1
|
Mauceri A, Puccio G, Faddetta T, Abbate L, Polito G, Caldiero C, Renzone G, Lo Pinto M, Alibrandi P, Vaccaro E, Abenavoli MR, Scaloni A, Sunseri F, Cavalieri V, Palumbo Piccionello A, Gallo G, Mercati F. Integrated omics approach reveals the molecular pathways activated in tomato by Kocuria rhizophila, a soil plant growth-promoting bacterium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108609. [PMID: 38615442 DOI: 10.1016/j.plaphy.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Plant microbial biostimulants application has become a promising and eco-friendly agricultural strategy to improve crop yields, reducing chemical inputs for more sustainable cropping systems. The soil dwelling bacterium Kocuria rhizophila was previously characterized as Plant Growth Promoting Bacteria (PGPB) for its multiple PGP traits, such as indole-3-acetic acid production, phosphate solubilization capability and salt and drought stress tolerance. Here, we evaluated by a multi-omics approach, the PGP activity of K. rhizophila on tomato, revealing the molecular pathways by which it promotes plant growth. Transcriptomic analysis showed several up-regulated genes mainly related to amino acid metabolism, cell wall organization, lipid and secondary metabolism, together with a modulation in the DNA methylation profile, after PGPB inoculation. In agreement, proteins involved in photosynthesis, cell division, and plant growth were highly accumulated by K. rhizophila. Furthermore, "amino acid and peptides", "monosaccharides", and "TCA" classes of metabolites resulted the most affected by PGPB treatment, as well as dopamine, a catecholamine neurotransmitter mediating plant growth through S-adenosylmethionine decarboxylase (SAMDC), a gene enhancing the vegetative growth, up-regulated in tomato by K. rhizophila treatment. Interestingly, eight gene modules well correlated with differentially accumulated proteins (DAPs) and metabolites (DAMs), among which two modules showed the highest correlation with nine proteins, including a nucleoside diphosphate kinase, and cytosolic ascorbate peroxidase, as well as with several amino acids and metabolites involved in TCA cycle. Overall, our findings highlighted that sugars and amino acids, energy regulators, involved in tomato plant growth, were strongly modulated by the K. rhizophila-plant interaction.
Collapse
Affiliation(s)
- Antonio Mauceri
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Guglielmo Puccio
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy; University of Palermo, SAAF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Teresa Faddetta
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Loredana Abbate
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Giulia Polito
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Ciro Caldiero
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Giovanni Renzone
- National Research Council, Proteomics, Metabolomics and Mass Spectrometry Laboratory (ISPAAM), Piazzale E. Fermi 1, 80055, Portici, (Napoli), Italy
| | - Margot Lo Pinto
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Pasquale Alibrandi
- Mugavero Teresa S.A.S., Corso Umberto e Margherita 1B, 90018, Termini Imerese, (Palermo), Italy
| | - Edoardo Vaccaro
- Mugavero Teresa S.A.S., Corso Umberto e Margherita 1B, 90018, Termini Imerese, (Palermo), Italy
| | - Maria Rosa Abenavoli
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Andrea Scaloni
- National Research Council, Proteomics, Metabolomics and Mass Spectrometry Laboratory (ISPAAM), Piazzale E. Fermi 1, 80055, Portici, (Napoli), Italy
| | - Francesco Sunseri
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Vincenzo Cavalieri
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | | | - Giuseppe Gallo
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Francesco Mercati
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
2
|
Jacob F, Hamid R, Ghorbanzadeh Z, Valsalan R, Ajinath LS, Mathew D. Genome-wide identification, characterization, and expression analysis of MIPS family genes in legume species. BMC Genomics 2024; 25:95. [PMID: 38262915 PMCID: PMC10804463 DOI: 10.1186/s12864-023-09937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.
Collapse
Affiliation(s)
- Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ravisankar Valsalan
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Lavale Shivaji Ajinath
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Deepu Mathew
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India.
| |
Collapse
|
3
|
Perchuk IN, Shelenga TV, Burlyaeva MO. The Effect of Illumination Patterns during Mung Bean Seed Germination on the Metabolite Composition of the Sprouts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3772. [PMID: 37960128 PMCID: PMC10649298 DOI: 10.3390/plants12213772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Mung bean (Vigna radiata (L.) Wilczek) sprouts are popular over the world because of their taste, nutritional value, well-balanced biochemical composition, and other properties beneficial for human health. Germination conditions affect the composition of metabolites in mung bean sprouts, so a detailed study into its variability is required. This article presents the results of a comparison of the metabolite composition in the leaves of mung bean sprouts germinated first in the dark (DS) and then in the light (LS). Gas chromatography with mass spectrometry (GC-MS) made it possible to identify more than 100 compounds representing various groups of phytochemicals. Alcohols, amino acids, and saccharides predominated in the total amount of compounds. The analysis of metabolomic profiles exposed a fairly high intra- and intervarietal variability in the metabolite content. DS and LS differed in the qualitative and quantitative content of the identified compounds. The intravarietal variability was more pronounced in DS than in LS. DS demonstrated higher levels of saccharides, fatty acids, acylglycerols, and phenolic compounds, while amino acids were higher in LS. Changes were recorded in the quantitative content of metabolites participating in the response of plants to stressors-ornithine, proline, GABA, inositol derivatives, etc. The changes were probably induced by the stress experienced by the sprouts when they were transferred from shade to light. The analysis of variance and principal factor analysis showed the statistically significant effect of germination conditions on the content of individual compounds in leaves. The identified features of metabolite variability in mung bean genotypes grown under different conditions will contribute to more accurate selection of an illumination pattern to obtain sprouts with desirable biochemical compositions for use in various diets and products with high nutritional value.
Collapse
Affiliation(s)
- Irina N. Perchuk
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia;
| | | | - Marina. O. Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia;
| |
Collapse
|
4
|
Huang B, Liao Q, Fu H, Ye Z, Mao Y, Luo J, Wang Y, Yuan H, Xin J. Effect of potassium intake on cadmium transporters and root cell wall biosynthesis in sweet potato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114501. [PMID: 36603483 DOI: 10.1016/j.ecoenv.2023.114501] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Large areas of farmland soil in southern China are deficient in potassium (K) and are contaminated with cadmium (Cd). Previously, we suggested that the K supplementation could reduce Cd accumulation in sweet potatoes (Ipomoea batatas (L.) Lam). In the present study, we investigated the underlying physiological and molecular mechanisms. A hydroponic experiment with different K and Cd treatments was performed to compare the transcriptome profile and the cell wall structure in the roots of sweet potato using RNA sequencing, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that K supply inhibits the expressions of IRT1 and YSL3, which are responsible for root Cd uptake under Cd exposure. Furthermore, the expressions of COPT5 and Nramp3 were downregulated by K, which increased Cd retention in the root vacuoles. The upregulation of POD, CAD, INT1 and SUS by K contributed to lignin and cellulose biosynthesis and thickening of root xylem cell wall, which further reduced Cd translocation to the shoot. In addition, K affected the expressions of LHT, ACS, TPS and TPP associated with the production of ethylene and trehalose, which involved in plant resistance to Cd toxicity. In general, K application could decrease the uptake and translocation of Cd in sweet potatoes by regulating the expression of genes associated with Cd transporters and root cell wall components.
Collapse
Affiliation(s)
- Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Huiling Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ziyi Ye
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yixiao Mao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jiemei Luo
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yating Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
5
|
Nägele T, Gibon Y, Le Hir R. Plant sugar metabolism, transport and signalling in challenging environments. PHYSIOLOGIA PLANTARUM 2022; 174:e13768. [PMID: 36281839 DOI: 10.1111/ppl.13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Planegg, Germany
| | - Yves Gibon
- Université Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Centre INRAE Nouvelle-Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|