1
|
Contreras MDM, Gómez-Cruz I, Romero I, Castro E. Olive Pomace-Derived Biomasses Fractionation through a Two-Step Extraction Based on the Use of Ultrasounds: Chemical Characteristics. Foods 2021; 10:111. [PMID: 33430320 PMCID: PMC7825784 DOI: 10.3390/foods10010111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Olive-derived biomass is not only a renewable bioenergy resource but also it can be a source of bioproducts, including antioxidants. In this study, the antioxidant composition of extracted olive pomace (EOP) and a new byproduct, the residual fraction from olive pit cleaning (RFOPC or residual pulp) was characterized and compared to olive leafy biomass, which have been extensively studied as a source of antioxidants and other bioactive compounds with pharmacological properties. The chemical characterization showed that these byproducts contain a high amount of extractives; in the case of EOP, it was even higher (52.9%) than in olive leaves (OL) and olive mill leaves (OML) (35.8-45.1%). Then, ultrasound-assisted extraction (UAE) was applied to recover antioxidants from the extractive fraction of these biomasses. The solubilization of antioxidants was much higher for EOP, correlating well with the extractives content and the total extraction yield. Accordingly, this also affected the phenolic richness of the extracts and the differences between all biomasses were diminished. In any case, the phenolic profile and the hydroxytyrosol cluster were different. While OL, OML, and EOP contained mainly hydroxytyrosol derivatives and flavones, RFOPC presented novel trilignols. Other compounds were also characterized, including secoiridoids, hydroxylated fatty acids, triterpenoids, among others, depending on the bioresource. Moreover, after the UAE extraction step, alkaline extraction was applied recovering a liquid and a solid fraction. While the solid fraction could of interest for further valorization as a biofuel, the liquid fraction contained proteins, sugars, and soluble lignin, which conferred antioxidant properties to these extracts, and whose content depended on the biomass and conditions applied.
Collapse
Affiliation(s)
- María del Mar Contreras
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
2
|
Prados IM, Plaza M, Marina ML, García MC. Evaluation of the relationship between the peptide profiles and the lipid-lowering properties of olive seed hydrolysates as a tool for tuning hypocholesterolemic functionality. Food Funct 2020; 11:4973-4981. [PMID: 32510528 DOI: 10.1039/d0fo00576b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Olive processing generates large amounts of stones with high protein contents. Previous studies have demonstrated that Manzanilla variety olive seed proteins release peptides with lipid-lowering capacity. However, no work has demonstrated their roles in the overall hypolipidemic activity. Moreover, further studies using different olive varieties are required to propose a solid method for the exploitation of olive seeds. Twenty different olive varieties were employed in this work. Proteins were extracted using high-intensity focused ultrasound and digested with Alcalase. The released peptides were identified using proteomic techniques, and their capabilities to reduce the absorption of dietary cholesterol (by inhibiting cholesterol esterase enzyme, binding bile acids, and reducing micellar cholesterol solubility) or the biosynthesis of endogenous cholesterol were evaluated. Peptides with different lipid lowering capacities were obtained from all varieties although the genotype significantly affected the hypolipidemic characteristics. Univariate and multivariate statistical analyses showed strong correlations, positive and negative, between the presence of certain peptides in the hydrolysates and their capacity to reduce exogenous cholesterol absorption and endogenous cholesterol synthesis. Therefore, the selection of the olive seed genotype can direct its lipid-lowering properties, e.g., by promoting the reduction of dietary cholesterol absorption or the inhibition of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Isabel M Prados
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain.
| | - Merichel Plaza
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain. and Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain. and Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M Concepción García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain. and Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
3
|
Prados IM, Orellana JM, Marina ML, García MC. Identification of Peptides Potentially Responsible for In Vivo Hypolipidemic Activity of a Hydrolysate from Olive Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4237-4244. [PMID: 32186189 DOI: 10.1021/acs.jafc.0c01280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previous studies demonstrated that peptides produced by the hydrolysis of olive seed proteins using Alcalase enzyme showed in vitro multifunctional lipid-lowering capability. This work presents a deeper insight into the hypolipidemic effect of olive seed peptides. The capability of olive seed peptides to inhibit endogenous cholesterol biosynthesis through the inhibition of HMG-CoA reductase enzyme was evaluated observing a 38 ± 7% of inhibition. Two in vivo assays using different peptides concentrations (200 and 400 mg/kg/day) were designed to evaluate the hypolipidemic effect of olive seed peptides in male and female mice. A low concentration of hydrolysate reduced total cholesterol in male mice in a 20% after 11 weeks compared to the mice feeding with hypercholesterolemic diet. A higher hydrolysate concentration showed a greater reduction in total cholesterol (25%). The analysis of the olive seed hydrolysate by reverse phase high-performance liquid chromatography mass spectrometry (RP-HPLC-MS) enabled the identification of peptides that could be responsible for this hypolipidemic effect.
Collapse
Affiliation(s)
- Isabel M Prados
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - J M Orellana
- Centro de Experimentación Animal, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - M Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - M Concepción García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Boschetti E, Righetti PG. Detection of Plant Low-Abundance Proteins by Means of Combinatorial Peptide Ligand Library Methods. Methods Mol Biol 2020; 2139:381-404. [PMID: 32462601 DOI: 10.1007/978-1-0716-0528-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detection and identification of low-abundance proteins from plant tissues is still a major challenge. Among the reasons are the low protein content, the presence of few very high-abundance proteins, and the presence of massive amounts of other biochemical compounds. In the last decade numerous technologies have been devised to resolve the situation, in particular with methods based on solid-phase combinatorial peptide ligand libraries. This methodology, allowing for an enhancement of low-abundance proteins, has been extensively applied with the advantage of deciphering the proteome composition of various plant organs. This general methodology is here described extensively along with a number of possible variations. Specific guidelines are suggested to cover peculiar situations or to comply with other associated analytical methods.
Collapse
|
5
|
Righetti PG, Boschetti E. Low-abundance plant protein enrichment with peptide libraries to enlarge proteome coverage and related applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110302. [PMID: 31779915 DOI: 10.1016/j.plantsci.2019.110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/15/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In plant tissues proteins are present in low amounts but in a very large number. To this peculiar situation many complex foreign components render protein extraction and purification very difficult. In the last several years interesting technologies have been described to improve the technical situation to the point that some methodologies allow reaching very low-abundance proteins and minor allergens. Among enrichment methods the one documented in this report is based on combinatorial peptide ligand libraries (CPLLs) that emerged in the last decade by contributing to largely improve the knowledge in plant proteomics. It is the aim of this review to describe how this technology allows detecting low-abundance proteins from various plant tissues and to report the dynamics of the proteome components in response to environmental changes and biotic attacks. Typical documented examples with the description of their scientific interest are reported. The described technical approach and selected applications are considered as one of the most advanced approaches for plant proteomics investigations with possibilities not only to enlarge the knowledge of plant proteomes but also to discover novel allergens as well as plant biomarkers subsequent to stressful situations.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Egisto Boschetti
- Scientific Consultant, JAM Conseil, 92200, Neuilly-sur-Seine, France
| |
Collapse
|
6
|
Baker PW, Charlton A. A comparison in protein extraction from four major crop residues in Europe using chemical and enzymatic processes-a review. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Ghorab H, Lammi C, Arnoldi A, Kabouche Z, Aiello G. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC–MS/MS. Food Chem 2018; 239:935-945. [DOI: 10.1016/j.foodchem.2017.07.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/09/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
|
8
|
González-García E, Marina ML, García MC, Righetti PG, Fasoli E. Identification of plum and peach seed proteins by nLC-MS/MS via combinatorial peptide ligand libraries. J Proteomics 2016; 148:105-12. [DOI: 10.1016/j.jprot.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
|
9
|
Review on proteomics for food authentication. J Proteomics 2016; 147:212-225. [PMID: 27389853 DOI: 10.1016/j.jprot.2016.06.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Consumers have the right to know what is in the food they are eating. Accordingly, European and global food regulations require that the provenance of the food can be guaranteed from farm to fork. Many different instrumental techniques have been proposed for food authentication. Although traditional methods are still being used, new approaches such as genomics, proteomics, and metabolomics are helping to complement existing methodologies for verifying the claims made about certain food products. During the last decade, proteomics (the large-scale analysis of proteins in a particular biological system at a particular time) has been applied to different research areas within food technology. Since proteins can be used as markers for many properties of a food, even indicating processes to which the food has been subjected, they can provide further evidence of the foods labeling claim. This review is a comprehensive and updated overview of the applications, drawbacks, advantages, and challenges of proteomics for food authentication in the assessment of the foods compliance with labeling regulations and policies. SIGNIFICANCE This review paper provides a comprehensive and critical overview of the application of proteomics approaches to determine the authenticity of several food products updating the performances and current limitations of the applied techniques in both laboratory and industrial environments.
Collapse
|
10
|
Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 2016; 143:3-14. [DOI: 10.1016/j.jprot.2016.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
11
|
An in depth proteomic analysis based on ProteoMiner, affinity chromatography and nano-HPLC–MS/MS to explain the potential health benefits of bovine colostrum. J Pharm Biomed Anal 2016; 121:297-306. [DOI: 10.1016/j.jpba.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 11/19/2022]
|
12
|
Nguyen-Kim H, San Clemente H, Balliau T, Zivy M, Dunand C, Albenne C, Jamet E. Arabidopsis thaliana
root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. Proteomics 2016; 16:491-503. [DOI: 10.1002/pmic.201500129] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Huan Nguyen-Kim
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Thierry Balliau
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
| | - Michel Zivy
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| |
Collapse
|
13
|
Gupta R, Min CW, Wang Y, Kim YC, Agrawal GK, Rakwal R, Kim ST. Expect the Unexpected Enrichment of "Hidden Proteome" of Seeds and Tubers by Depletion of Storage Proteins. FRONTIERS IN PLANT SCIENCE 2016; 7:761. [PMID: 27313590 PMCID: PMC4887479 DOI: 10.3389/fpls.2016.00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 05/03/2023]
Abstract
Dynamic resolution of seed and tuber protein samples is highly limited due to the presence of high-abundance storage proteins (SPs). These proteins inevitably obscure the low-abundance proteins (LAPs) impeding their identification and characterization. To facilitate the detection of LAPs, several methods have been developed during the past decade, enriching the proteome with extreme proteins. Most of these methods, if not all, are based on the specific removal of SPs which ultimately magnify the proteome coverage. In this mini-review, we summarize the available methods that have been developed over the years for the enrichment of LAPs either from seeds or tubers. Incorporation of these methods during the protein extraction step will be helpful in understanding the seed/tuber biology in greater detail.
Collapse
Affiliation(s)
- Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - Cheol W. Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Yong C. Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - Ganesh K. Agrawal
- Research Laboratory for Biotechnology and BiochemistryKathmandu, Nepal
- Global Research Arch for Developing Education, Academy Pvt. Ltd.Birgunj, Nepal
| | - Randeep Rakwal
- Global Research Arch for Developing Education, Academy Pvt. Ltd.Birgunj, Nepal
- Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies, University of TsukubaIbaraki, Japan
| | - Sun T. Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
- *Correspondence: Sun T. Kim,
| |
Collapse
|
14
|
Castro L, Crespo JF, Rodríguez J, Rodríguez R, Villalba M. Immunoproteomic tools are used to identify masked allergens: Ole e 12, an allergenic isoflavone reductase from olive (Olea europaea) pollen. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1871-1880. [DOI: 10.1016/j.bbapap.2015.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/21/2023]
|
15
|
Abstract
One of the main challenges in proteomics investigation, protein biomarker research, and protein purity and contamination analysis is how to efficiently enrich and detect low-abundance proteins in biological samples. One approach that makes the detection of rare species possible is the treatment of biological samples with solid-phase combinatorial peptide ligand libraries, ProteoMiner. This method utilizes hexapeptide bead library with huge diversity to bind and enrich low-abundance proteins but remove most of the high-abundance proteins, therefore compresses the protein abundance range in the samples. This work describes optimized protocols and highlights on the successful application of ProteoMiner to protein identification and analysis.
Collapse
Affiliation(s)
- Lei Li
- Protein Technologies R&D, Life Science Group, Bio-Rad Laboratories, 1000 Alfred Nobel Drive, Hercules, CA, 94547, USA,
| |
Collapse
|
16
|
Righetti PG, Fasoli E, D'Amato A, Boschetti E. The "Dark Side" of Food Stuff Proteomics: The CPLL-Marshals Investigate. Foods 2014; 3:217-237. [PMID: 28234315 PMCID: PMC5302364 DOI: 10.3390/foods3020217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022] Open
Abstract
The present review deals with analysis of the proteome of animal and plant-derived food stuff, as well as of non-alcoholic and alcoholic beverages. The survey is limited to those systems investigated with the help of combinatorial peptide ligand libraries, a most powerful technique allowing access to low- to very-low-abundance proteins, i.e., to those proteins that might characterize univocally a given biological system and, in the case of commercial food preparations, attest their genuineness or adulteration. Among animal foods the analysis of cow's and donkey's milk is reported, together with the proteomic composition of egg white and yolk, as well as of honey, considered as a hybrid between floral and animal origin. In terms of plant and fruits, a survey is offered of spinach, artichoke, banana, avocado, mango and lemon proteomics, considered as recalcitrant tissues in that small amounts of proteins are dispersed into a large body of plant polymers and metabolites. As examples of non-alcoholic beverages, ginger ale, coconut milk, a cola drink, almond milk and orgeat syrup are analyzed. Finally, the trace proteome of white and red wines, beer and aperitifs is reported, with the aim of tracing the industrial manipulations and herbal usage prior to their commercialization.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | - Alfonsina D'Amato
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | | |
Collapse
|
17
|
Molassiotis A, Tanou G, Filippou P, Fotopoulos V. Proteomics in the fruit tree science arena: new insights into fruit defense, development, and ripening. Proteomics 2014; 13:1871-84. [PMID: 23986917 DOI: 10.1002/pmic.201200428] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fruit tree crops are agricultural commodities of high economic importance, while fruits also represent one of the most vital components of the human diet. Therefore, a great effort has been made to understand the molecular mechanisms covering fundamental biological processes in fruit tree physiology and fruit biology. Thanks to the development of cutting-edge "omics" technologies such as proteomic analysis, scientists now have powerful tools to support traditional fruit tree research. Such proteomic analyses are establishing high-density 2DE reference maps and peptide mass fingerprint databases that can lead fruit science into a new postgenomic research era. Here, an overview of the application of proteomics in key aspects of fruit tree physiology as well as in fruit biology, including defense responses to abiotic and biotic stress factors, is presented. A panoramic view of ripening-related proteins is also discussed, as an example of proteomic application in fruit science.
Collapse
|
18
|
Vergara-Barberán M, Lerma-García MJ, Herrero-Martínez JM, Simó-Alfonso EF. Use of protein profiles established by CZE to predict the cultivar of olive leaves and pulps. Electrophoresis 2014. [DOI: 10.1002/elps.201300530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Abstract
The question of low-abundance proteins from biological tissues is still a major issue. Technologies have been devised to improve the situation and in the last few years a method based on solid-phase combinatorial peptide ligand libraries has been extensively applied to animal extracts. This method has also been extended to plant extracts taking advantage of findings from previous experience. Detailed methods are described and their pertinence highlighted according to various situations of plant sample origin, size of the sample, and analytical methods intended to be used for protein identifications.
Collapse
|
20
|
Making Progress in Plant Proteomics for Improved Food Safety. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-62650-9.00006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Esteve C, D'Amato A, Marina ML, García MC, Righetti PG. Analytical approaches for the characterization and identification of olive (Olea europaea) oil proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10384-10391. [PMID: 24128378 DOI: 10.1021/jf4028359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Proteins in olive oil have been scarcely investigated probably due to the difficulty of working with such a lipidic matrix and the dramatically low abundance of proteins in this biological material. Additionally, this scarce information has generated contradictory results, thus requiring further investigations. This work treats this subject from a comprehensive point of view and proposes the use of different analytical approaches to delve into the characterization and identification of proteins in olive oil. Different extraction methodologies, including capture via combinational hexapeptide ligand libraries (CPLLs), were tried. A sequence of methodologies, starting with off-gel isoelectric focusing (IEF) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or high-performance liquid chromatography (HPLC) using an ultraperformance liquid chromatography (UPLC) column, was applied to profile proteins from olive seed, pulp, and oil. Besides this, and for the first time, a tentative identification of oil proteins by mass spectrometry has been attempted.
Collapse
Affiliation(s)
- Clara Esteve
- Department of Analytical Chemistry, University of Alcalá , Carretera Madrid-Barcelona, Km. 33.600, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Capriotti AL, Caruso G, Cavaliere C, Foglia P, Piovesana S, Samperi R, Laganà A. Proteome investigation of the non-model plant pomegranate (Punica granatum L.). Anal Bioanal Chem 2013; 405:9301-9. [DOI: 10.1007/s00216-013-7382-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 12/27/2022]
|
23
|
Capriotti AL, Cavaliere C, Foglia P, Piovesana S, Samperi R, Stampachiacchiere S, Laganà A. Proteomic platform for the identification of proteins in olive (Olea europaea) pulp. Anal Chim Acta 2013; 800:36-42. [DOI: 10.1016/j.aca.2013.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/03/2023]
|
24
|
D'Amato A, Esteve C, Fasoli E, Citterio A, Righetti PG. Proteomic analysis ofLycium barbarum(Goji) fruit via combinatorial peptide ligand libraries. Electrophoresis 2013. [DOI: 10.1002/elps.201200643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alfonsina D'Amato
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan; Italy
| | - Clara Esteve
- Department of Analytical Chemistry; Faculty of Chemistry; University of Alcalá; Alcalá de Henares; Madrid; Spain
| | - Elisa Fasoli
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan; Italy
| | - Attilio Citterio
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan; Italy
| | - Pier Giorgio Righetti
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan; Italy
| |
Collapse
|
25
|
Bianco L, Alagna F, Baldoni L, Finnie C, Svensson B, Perrotta G. Proteome regulation during Olea europaea fruit development. PLoS One 2013; 8:e53563. [PMID: 23349718 PMCID: PMC3547947 DOI: 10.1371/journal.pone.0053563] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. METHODOLOGY/PRINCIPAL FINDINGS In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. CONCLUSIONS/SIGNIFICANCE This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.
Collapse
Affiliation(s)
- Linda Bianco
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella (Matera), Italy
| | | | | | - Christine Finnie
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella (Matera), Italy
- * E-mail:
| |
Collapse
|
26
|
Esteve C, D'Amato A, Marina ML, García MC, Righetti PG. In-depth proteomic analysis of banana (Musaspp.) fruit with combinatorial peptide ligand libraries. Electrophoresis 2012; 34:207-14. [DOI: 10.1002/elps.201200389] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/27/2012] [Accepted: 09/12/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Clara Esteve
- Department of Analytical Chemistry, Faculty of Chemistry; University of Alcalá; Alcalá de Henares; Madrid; Spain
| | - Alfonsina D'Amato
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan; Italy
| | - María Luisa Marina
- Department of Analytical Chemistry, Faculty of Chemistry; University of Alcalá; Alcalá de Henares; Madrid; Spain
| | - María Concepción García
- Department of Analytical Chemistry, Faculty of Chemistry; University of Alcalá; Alcalá de Henares; Madrid; Spain
| | | |
Collapse
|
27
|
Esteve C, D'Amato A, Marina ML, García MC, Righetti PG. Identification of avocado (Persea americana) pulp proteins by nano-LC-MS/MS via combinatorial peptide ligand libraries. Electrophoresis 2012; 33:2799-805. [DOI: 10.1002/elps.201200254] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Clara Esteve
- Department of Analytical Chemistry; Faculty of Chemistry; University of Alcalá; Madrid; Spain
| | - Alfonsina D'Amato
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Milan; Italy
| | - María Luisa Marina
- Department of Analytical Chemistry; Faculty of Chemistry; University of Alcalá; Madrid; Spain
| | - María Concepción García
- Department of Analytical Chemistry; Faculty of Chemistry; University of Alcalá; Madrid; Spain
| | | |
Collapse
|
28
|
Montealegre C, García MC, del Río C, Marina ML, García-Ruiz C. Separation of olive proteins by capillary gel electrophoresis. Talanta 2012; 97:420-4. [DOI: 10.1016/j.talanta.2012.04.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/23/2012] [Accepted: 04/29/2012] [Indexed: 12/01/2022]
|