1
|
Surrogate peptide selection and internal standardization for accurate quantification of endogenous proteins. Bioanalysis 2022; 14:949-961. [PMID: 36017716 DOI: 10.4155/bio-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Relative quantification techniques have dominated the field of proteomics. However, biomarker discovery, mathematical model development and studies on transporter-mediated drug disposition still need absolute quantification of proteins. The quality of data of trace-level protein quantification is solely dependent on the specific selection of surrogate peptides. Selection of surrogate peptides has a major impact on the accuracy of the method. In this article, the advanced approaches for selection of surrogate peptides, which can provide absolute quantification of the proteins are discussed. In addition, internal standardization, which accounts for variations in the quantitation process to achieve absolute protein quantification is discussed.
Collapse
|
2
|
Hansmeier N, Buttigieg J, Kumar P, Pelle S, Choi KY, Kopriva D, Chao TC. Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2017; 17:164-176. [DOI: 10.1021/acs.jproteome.7b00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nicole Hansmeier
- Department
of Biology/Chemistry, Division of Microbiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Josef Buttigieg
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Pankaj Kumar
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Shaneen Pelle
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Kyoo Yoon Choi
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - David Kopriva
- Regina Qu’Appelle Health Region and University of Saskatchewan, 1440-14th Avenue, Regina, Saskatchewan S4P 0W5, Canada
| | - Tzu-Chiao Chao
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
3
|
DMF-MALDI: droplet based microfluidic combined to MALDI-TOF for focused peptide detection. Sci Rep 2017; 7:6756. [PMID: 28754890 PMCID: PMC5533719 DOI: 10.1038/s41598-017-06660-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/13/2017] [Indexed: 12/21/2022] Open
Abstract
We present an automated droplet microfluidic system (DMF) to generate monitored nanoliter aqueous droplets in oil and their deposition on a commercial stainless steel plate for MALDI-TOF analysis of peptides or protein digests. We demonstrate that DMF-MALDI combination focuses the analyte on the MALDI plate, increasing considerably the homogeneity of the dried material. This results in a 30times enhanced MALDI-TOF MS signal for a model peptide, allowing a significant improvement of the detection sensitivity limit (down to few tens of attomoles). Moreover, positive detection can be achieved from sub-nanomolar peptides solutions and better overall protein sequence coverages are obtained from few tens attomoles of protein digest. These results make DMF-MALDI a promising approach for the treatment of peptides samples as well as a key component for an integrated approach in the proteomic field.
Collapse
|
4
|
Magdalinou NK, Noyce AJ, Pinto R, Lindstrom E, Holmén-Larsson J, Holtta M, Blennow K, Morris HR, Skillbäck T, Warner TT, Lees AJ, Pike I, Ward M, Zetterberg H, Gobom J. Identification of candidate cerebrospinal fluid biomarkers in parkinsonism using quantitative proteomics. Parkinsonism Relat Disord 2017; 37:65-71. [PMID: 28214264 DOI: 10.1016/j.parkreldis.2017.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurodegenerative parkinsonian syndromes have significant clinical and pathological overlap, making early diagnosis difficult. Cerebrospinal fluid (CSF) biomarkers may aid the differentiation of these disorders, but other than α-synuclein and neurofilament light chain protein, which have limited diagnostic power, specific protein biomarkers remain elusive. OBJECTIVES To study disease mechanisms and identify possible CSF diagnostic biomarkers through discovery proteomics, which discriminate parkinsonian syndromes from healthy controls. METHODS CSF was collected consecutively from 134 participants; Parkinson's disease (n = 26), atypical parkinsonian syndromes (n = 78, including progressive supranuclear palsy (n = 36), multiple system atrophy (n = 28), corticobasal syndrome (n = 14)), and elderly healthy controls (n = 30). Participants were divided into a discovery and a validation set for analysis. The samples were subjected to tryptic digestion, followed by liquid chromatography-mass spectrometry analysis for identification and relative quantification by isobaric labelling. Candidate protein biomarkers were identified based on the relative abundances of the identified tryptic peptides. Their predictive performance was evaluated by analysis of the validation set. RESULTS 79 tryptic peptides, derived from 26 proteins were found to differ significantly between atypical parkinsonism patients and controls. They included acute phase/inflammatory markers and neuronal/synaptic markers, which were respectively increased or decreased in atypical parkinsonism, while their levels in PD subjects were intermediate between controls and atypical parkinsonism. CONCLUSION Using an unbiased proteomic approach, proteins were identified that were able to differentiate atypical parkinsonian syndrome patients from healthy controls. Our study indicates that markers that may reflect neuronal function and/or plasticity, such as the amyloid precursor protein, and inflammatory markers may hold future promise as candidate biomarkers in parkinsonism.
Collapse
Affiliation(s)
- N K Magdalinou
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, Queen Square, London, UK.
| | - A J Noyce
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, Queen Square, London, UK
| | - R Pinto
- Institute of Chemistry University of Umeå, Umeå, Sweden
| | - E Lindstrom
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - J Holmén-Larsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - M Holtta
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - H R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, Royal Free Hospital, London, UK
| | - T Skillbäck
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - T T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, Queen Square, London, UK
| | - A J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, Queen Square, London, UK
| | - I Pike
- Proteome Sciences Plc, London, UK
| | - M Ward
- Proteome Sciences Plc, London, UK
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - J Gobom
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
5
|
Liang K, Wu H, Li Y. Immune-enrichment of insulin in bio-fluids on gold-nanoparticle decorated target plate and in situ detection by MALDI MS. Clin Proteomics 2017; 14:5. [PMID: 28115918 PMCID: PMC5244591 DOI: 10.1186/s12014-017-9139-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Detection of low-abundance biomarkers using mass spectrometry (MS) is often hampered by non-target molecules in biological fluids. In addition, current procedures for sample preparation increase sample consumption and limit analysis throughput. Here, a simple strategy is proposed to construct an antibody-modified target plate for high-sensitivity MS detection of target markers such as insulin, in biological fluids. METHODS The target plate was first modified with gold nanoparticle, and then functionalized with corresponding antibody through chemical conjugation. Clinical specimens were incubated onto these antibody-functionalized target plates, and then subjected to matrix assisted laser desorption ionization mass spectrometry analysis. RESULTS Insulin in samples was enriched specifically on this functional plate. The detection just required low-volume samples (lower than 5 µL) and simplified handling process (within 40 min). This method exhibited high sensitivity (limit of detection in standard samples, 0.8 nM) and good linear correlation of MS intensity with insulin concentration (R2 = 0.994). More importantly, insulin present in real biological fluids such as human serum and cell lysate could be detected directly by using this functional target plate without additional sample preparations. CONCLUSIONS Our method is easy to manipulate, cost-effective, and with a potential to be applied in the field of clinical biomarker detection.
Collapse
Affiliation(s)
- Kai Liang
- Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Wu
- Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,GuangDong Bio-healtech Advanced Co., Ltd, Foshan City, 52800 GuangDong Province China
| | - Yan Li
- Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
6
|
Yu KH, Snyder M. Omics Profiling in Precision Oncology. Mol Cell Proteomics 2016; 15:2525-36. [PMID: 27099341 PMCID: PMC4974334 DOI: 10.1074/mcp.o116.059253] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer causes significant morbidity and mortality worldwide, and is the area most targeted in precision medicine. Recent development of high-throughput methods enables detailed omics analysis of the molecular mechanisms underpinning tumor biology. These studies have identified clinically actionable mutations, gene and protein expression patterns associated with prognosis, and provided further insights into the molecular mechanisms indicative of cancer biology and new therapeutics strategies such as immunotherapy. In this review, we summarize the techniques used for tumor omics analysis, recapitulate the key findings in cancer omics studies, and point to areas requiring further research on precision oncology.
Collapse
Affiliation(s)
- Kun-Hsing Yu
- From the ‡Department of Genetics, Stanford University School of Medicine, Stanford, California; §Biomedical Informatics Program, Stanford University School of Medicine, Stanford, California
| | - Michael Snyder
- From the ‡Department of Genetics, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
7
|
Yang M, Nelson R, Ros A. Toward Analysis of Proteins in Single Cells: A Quantitative Approach Employing Isobaric Tags with MALDI Mass Spectrometry Realized with a Microfluidic Platform. Anal Chem 2016; 88:6672-9. [PMID: 27257853 DOI: 10.1021/acs.analchem.5b03419] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein identification and quantification in individual cells is essential to understand biological processes such as those involved in cell apoptosis, cancer, biomarker discovery, disease diagnostics, pathology, or therapy. Compared with present single cell genome analysis, probing the protein content of single cells has been hampered by the lack of a protein amplification technique. Here, we report the development of a quantitative mass spectrometric approach combined with microfluidic technology reaching the detection sensitivity of high abundant proteins in single cells. A microfluidic platform with a series of chambers and valves, ensuring a set of defined wells for absolute quantification of targeted proteins, was developed and combined with isotopic labeling strategies employing isobaric tags for relative and absolute quantitation (iTRAQ)-labels. To this aim, we adapted iTRAQ labeling to an on-chip protocol. Simultaneous protein digestion and labeling performed on the microfluidic platform rendered the labeling strategy compatible with all necessary manipulation steps on-chip, including the matrix delivery for MALDI-TOF analysis. We demonstrate this approach with the apoptosis related protein Bcl-2 and quantitatively assess the number of Bcl-2 molecules detected. We anticipate that this approach will eventually allow quantification of protein expression on the single cell level.
Collapse
Affiliation(s)
- Mian Yang
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Randall Nelson
- Molecular Biomarkers Laboratory, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
8
|
Hartmann EM, Colquhoun DR, Schwab KJ, Halden RU. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:525-32. [PMID: 25603302 PMCID: PMC4369174 DOI: 10.1016/j.jhazmat.2014.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/20/2014] [Accepted: 12/27/2014] [Indexed: 05/16/2023]
Abstract
Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences.
Collapse
Affiliation(s)
- Erica M Hartmann
- Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904, USA
| | - David R Colquhoun
- Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Kellogg J Schwab
- Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Rolf U Halden
- Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904, USA; Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski MM. Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal Chem 2014; 86:3594-601. [PMID: 24579773 DOI: 10.1021/ac500140s] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low mass range of tandem MS spectra for relative quantification. The recent extension of TMT multiplexing to 10 conditions has been enabled by utilizing neutron encoded tags with reporter ion m/z differences of 6 mDa. The baseline resolution of these closely spaced tags is possible due to the high resolving power of current day mass spectrometers. In this work we evaluated the performance of the TMT10 isobaric mass tags on the Q Exactive Orbitrap mass spectrometers for the first time and demonstrated comparable quantification accuracy and precision to what can be achieved on the Orbitrap Elite mass spectrometers. However, we discovered, upon analysis of complex proteomics samples on the Q Exactive Orbitrap mass spectrometers, that the proximate TMT10 reporter ion pairs become prone to coalescence. The fusion of the different reporter ion signals into a single measurable entity has a detrimental effect on peptide and protein quantification. We established that the main reason for coalescence is the commonly accepted maximum ion target for MS2 spectra of 1e6 on the Q Exactive instruments. The coalescence artifact was completely removed by lowering the maximum ion target for MS2 spectra from 1e6 to 2e5 without any losses in identification depth or quantification quality of proteins.
Collapse
Affiliation(s)
- Thilo Werner
- Cellzome GmbH , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Savitski MM, Mathieson T, Zinn N, Sweetman G, Doce C, Becher I, Pachl F, Kuster B, Bantscheff M. Measuring and Managing Ratio Compression for Accurate iTRAQ/TMT Quantification. J Proteome Res 2013; 12:3586-98. [DOI: 10.1021/pr400098r] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Toby Mathieson
- Cellzome GmbH, Meyerhofstrasse 1, 69117
Heidelberg, Germany
| | - Nico Zinn
- Cellzome GmbH, Meyerhofstrasse 1, 69117
Heidelberg, Germany
| | | | - Carola Doce
- Cellzome GmbH, Meyerhofstrasse 1, 69117
Heidelberg, Germany
| | | | - Fiona Pachl
- Chair
of Proteomics and Bioanalytics, Technische Universität München, Emil
Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair
of Proteomics and Bioanalytics, Technische Universität München, Emil
Erlenmeyer Forum 5, 85354 Freising, Germany
- Center for Integrated Protein Sciences Munich (CIPSM), Butenandtstrasse 5-13,
81377 Munich, Germany
| | | |
Collapse
|
11
|
Chao TC, Hansmeier N. Microfluidic devices for high-throughput proteome analyses. Proteomics 2012; 13:467-79. [PMID: 23135952 DOI: 10.1002/pmic.201200411] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/06/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
Over the last decades, microfabricated bioanalytical platforms have gained enormous interest due to their potential to revolutionize biological analytics. Their popularity is based on several key properties, such as high flexibility of design, low sample consumption, rapid analysis time, and minimization of manual handling steps, which are of interest for proteomics analyses. An ideal totally integrated chip-based microfluidic device could allow rapid automated workflows starting from cell cultivation and ending with MS-based proteome analysis. By reducing or eliminating sample handling and transfer steps and increasing the throughput of analyses these workflows would dramatically improve the reliability, reproducibility, and throughput of proteomic investigations. While these complete devices do not exist for routine use yet, many improvements have been made in the translation of proteomic sample handling and separation steps into microfluidic formats. In this review, we will focus on recent developments and strategies to enable and integrate proteomic workflows into microfluidic devices.
Collapse
Affiliation(s)
- Tzu-Chiao Chao
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
12
|
Werner T, Becher I, Sweetman G, Doce C, Savitski MM, Bantscheff M. High-resolution enabled TMT 8-plexing. Anal Chem 2012; 84:7188-94. [PMID: 22881393 DOI: 10.1021/ac301553x] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low-mass range of tandem MS spectra for relative quantification. The number of samples that can be compared in a single experiment (multiplexing) is limited by the number of different reporter ions that can be generated by differential stable isotope incorporation ((15)N, (13)C) across the reporter and the mass balancing parts of the reagents. Here, we demonstrate that a higher multiplexing rate can be achieved by utilizing the 6 mDa mass difference between (15)N- and (13)C-containing reporter fragments, in combination with high-resolution mass spectrometry. Two variants of the TMT127 and TMT129 reagents are available; these are distinguished by the position and the nature of the incorporated stable isotope in the reporter portions of the labels (TMT127L, (12)C(8)H(16)(15)N(1)(+); TMT127H, (12)C(7)(13)C(1)H(16)(14)N(1)(+); TMT129L, (12)C(6)(13)C(2)H(16)(15)N(1)(+); and TMT129H, (12)C(5)(13)C(3)H(16)(14)N(1)(+)). We demonstrate that these variants can be baseline-resolved in Orbitrap Elite higher-energy collision-induced dissociation spectra recorded with a 96 ms transient enabling comparable dynamic range, precision, and accuracy of quantification as 1 Da spaced reporter ions. The increased multiplexing rate enabled determination of inhibitor potencies in chemoproteomic kinase assays covering a wider range of compound concentrations in a single experiment, compared to conventional 6-plex TMT-based assays.
Collapse
Affiliation(s)
- Thilo Werner
- Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Lourenço A, Rego F, Brito L, Frank JF. Evaluation of methods to assess the biofilm-forming ability of Listeria monocytogenes. J Food Prot 2012; 75:1411-7. [PMID: 22856564 DOI: 10.4315/0362-028x.jfp-11-464] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The contamination of ready-to-eat products with Listeria monocytogenes has been related to the presence of biofilms in production lines, as biofilms protect cells from chemical sanitizers. The ability of L. monocytogenes to produce biofilms is often evaluated using in vitro methodologies. This work aims to compare the most frequently used methodologies, including high-throughput screening methods based on microplates (crystal violet and the Calgary Biofilm Device) and methods based on CFU enumeration and microscopy after growth on stainless steel. Thirty isolates with diverse origins and genetic characteristics were evaluated. No (or low) correlations between methods were observed. The only significant correlation was found between the methods using stainless steel. No statistically significant correlation (P > 0.05) was detected among genetic lineage, serovar, and biofilm-forming ability. Because results indicate that biofilm formation is influenced by the surface material, the extrapolation of results from high-throughput methods using microplates to more industrially relevant surfaces should be undertaken with caution.
Collapse
Affiliation(s)
- António Lourenço
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
14
|
Direct detection of peptides and proteins on a microfluidic platform with MALDI mass spectrometry. Anal Bioanal Chem 2012; 404:1681-9. [DOI: 10.1007/s00216-012-6257-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 12/27/2022]
|
15
|
Bergmann U, Ahrends R, Neumann B, Scheler C, Linscheid MW. Application of Metal-Coded Affinity Tags (MeCAT): Absolute Protein Quantification with Top-Down and Bottom-Up Workflows by Metal-Coded Tagging. Anal Chem 2012; 84:5268-75. [DOI: 10.1021/ac203460b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- U. Bergmann
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
- Proteome Factory AG, Magnusstrasse 11, 12489 Berlin, Germany
| | - R. Ahrends
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| | - B. Neumann
- Proteome Factory AG, Magnusstrasse 11, 12489 Berlin, Germany
| | - C. Scheler
- Proteome Factory AG, Magnusstrasse 11, 12489 Berlin, Germany
| | - M. W. Linscheid
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| |
Collapse
|
16
|
Hansmeier N, Chao TC, Goldman LR, Witter FR, Halden RU. Prioritization of biomarker targets in human umbilical cord blood: identification of proteins in infant blood serving as validated biomarkers in adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:764-769. [PMID: 22538116 PMCID: PMC3346780 DOI: 10.1289/ehp.1104190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Early diagnosis represents one of the best lines of defense in the fight against a wide array of human diseases. Umbilical cord blood (UCB) is one of the first easily available diagnostic biofluids and can inform about the health status of newborns. However, compared with adult blood, its diagnostic potential remains largely untapped. OBJECTIVES Our goal was to accelerate biomarker research on UCB by exploring its detectable protein content and providing a priority list of potential biomarkers based on known proteins involved in disease pathways. METHODS We explored cord blood serum proteins by profiling a UCB pool of 12 neonates with different backgrounds using a combination of isoelectric focusing and liquid chromatography coupled with matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) and by comparing results with information contained in metabolic and disease databases available for adult blood. RESULTS A total of 1,210 UCB proteins were identified with a protein-level false discovery rate of ~ 5% as estimated by naïve target-decoy and MAYU approaches, signifying a 6-fold increase in the number of UCB proteins described to date. Identified proteins correspond to 138 different metabolic and disease pathways and provide a platform of mechanistically linked biomarker candidates for tracking disruptions in cellular processes. Moreover, among the identified proteins, 38 were found to be approved biomarkers for adult blood. CONCLUSIONS The results of this study advance current knowledge of the human cord blood serum proteome. They showcase the potential of UCB as a diagnostic medium for assessing infant health by detection and identification of candidate biomarkers for known disease pathways using a global, nontargeted approach. These biomarkers may inform about mechanisms of exposure-disease relationships. Furthermore, biomarkers approved by the U.S. Food and Drug Administration for screening in adult blood were detected in UCB and represent high-priority targets for immediate validation.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | |
Collapse
|
17
|
Chao TC, Hansmeier N. The current state of microbial proteomics: Where we are and where we want to go. Proteomics 2012; 12:638-50. [DOI: 10.1002/pmic.201100381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 11/11/2022]
|