. Abstract Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores.
Collapse
|
15
|
Plastid Transformation of Micro-Tom Tomato with a Hemipteran Double-Stranded RNA Results in RNA Interference in Multiple Insect Species. Int J Mol Sci 2022; 23:ijms23073918. [PMID: 35409279 PMCID: PMC8999928 DOI: 10.3390/ijms23073918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Plant-mediated RNA interference (RNAi) holds great promise for insect pest control, as plants can be transformed to produce double-stranded RNA (dsRNA) to selectively down-regulate insect genes essential for survival. For optimum potency, dsRNA can be produced in plant plastids, enabling the accumulation of unprocessed dsRNAs. However, the relative effectiveness of this strategy in inducing an RNAi response in insects using different feeding mechanisms is understudied. To investigate this, we first tested an in vitro-synthesized 189 bp dsRNA matching a highly conserved region of the v-ATPaseA gene from cotton mealybug (Phenacoccus solenopsis) on three insect species from two different orders that use leaf-chewing, lacerate-and-flush, or sap-sucking mechanisms to feed, and showed that the dsRNA significantly down-regulated the target gene. We then developed transplastomic Micro-tom tomato plants to produce the dsRNA in plant plastids and showed that the dsRNA is produced in leaf, flower, green fruit, red fruit, and roots, with the highest dsRNA levels found in the leaf. The plastid-produced dsRNA induced a significant gene down-regulation in insects using leaf-chewing and lacerate-and-flush feeding mechanisms, while sap-sucking insects were unaffected. Our results suggest that plastid-produced dsRNA can be used to control leaf-chewing and lacerate-and-flush feeding insects, but may not be useful for sap-sucking insects.
Collapse
|