1
|
Wells KM, He K, Pandey A, Cabello A, Zhang D, Yang J, Gomez G, Liu Y, Chang H, Li X, Zhang H, Feng X, da Costa LF, Metz R, Johnson CD, Martin CL, Skrobarczyk J, Berghman LR, Patrick KL, Leibowitz J, Ficht A, Sze SH, Song J, Qian X, Qin QM, Ficht TA, de Figueiredo P. Brucella activates the host RIDD pathway to subvert BLOS1-directed immune defense. eLife 2022; 11:e73625. [PMID: 35587649 PMCID: PMC9119680 DOI: 10.7554/elife.73625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
The phagocytosis and destruction of pathogens in lysosomes constitute central elements of innate immune defense. Here, we show that Brucella, the causative agent of brucellosis, the most prevalent bacterial zoonosis globally, subverts this immune defense pathway by activating regulated IRE1α-dependent decay (RIDD) of Bloc1s1 mRNA encoding BLOS1, a protein that promotes endosome-lysosome fusion. RIDD-deficient cells and mice harboring a RIDD-incompetent variant of IRE1α were resistant to infection. Inactivation of the Bloc1s1 gene impaired the ability to assemble BLOC-1-related complex (BORC), resulting in differential recruitment of BORC-related lysosome trafficking components, perinuclear trafficking of Brucella-containing vacuoles (BCVs), and enhanced susceptibility to infection. The RIDD-resistant Bloc1s1 variant maintains the integrity of BORC and a higher-level association of BORC-related components that promote centrifugal lysosome trafficking, resulting in enhanced BCV peripheral trafficking and lysosomal destruction, and resistance to infection. These findings demonstrate that host RIDD activity on BLOS1 regulates Brucella intracellular parasitism by disrupting BORC-directed lysosomal trafficking. Notably, coronavirus murine hepatitis virus also subverted the RIDD-BLOS1 axis to promote intracellular replication. Our work establishes BLOS1 as a novel immune defense factor whose activity is hijacked by diverse pathogens.
Collapse
Affiliation(s)
- Kelsey Michelle Wells
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
| | - Kai He
- Department of Electrical and Computer Engineering, Texas A&M UniversityCollege StationUnited States
| | - Aseem Pandey
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
- Department of Veterinary Pathobiology, Texas A&M UniversityCollege StationUnited States
| | - Ana Cabello
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
- Department of Veterinary Pathobiology, Texas A&M UniversityCollege StationUnited States
| | - Dongmei Zhang
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
| | - Jing Yang
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
| | - Gabriel Gomez
- Texas A&M Veterinary Medical Diagnostic Laboratory, Texas A&M UniversityCollege StationUnited States
| | - Yue Liu
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin UniversityJilinChina
| | - Haowu Chang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin UniversityChangchunChina
| | - Xueqiang Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin UniversityChangchunChina
| | - Hao Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin UniversityChangchunChina
| | - Xuehuang Feng
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
| | | | - Richard Metz
- Genomics and Bioinformatics Services, Texas A&M UniversityCollege StationUnited States
| | - Charles D Johnson
- Genomics and Bioinformatics Services, Texas A&M UniversityCollege StationUnited States
| | - Cameron Lee Martin
- Department of Poultry Science, Texas A&M UniversityCollege StationUnited States
| | - Jill Skrobarczyk
- Department of Poultry Science, Texas A&M UniversityCollege StationUnited States
| | - Luc R Berghman
- Department of Poultry Science, Texas A&M UniversityCollege StationUnited States
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
| | - Julian Leibowitz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
| | - Allison Ficht
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science CenterCollege StationUnited States
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Dwight Look College of Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, Texas A&M UniversityCollege StationUnited States
- TEES-AgriLife Center for Bioinformatics & Genomic Systems Engineering, Texas A&M UniversityCollege StationUnited States
| | - Qing-Ming Qin
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin UniversityJilinChina
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M UniversityCollege StationUnited States
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science CenterBryanUnited States
- Department of Veterinary Pathobiology, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
2
|
Maldonado-García JL, Pérez-Sánchez G, Becerril Villanueva E, Alvarez-Herrera S, Pavón L, Gutiérrez-Ospina G, López-Santiago R, Maldonado-Tapia JO, Pérez-Tapia SM, Moreno-Lafont MC. Behavioral and Neurochemical Shifts at the Hippocampus and Frontal Cortex Are Associated to Peripheral Inflammation in Balb/c Mice Infected with Brucella abortus 2308. Microorganisms 2021; 9:microorganisms9091937. [PMID: 34576830 PMCID: PMC8470318 DOI: 10.3390/microorganisms9091937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonosis affecting 50,000,000 people annually. Most patients progress to a chronic phase of the disease in which neuropsychiatric symptoms upsurge. The biological processes underlying the progression of these symptoms are yet unclear. Peripheral inflammation mounted against Brucella may condition neurochemical shifts and hence unchained neuropsychiatric disorders. Our work aimed at establishing whether neurological, behavioral, and neurochemical disarrays are circumstantially linked to peripheral inflammation uprise secondary to Brucella abortus 2308 infections. We then evaluated, in control and Brucella-infected mice, skeletal muscle strength, movement coordination, and balance and motivation, as well as dopamine, epinephrine, norepinephrine, and serotonin availability in the cerebellum, frontal cortex, and hippocampus. Serum levels of proinflammatory cytokines and corticosterone in vehicle-injected and -infected mice were also estimated. All estimates were gathered at the infection acute and chronic phases. Our results showed that infected mice displayed motor disabilities, muscular weakness, and reduced motivation correlated with neurochemical and peripheral immunological disturbances that tended to decrease after 21 days of infection. The present observations support that disturbed peripheral inflammation and the related neurochemical disruption might lead to mood disorders in infected mice. Future experiments must be aimed at establishing causal links and to explore whether similar concepts might explain neurological and mood disorders in humans affected by brucellosis.
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.L.-S.); (J.O.M.-T.)
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
| | - Enrique Becerril Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
| | - Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
- Correspondence: (L.P.); (M.C.M.-L.); Tel.: +52-5541-605082 (L.P.); +52-5729-6300 (ext. 62368) (M.C.M.-L.)
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Rubén López-Santiago
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.L.-S.); (J.O.M.-T.)
| | - Jesús Octavio Maldonado-Tapia
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.L.-S.); (J.O.M.-T.)
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Martha C. Moreno-Lafont
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.L.-S.); (J.O.M.-T.)
- Correspondence: (L.P.); (M.C.M.-L.); Tel.: +52-5541-605082 (L.P.); +52-5729-6300 (ext. 62368) (M.C.M.-L.)
| |
Collapse
|
3
|
Sánchez-Jiménez MM, de la Cuesta Zuluaga JJ, Garcia-Montoya GM, Dabral N, Alzate JF, Vemulapalli R, Olivera-Angel M. Diagnosis of human and canine Brucella canis infection: development and evaluation of indirect enzyme-linked immunosorbent assays using recombinant Brucella proteins. Heliyon 2020; 6:e04393. [PMID: 32685723 PMCID: PMC7358725 DOI: 10.1016/j.heliyon.2020.e04393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
Brucella canis, a Gram-negative coccobacilli belonging to the genus Brucellae, is a pathogenic bacterium that can produce infections in dogs and humans. Multiple studies have been carried out to develop diagnostic techniques to detect all zoonotic Brucellae. Diagnosis of Brucella canis infection is challenging due to the lack of highly specific and sensitive diagnostic assays. This work was divided in two phases: in the first one, were identified antigenic proteins in B. canis that could potentially be used for serological diagnosis of brucellosis. Human sera positive for canine brucellosis infection was used to recognize immunoreactive proteins that were then identified by performing 2D-GEL and immunoblot assays. These spots were analyzed using MALDI TOF MS and predicted proteins were identified. Of the 35 protein spots analyzed, 14 proteins were identified and subsequently characterized using bioinformatics, two of this were selected for the next phase. In the second phase, we developed and validated an indirect enzyme-linked immunosorbent assays using those recombinant proteins: inosine 5' phosphate dehydrogenase, pyruvate dehydrogenase E1 subunit beta (PdhB) and elongation factor Tu (Tuf). These genes were PCR-amplified from genomic DNA of B. canis strain Oliveri, cloned, and expressed in Escherichia coli. Recombinant proteins were purified by metal affinity chromatography, and used as antigens in indirect ELISA. Serum samples from healthy and B. canis-infected humans and dogs were used to evaluate the performance of indirect ELISAs. Our results suggest that PdhB and Tuf proteins could be used as antigens for serologic detection of B. canis infection in humans, but not in dogs. The use of recombinant antigens in iELISA assays to detect B. canis-specific antibodies in human serum could be a valuable tool to improve diagnosis of human brucellosis caused by B. canis.
Collapse
Affiliation(s)
- Miryan Margot Sánchez-Jiménez
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
- Colombian Institute of Tropical Medicine, ICMT - CES University, Medellín, Colombia
| | - Juan Jacobo de la Cuesta Zuluaga
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
| | - Gisela María Garcia-Montoya
- National Center for Genomic Sequencing -CNSG, University of Antioquia, Medellín, Colombia
- Parasitology Group, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Neha Dabral
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States
| | - Juan Fernando Alzate
- National Center for Genomic Sequencing -CNSG, University of Antioquia, Medellín, Colombia
- Parasitology Group, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States
| | - Martha Olivera-Angel
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
| |
Collapse
|
4
|
Pan-Proteomic Analysis and Elucidation of Protein Abundance among the Closely Related Brucella Species, Brucella abortus and Brucella melitensis. Biomolecules 2020; 10:biom10060836. [PMID: 32486122 PMCID: PMC7355635 DOI: 10.3390/biom10060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a zoonotic infection caused by bacteria of the genus Brucella. The species, B. abortus and B. melitensis, major causative agents of human brucellosis, share remarkably similar genomes, but they differ in their natural hosts, phenotype, antigenic, immunogenic, proteomic and metabolomic properties. In the present study, label-free quantitative proteomic analysis was applied to investigate protein expression level differences. Type strains and field strains were each cultured six times, cells were harvested at a midlogarithmic growth phase and proteins were extracted. Following trypsin digestion, the peptides were desalted, separated by reverse-phase nanoLC, ionized using electrospray ionization and transferred into an linear trap quadrapole (LTQ) Orbitrap Velos mass spectrometer to record full scan MS spectra (m/z 300–1700) and tandem mass spectrometry (MS/MS) spectra of the 20 most intense ions. Database matching with the reference proteomes resulted in the identification of 826 proteins. The Cluster of Gene Ontologies of the identified proteins revealed differences in bimolecular transport and protein synthesis mechanisms between these two strains. Among several other proteins, antifreeze proteins, Omp10, superoxide dismutase and 30S ribosomal protein S14 were predicted as potential virulence factors among the proteins differentially expressed. All mass spectrometry data are available via ProteomeXchange with identifier PXD006348.
Collapse
|
5
|
Wareth G, Pletz MW, Neubauer H, Murugaiyan J. Proteomics of Brucella: Technologies and Their Applications for Basic Research and Medical Microbiology. Microorganisms 2020; 8:microorganisms8050766. [PMID: 32443785 PMCID: PMC7285364 DOI: 10.3390/microorganisms8050766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
Brucellosis is a global zoonosis caused by Gram-negative, facultative intracellular bacteria of the genus Brucella (B.). Proteomics has been used to investigate a few B. melitensis and B. abortus strains, but data for other species and biovars are limited. Hence, a comprehensive analysis of proteomes will significantly contribute to understanding the enigmatic biology of brucellae. For direct identification and typing of Brucella, matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI - TOF MS) has become a reliable tool for routine diagnosis due to its ease of handling, price and sensitivity highlighting the potential of proteome-based techniques. Proteome analysis will also help to overcome the historic but still notorious Brucella obstacles of infection medicine, the lack of safe and protective vaccines and sensitive serologic diagnostic tools by identifying the most efficient protein antigens. This perspective summarizes past and recent developments in Brucella proteomics with a focus on species identification and serodiagnosis. Future applications of proteomics in these fields are discussed.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany;
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
- Correspondence: ; Tel.: +49-364-1804-2296
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany;
| | - Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany;
- Department of Biotechnology, SRM University AP, Neerukonda, Mangalagiri, Andhra Pradesh 522502, India
| |
Collapse
|
6
|
Abstract
Brucella spp. are Gram negative intracellular bacteria responsible for brucellosis, a worldwide distributed zoonosis. A prominent aspect of the Brucella life cycle is its ability to invade, survive and multiply within host cells. Comprehensive approaches, such as proteomics, have aided in unravelling the molecular mechanisms underlying Brucella pathogenesis. Technological and methodological advancements such as increased instrument performance and multiplexed quantification have broadened the range of proteome studies, enabling new and improved analyses, providing deeper and more accurate proteome coverage. Indeed, proteomics has demonstrated its contribution to key research questions in Brucella biology, i.e., immunodominant proteins, host-cell interaction, stress response, antibiotic targets and resistance, protein secretion. Here, we review the proteomics of Brucella with a focus on more recent works and novel findings, ranging from reconfiguration of the intracellular bacterial proteome and studies on proteomic profiles of Brucella infected tissues, to the identification of Brucella extracellular proteins with putative roles in cell signaling and pathogenesis. In conclusion, proteomics has yielded copious new candidates and hypotheses that require future verification. It is expected that proteomics will continue to be an invaluable tool for Brucella and applications will further extend to the currently ill-explored aspects including, among others, protein processing and post-translational modification.
Collapse
|
7
|
Schultz LG, Tasic L, Fattori J. Chaperone-Assisted Secretion in Bacteria: Protein and DNA Transport via Cell Membranes. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180820154821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacteria use an impressive arsenal of secretion systems (1-7) to infect their host cells by exporting
proteins, DNA and DNA-protein complexes via cell membranes. They use chaperone-usher
pathways for host colonization as well. To be targeted for transportation across one (Gram-positive) or
two membranes (Gram-negative), clients must be selected, guided and unfolded to pass through type 3
(T3SS) or type 4 (T4SS) secretion systems. For these processes, bacteria count on secretory chaperones
that guide macromolecular transport via membranes. Moreover, if we know how these processes
occur, we might be able to stop them and avoid bacterial infections. Thus, structural and functional
characterizations of secretory chaperones become interesting, as these proteins are the perfect targets
for blocking bacteria action. Therefore, this review focuses on a story of known mechanisms of chaperone-
secretion assisted transport with special attention on virulence proteins and DNA transport in
bacteria.
Collapse
Affiliation(s)
- Lilian Goulart Schultz
- Chemical Biology Laboratory, Organic Chemistry Department, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, 13083-970, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Organic Chemistry Department, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, 13083-970, SP, Brazil
| | - Juliana Fattori
- Chemical Biology Laboratory, Organic Chemistry Department, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, 13083-970, SP, Brazil
| |
Collapse
|
8
|
Pandey A, Lin F, Cabello AL, da Costa LF, Feng X, Feng HQ, Zhang MZ, Iwawaki T, Rice-Ficht A, Ficht TA, de Figueiredo P, Qin QM. Activation of Host IRE1α-Dependent Signaling Axis Contributes the Intracellular Parasitism of Brucella melitensis. Front Cell Infect Microbiol 2018; 8:103. [PMID: 29732320 PMCID: PMC5919948 DOI: 10.3389/fcimb.2018.00103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Brucella spp. are intracellular vacuolar pathogens that causes brucellosis, a worldwide zoonosis of profound importance. We previously demonstrated that the activity of host unfolded protein response (UPR) sensor IRE1α (inositol-requiring enzyme 1) and ER-associated autophagy confer susceptibility to Brucella melitensis and Brucella abortus intracellular replication. However, the mechanism by which host IRE1α regulates the pathogen intracellular lifestyle remains elusive. In this study, by employing a diverse array of molecular approaches, including biochemical analyses, fluorescence microscopy imaging, and infection assays using primary cells derived from Ern1 (encoding IRE1) conditional knockout mice, we address this gap in our understanding by demonstrating that a novel IRE1α to ULK1, an important component for autophagy initiation, signaling axis confers susceptibility to Brucella intracellular parasitism. Importantly, deletion or inactivation of key signaling components along this axis, including IRE1α, BAK/BAX, ASK1, and JNK as well as components of the host autophagy system ULK1, Atg9a, and Beclin 1, resulted in striking disruption of Brucella intracellular trafficking and replication. Host kinases in the IRE1α-ULK1 axis, including IRE1α, ASK1, JNK1, and/or AMPKα as well as ULK1, were also coordinately phosphorylated in an IRE1α-dependent fashion upon the pathogen infection. Taken together, our findings demonstrate that the IRE1α-ULK1 signaling axis is subverted by the bacterium to promote intracellular parasitism, and provide new insight into our understanding of the molecular mechanisms of intracellular lifestyle of Brucella.
Collapse
Affiliation(s)
- Aseem Pandey
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Plant Sciences, Jilin University, Changchun, China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, United States.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States
| | - Furong Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Plant Sciences, Jilin University, Changchun, China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, United States
| | - Ana L Cabello
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, United States.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States
| | - Luciana F da Costa
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, United States
| | - Xuehuan Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Plant Sciences, Jilin University, Changchun, China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, United States
| | - Hui-Qiang Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Plant Sciences, Jilin University, Changchun, China
| | - Ming-Zhe Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Plant Sciences, Jilin University, Changchun, China
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, United States.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States.,Norman Borlaug Center, Texas A&M University, College Station, TX, United States
| | - Qing-Ming Qin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Zai X, Yang Q, Liu K, Li R, Qian M, Zhao T, Li Y, Yin Y, Dong D, Fu L, Li S, Xu J, Chen W. A comprehensive proteogenomic study of the human Brucella vaccine strain 104 M. BMC Genomics 2017; 18:402. [PMID: 28535754 PMCID: PMC5442703 DOI: 10.1186/s12864-017-3800-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/16/2017] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Brucella spp. are Gram-negative, facultative intracellular pathogens that cause brucellosis in both humans and animals. The B. abortus vaccine strain 104 M is the only vaccine available in China for the prevention of brucellosis in humans. Although the B. abortus 104 M genome has been fully sequenced, the current genome annotations are not yet complete. In addition, the main mechanisms underpinning its residual toxicity and vaccine-induced immune protection have yet to be elucidated. Mapping the proteome of B. abortus 104 M will help to improve genome annotation quality, thereby facilitating a greater understanding of its biology. RESULTS In this study, we utilized a proteogenomic approach that combined subcellular fractionation and peptide fractionation to perform a whole-proteome analysis and genome reannotation of B. abortus 104 M using high-resolution mass spectrometry. In total, 1,729 proteins (56.3% of 3,072) including 218 hypothetical proteins were identified using the culture conditions that were employed this study. The annotations of the B. abortus 104 M genome were also refined following identification and validation by reverse transcription-PCR. In addition, 14 pivotal virulence factors and 17 known protective antigens known to be involved in residual toxicity and immune protection were confirmed at the protein level following induction by the 104 M vaccine. Moreover, a further insight into the cell biology of multichromosomal bacteria was obtained following the elucidation of differences in protein expression levels between the small and large chromosomes. CONCLUSIONS The work presented in this report used a proteogenomic approach to perform whole-proteome analysis and genome reannotation in B. abortus 104 M; this work helped to improve genome annotation quality. Our analysis of virulence factors, protective antigens and other protein effectors provided the basis for further research to elucidate the mechanisms of residual toxicity and immune protection induced by the 104 M vaccine. Finally, the potential link between replication dynamics, gene function, and protein expression levels in this multichromosomal bacterium was detailed.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Kun Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Taoran Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Dayong Dong
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shanhu Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
10
|
Brucella abortus: Current Research and Future Trends. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Systematic site-directed mutagenesis of the Helicobacter pylori CagL protein of the Cag type IV secretion system identifies novel functional domains. Sci Rep 2016; 6:38101. [PMID: 27922023 PMCID: PMC5138618 DOI: 10.1038/srep38101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022] Open
Abstract
The Cag Type IV secretion system, which contributes to inflammation and cancerogenesis during chronic infection, is one of the major virulence factors of the bacterial gastric pathogen Helicobacter pylori. We have generated and characterized a series of non-marked site-directed chromosomal mutants in H. pylori to define domains of unknown function of the essential tip protein CagL of the Cag secretion system. Characterizing the CagL mutants, we determined that their function to activate cells and transport the effector CagA was reduced to different extents. We identified three novel regions of the CagL protein, involved in its structural integrity, its possible interaction with the CagPAI T4SS pilus protein CagI, and in its binding to integrins and other host cell ligands. In particular two novel variable CagL motifs were involved in integrin binding, TSPSA, and TASLI, which is located opposite of its integrin binding motif RGD. We thereby defined
functionally important subdomains within the CagL structure, which can be used to clarify CagL contributions in the context of other CagPAI proteins or for inhibition of the CagT4SS. This structure-function correlation of CagL domains can also be instructive for the functional characterization of other potential VirB5 orthologs whose structure is not yet known.
Collapse
|
12
|
The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response. Infect Immun 2016; 84:3458-3470. [PMID: 27672085 DOI: 10.1128/iai.00531-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022] Open
Abstract
Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.
Collapse
|
13
|
Sankarasubramanian J, Vishnu US, Dinakaran V, Sridhar J, Gunasekaran P, Rajendhran J. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host. MOLECULAR BIOSYSTEMS 2015; 12:178-90. [PMID: 26575364 DOI: 10.1039/c5mb00607d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.
Collapse
Affiliation(s)
- Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
14
|
Pavón N, Buelna-Chontal M, Hernández-Esquivel L, Hernández S, Chávez E, Condé R, Lanz-Mendoza H. Mitochondrial inactivation by Anopheles albimanus cecropin 3: molecular mechanisms. Peptides 2014; 53:202-9. [PMID: 23880546 DOI: 10.1016/j.peptides.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/14/2023]
Abstract
Cecropin 3 (Ccrp3) is an antimicrobial peptide from Anopheles albimanus, which is expressed during Plasmodium berghei infection. Here, we report that synthetic Ccrp3, aside from antibacterial activity, also shows cardio regulatory functions. In rats, Ccrp3 significantly diminishes blood pressure as well as the heartbeat frequency at nanomolar concentration. Ccrp3 affect the rat cardiac muscle mitochondria, inducing uncoupling of oxidative phosphorylation, oxygen consumption and transport of Ca(2). Ccrp3 treatment of the mitochondria causes mitochondrial damage promoting oxidative stress, causing overproduction of reactive oxygen species (ROS) and inhibition of superoxide dismutase. At nM concentration, Ccrp3 inhibits superoxide dismutase activity through direct interaction, diminishing by its enzymatic activity. Ccrp3 induces the release of the pro-apoptotic marker Bax from the mitochondria. Altogether, these results suggest that Ccrp3 pro-oxidative activity on cardiac muscle mitochondria could be responsible for triggering the heartbeat frequency and blood pressure lowering observed the Ccrp3 injected rats.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de Farmacología. Dirección de investigación, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Sauri Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, CP 14080 Tlalpan, DF, Mexico
| | - Renaud Condé
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62501 Cuernavaca, Morelos, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62501 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
15
|
Abstract
Brucellosis is a global disease of domestic and wild mammals that is caused by intracellular bacteria of the genus Brucella. Although humans are not a natural reservoir for Brucella, infection in the human population is common in many countries, and brucellosis is one of the most common zoonotic infections. Brucella species have evolved to avoid the host's immune system and infection is usually characterized by long-term persistence of the bacteria. One important Brucella virulence factor for intracellular survival and persistence in the host is the type IV secretion system. This review will discuss the Brucella type IV secretion system in detail, including current knowledge of architecture and regulation, as well as the newly identified effector substrates that this system transports into host cells.
Collapse
Affiliation(s)
- Maarten F de Jong
- Department of Medical Microbiology & Immunology, University of California, Davis, CA, USA
| | | |
Collapse
|
16
|
Sandalakis V, Psaroulaki A, De Bock PJ, Christidou A, Gevaert K, Tsiotis G, Tselentis Y. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. J Proteome Res 2012; 11:2374-85. [PMID: 22360387 DOI: 10.1021/pr201122w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations in the rpoB gene have already been shown to contribute to rifampicin resistance in many bacterial strains including Brucella species. Resistance against this antibiotic easily occurs and resistant strains have already been detected in human samples. We here present the first research project that combines proteomic, genomic, and microbiological analysis to investigate rifampicin resistance in an in vitro developed rifampicin resistant strain of Brucella abortus 2308. In silico analysis of the rpoB gene was performed and several antibiotics used in the therapy of Brucellosis were used for cross resistance testing. The proteomic profiles were examined and compared using MS-driven comparative proteomics. The resistant strain contained an already described mutation in the rpoB gene, V154F. A correlation between rifampicin resistance and reduced susceptibility on trimethoprim/sulfamethoxazole was detected by E-test and supported by the proteomics results. Using 12 836 MS/MS spectra we identified 6753 peptides corresponding to 456 proteins. The resistant strain presented 39 differentially regulated proteins most of which are involved in various metabolic pathways. Results from our research suggest that rifampicin resistance in Brucella mostly involves mutations in the rpoB gene, excitation of several metabolic processes, and perhaps the use of the already existing secretion mechanisms at a more efficient level.
Collapse
Affiliation(s)
- Vassilios Sandalakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|