1
|
Zhang YQ, Song XY, Liu F. XanFur, a novel Fur protein induced by H 2O 2, positively regulated by the global transcriptional regulator Clp and required for the full virulence of Xanthomonas oryzae pv. oryzae in rice. Microbiol Spectr 2023; 11:e0118723. [PMID: 37831462 PMCID: PMC10714925 DOI: 10.1128/spectrum.01187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Although Xanthomonas oryzae pv. oryzae (Xoo) has been found to be a bacterial pathogen causing bacterial leaf blight in rice for many years, the molecular mechanisms of the rice-Xoo interaction has not been fully understood. In this study, we found that XanFur of Xoo is a novel ferric uptake regulator (Fur) protein conserved among major pathogenic Xanthomonas species. XanFur is required for the virulence of Xoo in rice, and likely involved in regulating the virulence determinants of Xoo. The expression of xanfur is induced by H2O2, and positively regulated by the global transcriptional regulator Clp. Our results reveal the function and regulation of the novel virulence-related Fur protein XanFur in Xoo, providing new insights into the interaction mechanisms of rice-Xoo.
Collapse
Affiliation(s)
- Yu-Qiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhang YQ, Zhang S, Sun ML, Su HN, Li HY, Kun-Liu, Zhang YZ, Chen XL, Cao HY, Song XY. Antibacterial activity of peptaibols from Trichoderma longibrachiatum SMF2 against gram-negative Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight on rice. Front Microbiol 2022; 13:1034779. [PMID: 36304956 PMCID: PMC9595671 DOI: 10.3389/fmicb.2022.1034779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial leaf blight caused by Gram-negative pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive bacterial diseases on rice. Due to the resistance, toxicity and environmental issues of chemical bactericides, new biological strategies are still in need. Although peptaibols produced by Trichoderma spp. can inhibit the growth of several Gram-positive bacteria and plant fungal pathogens, it still remains unclear whether peptaibols have anti-Xoo activity to control bacterial leaf blight on rice. In this study, we evaluated the antibacterial effects of Trichokonins A (TKA), peptaibols produced by Trichoderma longibrachiatum SMF2, against Xoo. The in vitro antibacterial activity analysis showed that the growth of Xoo was significantly inhibited by TKA, with a minimum inhibitory concentration of 54 μg/mL and that the three TKs in TKA all had remarkable anti-Xoo activity. Further inhibitory mechanism analyses revealed that TKA treatments resulted in the damage of Xoo cell morphology and the release of intracellular substances, such as proteins and nucleic acids, from Xoo cells, suggesting the damage of the permeability of Xoo cell membrane by TKA. Pathogenicity analyses showed that the lesion length on rice leaf was significantly reduced by 82.2% when treated with 27 μg/mL TKA. This study represents the first report of the antibacterial activity of peptaibols against a Gram-negative bacterium. Thus, TKA can be of a promising agent in controlling bacterial leaf blight on rice.
Collapse
|
3
|
Nathawat R, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Role of the FnIII domain associated with a cell wall-degrading enzyme cellobiosidase of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:1011-1021. [PMID: 35278018 PMCID: PMC9190976 DOI: 10.1111/mpp.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cellobiosidase (CbsA) is an important secreted virulence factor of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight of rice. CbsA is one of several cell wall-degrading enzymes secreted by Xoo via the type II secretion system (T2SS). CbsA is considered a fundamental virulence factor for vascular pathogenesis. CbsA has an N-terminal glycosyl hydrolase domain and a C-terminal fibronectin type III (FnIII) domain. Interestingly, the secreted form of CbsA lacks the FnIII domain during in planta growth. Here we show that the presence of the FnIII domain inhibits the enzyme activity of CbsA on polysaccharide substrates like carboxymethylcellulose. The FnIII domain is required for the interaction of CbsA with SecB chaperone, and this interaction is crucial for the stability and efficient transport of CbsA across the inner membrane. Deletion of the FnIII domain reduced virulence similar to ΔcbsA Xoo, which corroborates the importance of the FnIII domain in CbsA. Our work elucidates a hitherto unknown function of the FnIII domain in enabling the virulence-promoting activity of CbsA.
Collapse
Affiliation(s)
| | - Roshan V. Maku
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
DBT – National Institute of Animal BiotechnologyHyderabadIndia
| | | | | | - Ramesh V. Sonti
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
Indian Institute of Science Education and Research TirupatiTirupatiIndia
| |
Collapse
|
4
|
Feng YM, Qi PY, Xiao WL, Zhang TH, Zhou X, Liu LW, Yang S. Fabrication of Isopropanolamine-Decorated Coumarin Derivatives as Novel Quorum Sensing Inhibitors to Suppress Plant Bacterial Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6037-6049. [PMID: 35579561 DOI: 10.1021/acs.jafc.2c01141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emerging pesticide-resistant phytopathogenic bacteria have become a stumbling block in the development and use of pesticides. Quorum sensing (QS) blockers, which interfere with bacterial virulence gene expression, are a compelling way to manage plant bacterial disease without resistance. Herein, a series of isopropanolamine-decorated coumarin derivatives were designed and synthesized, and their potency in interfering with QS was investigated. Notably, compound A5 exhibited a better bioactivity with median effective concentration (EC50) values of 6.75 mg L-1 against Xanthomonas oryzae pv. oryzae (Xoo) than bismerthiazol (EC50 = 21.9 mg L-1). Further biochemical studies revealed that compound A5 disturbed biofilm formation and suppressed bacterial virulence factors and so forth. Moreover, compound A5 decreased the expression of QS-related genes. Interestingly, compound A5 had the acceptable control effect (53.2%) toward Xoo in vivo. Overall, this study identifies a novel lead compound for the development of bactericide candidates to control plant bacterial diseases by interfering with QS.
Collapse
Affiliation(s)
- Yu-Mei Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Wan-Lin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
5
|
Gupta R, Min CW, Son S, Lee GH, Jang JW, Kwon SW, Park SR, Kim ST. Comparative proteome profiling of susceptible and resistant rice cultivars identified an arginase involved in rice defense against Xanthomonas oryzae pv. oryzae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:105-114. [PMID: 34979446 DOI: 10.1016/j.plaphy.2021.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is one of the major threats to rice productivity. Yet, the molecular mechanism of rice-Xoo interaction is elusive. Here, we report comparative proteome profiles of Xoo susceptible (Dongjin) and resistant (Hwayeong) cultivars of rice in response to two-time points (3 and 6 days) of Xoo infection. Low-abundance proteins were enriched using a protamine sulfate (PS) precipitation method and isolated proteins were quantified by a label-free quantitative analysis, leading to the identification of 3846 proteins. Of these, 1128 proteins were significantly changed between mock and Xoo infected plants of Dongjin and Hwayeong cultivars. Based on the abundance pattern and functions of the identified proteins, a total of 23 candidate proteins were shortlisted that potentially participate in plant defense against Xoo in the resistant cultivar. Of these candidate proteins, a mitochondrial arginase-1 showed Hwayeong specific abundance and was significantly accumulated following Xoo inoculation. Overexpression of arginase 1 (OsArg 1) in susceptible rice cultivar (Dongjin) resulted in enhanced tolerance against Xoo as compared to the wild-type. In addition, expression analysis of defense-related genes encoding PR1, glucanase I, and chitinase II by qRT-PCR showed their enhanced expression in the overexpression lines as compared to wild-type. Taken together, our results uncover the proteome changes in the rice cultivars and highlight the functions of OsARG1 in plant defense against Xoo.
Collapse
Affiliation(s)
- Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Gi Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Soon Wook Kwon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea.
| |
Collapse
|
6
|
A-to-I mRNA Editing in a Ferric Siderophore Receptor Improves Competition for Iron in Xanthomonas oryzae pv. oryzicola. Microbiol Spectr 2021; 9:e0157121. [PMID: 34704802 PMCID: PMC8549721 DOI: 10.1128/spectrum.01571-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential element for the growth and survival of pathogenic bacteria; however, it is not fully understood how bacteria sense and respond to iron deficiency or excess. In this study, we show that xfeA in Xanthomonas oryzae pv. oryzicola senses extracytoplasmic iron and changes the hydrogen bonding network of ligand channel domains by adenosine-to-inosine (A-to-I) RNA editing. The frequency of A-to-I RNA editing during iron-deficient conditions increased by 76.87%, which facilitated the passage of iron through the XfeA outer membrane channel. When bacteria were subjected to high iron concentrations, the percentage of A-to-I editing in xfeA decreased, which reduced iron transport via XfeA. Furthermore, A-to-I RNA editing increased expression of multiple genes in the chemotaxis pathway, including methyl-accepting chemotaxis proteins (MCPs) that sense concentrations of exogenous ferrienterobactin (Fe-Ent) at the cytoplasmic membrane. A-to-I RNA editing helps X. oryzae pv. oryzicola move toward an iron-rich environment and supports our contention that editing in xfeA facilitates entry of a ferric siderophore. Overall, our results reveal a new signaling mechanism that bacteria use to adjust to iron concentrations. IMPORTANCE Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by the adenosine deaminase RNA-specific family of enzymes, is a frequent posttranscriptional modification in metazoans. Research on A-to-I editing in bacteria is limited, and the importance of this editing is underestimated. In this study, we show that bacteria may use A-to-I editing as an alternative strategy to promote uptake of metabolic iron, and this form of editing can quickly and precisely modify RNA and subsequent protein sequences similar to an "on/off" switch. Thus, bacteria have the capacity to use a rapid switch-like mechanism to facilitate iron uptake and improve their competitiveness.
Collapse
|
7
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
8
|
Vo KTX, Rahman MM, Rahman MM, Trinh KTT, Kim ST, Jeon JS. Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update. RICE (NEW YORK, N.Y.) 2021; 14:30. [PMID: 33721115 PMCID: PMC7960847 DOI: 10.1186/s12284-021-00461-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
Biotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mizanor Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mustafizur Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Kieu Thi Thuy Trinh
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463 South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
9
|
Liu Y, Lin T, Valencia MV, Zhang C, Lv Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules 2021; 26:molecules26030667. [PMID: 33514014 PMCID: PMC7865979 DOI: 10.3390/molecules26030667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
Vascular bundles play important roles in transporting nutrients, growth signals, amino acids, and proteins between aerial and underground tissues. In order to understand these sophisticated processes, a comprehensive analysis of the roles of the components located in the vascular tissues is required. A great deal of data has been obtained from proteomic analyses of vascular tissues in plants, which mainly aim to identify the proteins moving through the vascular tissues. Here, different aspects of the phloem and xylem proteins are reviewed, including their collection methods, and their main biological roles in growth, and biotic and abiotic stress responses. The study of vascular proteomics shows great potential to contribute to our understanding of the biological mechanisms related to development and defense in plants.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Maria Valderrama Valencia
- Departamento Académico de Biología–Universidad Nacional de San Agustin de Arequipa Nro117, Arequipa 04000, Peru;
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (C.Z.); (Z.L.)
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
- Correspondence: (C.Z.); (Z.L.)
| |
Collapse
|
10
|
Gluck-Thaler E, Cerutti A, Perez-Quintero AL, Butchacas J, Roman-Reyna V, Madhavan VN, Shantharaj D, Merfa MV, Pesce C, Jauneau A, Vancheva T, Lang JM, Allen C, Verdier V, Gagnevin L, Szurek B, Beckham GT, De La Fuente L, Patel HK, Sonti RV, Bragard C, Leach JE, Noël LD, Slot JC, Koebnik R, Jacobs JM. Repeated gain and loss of a single gene modulates the evolution of vascular plant pathogen lifestyles. SCIENCE ADVANCES 2020; 6:6/46/eabc4516. [PMID: 33188025 PMCID: PMC7673761 DOI: 10.1126/sciadv.abc4516] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/30/2020] [Indexed: 05/21/2023]
Abstract
Vascular plant pathogens travel long distances through host veins, leading to life-threatening, systemic infections. In contrast, nonvascular pathogens remain restricted to infection sites, triggering localized symptom development. The contrasting features of vascular and nonvascular diseases suggest distinct etiologies, but the basis for each remains unclear. Here, we show that the hydrolase CbsA acts as a phenotypic switch between vascular and nonvascular plant pathogenesis. cbsA was enriched in genomes of vascular phytopathogenic bacteria in the family Xanthomonadaceae and absent in most nonvascular species. CbsA expression allowed nonvascular Xanthomonas to cause vascular blight, while cbsA mutagenesis resulted in reduction of vascular or enhanced nonvascular symptom development. Phylogenetic hypothesis testing further revealed that cbsA was lost in multiple nonvascular lineages and more recently gained by some vascular subgroups, suggesting that vascular pathogenesis is ancestral. Our results overall demonstrate how the gain and loss of single loci can facilitate the evolution of complex ecological traits.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aude Cerutti
- LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | | | - Jules Butchacas
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Verónica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Céline Pesce
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
- Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- HM Clause (Limagrain group), Davis, CA, 95618, USA
| | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Taca Vancheva
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
- Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jillian M Lang
- Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Valerie Verdier
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Lionel Gagnevin
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Boris Szurek
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | - Ramesh V Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Claude Bragard
- Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jan E Leach
- Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Laurent D Noël
- LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Koebnik
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France.
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA.
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Jain A, Singh HB, Das S. Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res 2020; 242:126590. [PMID: 33022544 DOI: 10.1016/j.micres.2020.126590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Proteomic approaches are being used to elucidate a better discretion of interactions occurring between host, pathogen, and/or beneficial microorganisms at the molecular level. Application of proteomic techniques, unravel pathogenicity, stress-related, and antioxidant proteins expressed amid plant-microbe interactions and good information have been generated. It is being perceived that a fine regulation of protein expression takes place for effective pathogen recognition, induction of resistance, and maintenance of host integrity. However, our knowledge of molecular plant-microbe interactions is still incomplete and inconsequential. This review aims to provide insight into numerous ways used for proteomic investigation including peptide/protein identification, separation, and quantification during host defense response. Here, we highlight the current progress in proteomics of defense responses elicited by bacterial, fungal, and viral pathogens in plants along with which the proteome level changes induced by beneficial microorganisms are also discussed.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
12
|
Abstract
Xylem is the most important route for root-to-shoot translocation of water, nutrients and signaling molecules. Although a number of studies have been performed using xylem sap, its collection requires special equipment and is usually low throughput. Here, we developed a simple and high-throughput method for the collection of both medium- (<1 ml) and small- (<200 μl) volume xylem sap samples. Using a rice Cd transporter mutant, we demonstrated that our method allows for the effective evaluation of xylem sap Cd concentrations.
Collapse
|
13
|
Zhang Y, Wu G, Palmer I, Wang B, Qian G, Fu ZQ, Liu F. The Role of a Host-Induced Arginase of Xanthomonas oryzae pv. oryzae in Promoting Virulence on Rice. PHYTOPATHOLOGY 2019; 109:1869-1877. [PMID: 31290730 DOI: 10.1094/phyto-02-19-0058-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The plant bacterial pathogen Xanthomonas oryzae pv. oryzae causes bacterial blight of rice, which is one of the most destructive rice diseases prevalent in Asia and parts of Africa. Despite many years of research, how X. oryzae pv. oryzae causes bacterial blight of rice is still not completely understood. Here, we show that the loss of the rocF gene caused a significant decrease in the virulence of X. oryzae pv. oryzae in the susceptible rice cultivar IR24. Bioinformatics analysis demonstrated that rocF encodes arginase. Quantitative real-time PCR and Western blot assays revealed that rocF expression was significantly induced by rice and arginine. The rocF deletion mutant strain showed elevated sensitivity to hydrogen peroxide, reduced extracellular polysaccharide (EPS) production, and reduced biofilm formation, all of which are important determinants for the full virulence of X. oryzae pv. oryzae, compared with the wild-type strain. Taken together, the results of this study revealed a mechanism by which a bacterial arginase is required for the full virulence of X. oryzae pv. oryzae on rice because of its contribution to tolerance to reactive oxygen species, EPS production, and biofilm formation.
Collapse
Affiliation(s)
- Yuqiang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, P.R. China
| | - Ian Palmer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Bo Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Guoliang Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, P.R. China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
14
|
Rostaminedjad M, Askari H, Zakavi M, Nadjafabadi MS, Farrokhi N. Energy Flow from Root to Shoot: A Comprehensive In silico Analysis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e1734. [PMID: 31457040 PMCID: PMC6697854 DOI: 10.21859/ijb.1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Root to shoot connection and transfer of information seems to be taken place mostly via the transmissions of signal molecules, secondary metabolites, amino acids, hormones and proteins, through xylem sap. Examination of earlier reports is indicative of relatively high levels of conservation in xylem sap protein compositions. Apparently these protein molecules are being synthesized in roots in response to environmental changes and get transported to aerial plant parts after secretion into xylem sap. Objectives In order to comprehend this so-called passive signaling, some questions need to be answered: 1) Do these proteins have the capability to act as signals? 2) How much energy does root spend for the biosynthesis of the secreted proteins? How similar is the amount of energy that root cells spent for the biosynthesis of intra- and extra-cellular proteins? Materials and Methods Reported xylem sap proteins curated from Arabidopsis, maize and soybean. Their sequences were put under scrutiny in terms of considering their mobility, and physical and chemical properties. Metabolic energy required for their biosynthesis along with the energy hidden in their peptide bonds were calculated and compared with random non-xylem sap proteins as control. Results Xylem sap proteins were significantly smaller than the root proteins, while they were bigger in size when compared to the leaf group. Xylem protein pIs were significantly higher than the control proteins in different plants. Similarly, the protein stability was higher for xylem sap proteins in comparison with roots and leaves in all analyzed plants, except for soybean that the stability was indifferent between xylem and root. The data were suggestive a significantly lower energy consumption for the synthesis of xylem sap proteins. Conclusions Lower energy consumption may suggest an economical route of communication between roots and shoots in plants that mainly rely on symplastic signaling.
Collapse
Affiliation(s)
- Mehri Rostaminedjad
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Hossein Askari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Maryam Zakavi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Masood Soltani Nadjafabadi
- Genetic Research Department, Iranian National Plant Gene Bank, Seed and Plant Improvement Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| |
Collapse
|
15
|
Suvega T, Arunkumar K. Probiotic bacteria promote the growth of associating host(red seaweed, Gracilaria edulis) also synthesize antibacterial protein. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Intracellular Fate of Universally Labelled 13C Isotopic Tracers of Glucose and Xylose in Central Metabolic Pathways of Xanthomonas oryzae. Metabolites 2018; 8:metabo8040066. [PMID: 30326608 PMCID: PMC6316632 DOI: 10.3390/metabo8040066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
The goal of this study is to map the metabolic pathways of poorly understood bacterial phytopathogen, Xanthomonas oryzae (Xoo) BXO43 fed with plant mimicking media XOM2 containing glutamate, methionine and either 40% [13C₅] xylose or 40% [13C₆] glucose. The metabolic networks mapped using the KEGG mapper and the mass isotopomer fragments of proteinogenic amino acids derived from GC-MS provided insights into the activities of Xoo central metabolic pathways. The average 13C in histidine, aspartate and other amino acids confirmed the activities of PPP, the TCA cycle and amino acid biosynthetic routes, respectively. The similar labelling patterns of amino acids (His, Ala, Ser, Val and Gly) from glucose and xylose feeding experiments suggests that PPP would be the main metabolic route in Xoo. Owing to the lack of annotated gene phosphoglucoisomerase in BXO43, the 13C incorporation in alanine could not be attributed to the competing pathways and hence warrants additional positional labelling experiments. The negligible presence of 13C incorporation in methionine brings into question its potential role in metabolism and pathogenicity. The extent of the average 13C labelling in several amino acids highlighted the contribution of pre-existing pools that need to be accounted for in 13C-flux analysis studies. This study provided the first qualitative insights into central carbon metabolic pathway activities in Xoo.
Collapse
|
17
|
Assis RDAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM. Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Sci Rep 2017; 7:16133. [PMID: 29170530 PMCID: PMC5700972 DOI: 10.1038/s41598-017-16325-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria.
Collapse
Affiliation(s)
- Renata de A B Assis
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - José S L Patané
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Shalabh Thakur
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | - Érica B Felestrino
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Julio Diaz-Caballero
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | | | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Nalvo F Almeida
- School of Computing, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, MS, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Paulo A Zaini
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Department of Plant Sciences, University of California, Davis, CA, USA
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | - Leandro Marcio Moreira
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil. .,Department of Biological Science, Institute of Exact and Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
18
|
Label-free quantitative secretome analysis of Xanthomonas oryzae pv. oryzae highlights the involvement of a novel cysteine protease in its pathogenicity. J Proteomics 2017; 169:202-214. [DOI: 10.1016/j.jprot.2017.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 11/24/2022]
|
19
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
20
|
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169:176-188. [PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement. SIGNIFICANCE Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
Collapse
Affiliation(s)
- Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. NATURE PLANTS 2017; 3:17009. [PMID: 28211849 DOI: 10.1038/nplants.2017.9] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/21/2017] [Indexed: 05/03/2023]
Abstract
The major disease resistance gene Xa4 confers race-specific durable resistance against Xanthomonas oryzae pv. oryzae, which causes the most damaging bacterial disease in rice worldwide. Although Xa4 has been one of the most widely exploited resistance genes in rice production worldwide, its molecular nature remains unknown. Here we show that Xa4, encoding a cell wall-associated kinase, improves multiple traits of agronomic importance without compromising grain yield by strengthening the cell wall via promoting cellulose synthesis and suppressing cell wall loosening. Strengthening of the cell wall by Xa4 enhances resistance to bacterial infection, and also increases mechanical strength of the culm with slightly reduced plant height, which may improve lodging resistance of the rice plant. The simultaneous improvement of multiple agronomic traits conferred by Xa4 may account for its widespread and lasting utilization in rice breeding programmes globally.
Collapse
Affiliation(s)
- Keming Hu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Xia
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Cui
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglong Cao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinli Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Dai L, Huang Y, Chen Y, Long ZE. Cloning and characterization of filamentous temperature-sensitive protein Z from Xanthomonas oryzae pv. Oryzae. SPRINGERPLUS 2016; 5:145. [PMID: 27026842 PMCID: PMC4764595 DOI: 10.1186/s40064-016-1876-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/16/2016] [Indexed: 12/03/2022]
Abstract
The ftsZ gene from Xanthomonas oryzae pv. Oryzae was amplified by PCR with the specific primers, and the recombinant plasmid pET-22b-ftsZ was constructed successfully. The FtsZ with a 6× His tag was overexpressed in a soluble form in Escherichia coli BL21 and purified through a Ni-NTA agarose column. The purified recombinant FtsZ showed a single band on SDS-PAGE with an apparent molecular mass of about 44 kDa, and confirmed by western blotting analysis. The optimum temperature for GTPase activity of the recombined FtsZ was 50 °C, and the optimum pH was 7.0. The recombinant FtsZ showed good stability and retained >95 % activity at 50 °C for 240 min. The GTPase activity followed Michaelis–Menten kinetics with the KM of 1.750 mM and the Vmax of 0.155 nmol Pi/min/nmol FtsZ respectively.
Collapse
|
23
|
Analysis of the Proteins Secreted from the Oryza meyeriana Suspension-Cultured Cells Induced by Xanthomonas oryzae pv. oryzae. PLoS One 2016; 11:e0154793. [PMID: 27196123 PMCID: PMC4873123 DOI: 10.1371/journal.pone.0154793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/19/2016] [Indexed: 01/18/2023] Open
Abstract
Oryza meyeriana, a wild species of rice from China, shows high resistance to Xanthomonas oryzae pv. oryzae (Xoo), the cause of rice bacterial blight, one of the most serious rice pathogens. To better understand the resistance mechanism, a proteomic study was conducted to identify changes in the proteins secreted in embryo cell suspension cultures in response to Xoo. After two-dimensional difference gel electrophoresis (2D-DIGE), 72 differentially expressed protein spots corresponding to 34 proteins were identified by Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry. Of the 34 proteins, 10 were up regulated and 24 down regulated. The secreted proteins identified were predicted to be involved in various biological processes, including signal transduction, defense, ROS and cell wall modification. 77% of the 34 proteins were predicted to have a signal peptide by Signal P. Quantitative Real-Time PCR showed that transcript levels of 14 secreted proteins were not well correlated with secreted protein levels. Peroxidase activity was up regulated in both O. meyriana and susceptible rice but was about three times higher in O. meyeriana. This suggests that peroxidases may play an important role in the early response to Xoo in O. meyeriana. These results not only provide a better understanding of the resistance mechanism of O. meyeriana, but have implications for studies of the interactions between other plants and their pathogens.
Collapse
|
24
|
Ferreira RM, Moreira LM, Ferro JA, Soares MR, Laia ML, Varani AM, de Oliveira JC, Ferro MIT. Unravelling potential virulence factor candidates in Xanthomonas citri. subsp. citri by secretome analysis. PeerJ 2016; 4:e1734. [PMID: 26925342 PMCID: PMC4768671 DOI: 10.7717/peerj.1734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Citrus canker is a major disease affecting citrus production in Brazil. It's mainly caused by Xanthomonas citri subsp. citri strain 306 pathotype A (Xac). We analysed the differential expression of proteins secreted by wild type Xac and an asymptomatic mutant for hrpB4 (ΔhrpB4) grown in Nutrient Broth (NB) and a medium mimicking growth conditions in the plant (XAM1). This allowed the identification of 55 secreted proteins, of which 37 were secreted by both strains when cultured in XAM1. In this secreted protein repertoire, the following stand out: Virk, Polyphosphate-selective porin, Cellulase, Endoglucanase, Histone-like protein, Ribosomal proteins, five hypothetical proteins expressed only in the wild type strain, Lytic murein transglycosylase, Lipoprotein, Leucyl-tRNA synthetase, Co-chaperonin, Toluene tolerance, C-type cytochrome biogenesis membrane protein, Aminopeptidase and two hypothetical proteins expressed only in the ΔhrpB4 mutant. Furthermore, Peptidoglycan-associated outer membrane protein, Regulator of pathogenicity factor, Outer membrane proteins, Endopolygalacturonase, Chorismate mutase, Peptidyl-prolyl cis-trans isomerase and seven hypothetical proteins were detected in both strains, suggesting that there was no relationship with the secretion mediated by the type III secretory system, which is not functional in the mutant strain. Also worth mentioning is the Elongation factor Tu (EF-Tu), expressed only the wild type strain, and Type IV pilus assembly protein, Flagellin (FliC) and Flagellar hook-associated protein, identified in the wild-type strain secretome when grown only in NB. Noteworthy, that FliC, EF-Tu are classically characterized as PAMPs (Pathogen-associated molecular patterns), responsible for a PAMP-triggered immunity response. Therefore, our results highlight proteins potentially involved with the virulence. Overall, we conclude that the use of secretome data is a valuable approach that may bring more knowledge of the biology of this important plant pathogen, which ultimately can lead to the establishment of new strategies to combat citrus canker.
Collapse
Affiliation(s)
- Rafael M. Ferreira
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas—Núcleo de Pesquisas em Ciências Biológicas-NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jesus A. Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Marcia R.R. Soares
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo L. Laia
- Departamento de Engenharia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Julio C.F. de Oliveira
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Maria Ines T. Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
25
|
Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, Haynes PA, Mirzaei M, Komatsu S. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. J Proteome Res 2015; 14:2723-44. [DOI: 10.1021/acs.jproteome.5b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Pingfang Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sun Hee Woo
- Chungbuk National University, Cheongju 362-763, Korea
| | - Chiew Foan Chin
- University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Chris Gehring
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
26
|
Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathog 2015; 11:e1004809. [PMID: 25821973 PMCID: PMC4379099 DOI: 10.1371/journal.ppat.1004809] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. Plants possess multi-layered immune recognition systems. Early in the infection process, plants use receptor proteins to recognize pathogen molecules. Some of these receptors are present in only in a subset of plant species. Transfer of these taxonomically restricted immune receptors between plant species by genetic engineering is a promising approach for boosting the plant immune system. Here we show the successful transfer of an immune receptor from a species in the mustard family, called EFR, to rice. Rice plants expressing EFR are able to sense the bacterial ligand of EFR and elicit an immune response. We show that the EFR receptor is able to use components of the rice immune signaling pathway for its function. Under laboratory conditions, this leads to an enhanced resistance response to two weakly virulent isolates of an economically important bacterial disease of rice.
Collapse
|
27
|
Hu J, Rampitsch C, Bykova NV. Advances in plant proteomics toward improvement of crop productivity and stress resistancex. FRONTIERS IN PLANT SCIENCE 2015; 6:209. [PMID: 25926838 PMCID: PMC4396383 DOI: 10.3389/fpls.2015.00209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/16/2015] [Indexed: 05/14/2023]
Abstract
Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein-protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed.
Collapse
Affiliation(s)
- Junjie Hu
- Department of Biology, Memorial University of Newfoundland, St. John’sNL, Canada
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
| | - Christof Rampitsch
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
| | - Natalia V. Bykova
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
- *Correspondence: Natalia V. Bykova, Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
28
|
Petriccione M, Salzano AM, Di Cecco I, Scaloni A, Scortichini M. Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae. J Proteomics 2014; 101:43-62. [DOI: 10.1016/j.jprot.2014.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/20/2014] [Accepted: 01/29/2014] [Indexed: 11/25/2022]
|
29
|
Kim ST, Kim SG, Agrawal GK, Kikuchi S, Rakwal R. Rice proteomics: a model system for crop improvement and food security. Proteomics 2014; 14:593-610. [PMID: 24323464 DOI: 10.1002/pmic.201300388] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/24/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
Rice proteomics has progressed at a tremendous pace since the year 2000, and that has resulted in establishing and understanding the proteomes of tissues, organs, and organelles under both normal and abnormal (adverse) environmental conditions. Established proteomes have also helped in re-annotating the rice genome and revealing the new role of previously known proteins. The progress of rice proteomics had recognized it as the corner/stepping stone for at least cereal crops. Rice proteomics remains a model system for crops as per its exemplary proteomics research. Proteomics-based discoveries in rice are likely to be translated in improving crop plants and vice versa against ever-changing environmental factors. This review comprehensively covers rice proteomics studies from August 2010 to July 2013, with major focus on rice responses to diverse abiotic (drought, salt, oxidative, temperature, nutrient, hormone, metal ions, UV radiation, and ozone) as well as various biotic stresses, especially rice-pathogen interactions. The differentially regulated proteins in response to various abiotic stresses in different tissues have also been summarized, indicating key metabolic and regulatory pathways. We envision a significant role of rice proteomics in addressing the global ground level problem of food security, to meet the demands of the human population which is expected to reach six to nine billion by 2040.
Collapse
Affiliation(s)
- Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | | | | | | | | |
Collapse
|
30
|
gltB/D mutants of Xanthomonas oryzae pv. oryzae are virulence deficient. Curr Microbiol 2013; 68:105-12. [PMID: 23995777 DOI: 10.1007/s00284-013-0444-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, a serious disease of rice. Upon clip inoculation of rice leaves, Xoo causes typical V-shaped lesions whose leading edge moves through the mid-veinal region. We have isolated a virulence deficient mutant of Xoo, referred to as BXO808 that causes limited lesions which primarily extend through the side-veinal regions of rice leaves. Functional complementation studies identified a clone, pSR19, from a cosmid genomic library that restored wild-type virulence and lesion phenotype to BXO808. Transposon mutagenesis of the pSR19 clone, marker exchange experiments, and targeted mutagenesis, revealed that the BXO808 phenotype is due to mutation in the gltB/D genes of Xoo, which encode glutamate synthase subunits α and β, respectively. The gltB/D mutants that were generated in this study also exhibited virulence deficiency, an altered lesion phenotype and growth deficiency on minimal medium with low levels of ammonium as a sole nitrogen source. This is the first report that mutations in the gltB/D genes of Xoo cause virulence deficiency.
Collapse
|
31
|
Xu S, Luo J, Pan X, Liang X, Wu J, Zheng W, Chen C, Hou Y, Ma H, Zhou M. Proteome analysis of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1660-70. [DOI: 10.1016/j.bbapap.2013.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/26/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
32
|
Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, Hu B, Venturi V, Liu F. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res 2013; 12:3327-41. [PMID: 23688240 DOI: 10.1021/pr4001543] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|