1
|
Elbehiry A, Abalkhail A, Anajirih N, Alkhamisi F, Aldamegh M, Alramzi A, AlShaqi R, Alotaibi N, Aljuaid A, Alzahrani H, Alzaben F, Rawway M, Ibrahem M, Abdelsalam MH, Rizk NI, Mostafa MEA, Alfaqir MR, Edrees HM, Alqahtani M. Helicobacter pylori: Routes of Infection, Antimicrobial Resistance, and Alternative Therapies as a Means to Develop Infection Control. Diseases 2024; 12:311. [PMID: 39727641 PMCID: PMC11727528 DOI: 10.3390/diseases12120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, H. pylori frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics. This review examines H. pylori infection, encompassing transmission pathways, treatment modalities, antibiotic resistance, and eradication strategies. Additionally, it discusses alternative therapeutic approaches such as probiotics, anti-biofilm agents, phytotherapy, phototherapy, phage therapy, lactoferrin therapy, and vaccine development. These strategies aim to reduce antimicrobial resistance and enhance treatment outcomes for H. pylori infections. While alternative therapies can maintain low bacterial levels, they do not achieve complete eradication of H. pylori. These therapies are designed to bolster the immune response, minimize side effects, and provide gastroprotective benefits, rendering them suitable for adjunctive use alongside conventional treatments. Probiotics may serve as adjunctive therapy for H. pylori; however, their effectiveness as a monotherapy is limited. Photodynamic and phage therapies exhibit potential in targeting H. pylori infections, including those caused by drug-resistant strains, without the use of antibiotics. The development of a reliable vaccine is also critical for the eradication of H. pylori. This review identifies candidate antigens such as VacA, CagA, and HspA, along with various vaccine formulations, including vector-based and subunit vaccines. Some vaccines have demonstrated efficacy in clinical trials, while others have shown robust immune protection in preclinical studies. Nevertheless, each of the aforementioned alternative therapies requires thorough preclinical and clinical evaluation to ascertain their efficacy, side effects, cost-effectiveness, and patient compliance.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia
| | - Nuha Anajirih
- Medical Emergency Services Department, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah P.O. Box 1109, Saudi Arabia
| | - Fahad Alkhamisi
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammed Aldamegh
- Pathology and Laboratory Medicine Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Abdullah Alramzi
- Medical Radiology Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Riyad AlShaqi
- Biomedical Engineer, Armed Forces Medical Services, Riyadh 12426, Saudi Arabia
| | - Naif Alotaibi
- Medical Hospital Administration Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Abdullah Aljuaid
- Medical Hospital Administration Department, Armed Forces Hospitals in Al Kharj, AL Kharj 16278, Saudi Arabia
| | - Hilal Alzahrani
- Physical Medicine and Rehabilitation Department, Armed Forces Center for Health Rehabilitation, Taif 21944, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Moustafa H. Abdelsalam
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Nermin I. Rizk
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Moneef Rohail Alfaqir
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Husam M. Edrees
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Mubarak Alqahtani
- Department of Radiology, King Fahd Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| |
Collapse
|
2
|
de Oliveira Silva JV, Meneguello JE, Formagio MD, de Freitas CF, Malacarne LC, Marchiosi R, de Mendonça PDSB, Zanetti Campanerut-Sá PA, Graton Mikcha JM. Multi-targets of antimicrobial photodynamic therapy mediated by erythrosine against Staphylococcus aureus identified by proteomic approach. Photochem Photobiol 2024; 100:1848-1863. [PMID: 38594817 DOI: 10.1111/php.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Staphylococcus aureus is a global challenge to the clinical field and food industry. Therefore, the development of antimicrobial photodynamic therapy (aPDT) has become one of the valuable methods to control this pathogen. The antibacterial activity of photoinactivation by erythrosine (Ery) against S. aureus has been reported, but its modes of action are unclear. This study aimed to employ a proteomic approach to analyze modes of action of Ery-aPDT against S. aureus. We determined the antibacterial effect by Ery-aPDT assays, quantified reactive oxygen species (ROS) and injury to the cell membrane, and determined protein expression using a proteomic approach combined with bioinformatic tools. Ery-aPDT was effective in reducing S. aureus to undetectable levels. In addition, the increment of ROS accompanied the increase in the reduction of cell viability, and damage to cellular membranes was shown by sublethal injury. In proteomic analysis, we found 17 differentially expressed proteins. These proteins revealed changes mainly associated with defense to oxidative stress, energy metabolism, translation, and protein biosynthesis. Thus, these results suggest that the effectiveness of Ery-aPDT is due to multi-targets in the bacterial cell that cause the death of S. aureus.
Collapse
Affiliation(s)
| | - Jean Eduardo Meneguello
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Maíra Dante Formagio
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Paraná, Brazil
| | | | | | | |
Collapse
|
3
|
AbouAitah K, Geioushy RA, Nour SA, Emam MTH, Zakaria MA, Fouad OA, Shaker YM, Kim BS. A Combined Phyto- and Photodynamic Delivery Nanoplatform Enhances Antimicrobial Therapy: Design, Preparation, In Vitro Evaluation, and Molecular Docking. ACS APPLIED BIO MATERIALS 2024; 7:6873-6889. [PMID: 39374427 DOI: 10.1021/acsabm.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Microbial combating is one of the hot research topics, and finding an alternative strategy is considerably required nowadays. Here, we report on a developed combined chemo- and photodynamic delivery system with a core of zinc oxide nanoparticles (ZnO NPs), porphyrin photosensitizer (POR) connected to alginate polymer (ALG), and berberine (alkaloid natural agent, BER) with favorable antimicrobial effects. According to the achieved main designs, the results demonstrated that the loading capacity and entrapment efficiency reached 22.2 wt % and 95.2%, respectively, for ZnO@ALG-POR/BER nanoformulation (second design) compared to 5.88 wt % and 45.1% for ZnOBER@ALG-POR design (first design). Importantly, when the intended nanoformulations were combined with laser irradiation for 10 min, they showed effective antifungal and antibacterial action against Candida albicans, Escherichia coli, and Staphylococcus aureus. Comparing these treatments to ZnO NPs and free BER, a complete (100%) suppression of bacterial and fungal growth was observed by ZnO@ALG-POR/BER nanoformulation treated E. coli, and by ZnOBER treated C. albicans. Also, after laser treatments, most data showed that E. coli was more sensitive to treatments using nanoformulations than S. aureus. The nanoformulations like ZnOBER@ALG-POR were highly comparable to traditional antibiotics against C. albicans and E. coli before laser application. The results of the cytotoxicity assessment demonstrated that the nanoformulations exhibited moderate biocompatibility on normal human immortalized retinal epithelial (RPE1) cells. Notably, the most biocompatible nanoformulation was ZnOBER@ALG-POR, which possessed ∼9% inhibition of RPE1 cells compared to others. High binding affinities were found between all three microbial strains' receptor proteins and ligands in the molecular docking interaction between the receptor proteins and the ligand molecules (mostly BER and POR). In conclusion, our findings point to the possible use of hybrid nanoplatform delivery systems that combine natural agents and photodynamic therapy into a single therapeutic agent, effectively combating microbial infections. Therapeutic efficiency correlates with nanoformulation design and microorganisms, demonstrating possible optimization for further development.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Ramadan A Geioushy
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Maha T H Emam
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Mohammed A Zakaria
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Osama A Fouad
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Yasser M Shaker
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
4
|
Marfavi Z, Cai Y, Lv Q, Han Y, Yang R, Sun K, Yuan C, Tao K. The Synergy between Antibiotics and the Nanoparticle-Based Photodynamic Effect. NANO LETTERS 2024. [PMID: 39356053 DOI: 10.1021/acs.nanolett.4c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Antimicrobial resistance (AMR) is a growing global health concern, necessitating innovative strategies beyond the development of new antibiotics. Here, we employed NdYVO4:Eu3+ nanoparticles, which can persistently produce reactive oxygen species (ROS) after stopping the light, as a model of photodynamic nanoparticles and demonstrated that the photodynamic effect can serve as an adjuvant with antibiotics to effectively reduce their minimum inhibitory concentration. These preirradiated nanoparticles could penetrate the bacterial cell membrane, significantly enhancing the potency of antibiotics. We showed that the synergy effect could be attributed to disrupting crucial cellular processes by ROS, including damaging cell membrane proteins, interfering with energy supply, and inhibiting antibiotic metabolism. Our findings suggested that complementing the photodynamic effect might be a robust strategy to enhance antibiotic potency, providing an alternative antibacterial treatment paradigm.
Collapse
Affiliation(s)
- Zeinab Marfavi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhao Cai
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Zhang P, Li S, Wang W, Sun J, Chen Z, Wang J, Ma Q. Enhanced photodynamic inactivation against Escherichia coli O157:H7 provided by chitosan/curcumin coating and its application in food contact surfaces. Carbohydr Polym 2024; 337:122160. [PMID: 38710575 DOI: 10.1016/j.carbpol.2024.122160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/10/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024]
Abstract
Sterilisation technologies are essential to eliminate foodborne pathogens from food contact surfaces. However, most of the current sterilisation methods involve high energy and chemical consumption. In this study, a photodynamic inactivation coating featuring excellent antibacterial activity was prepared by dispersing curcumin as a plant-based photosensitiser in a chitosan solution. The coating generated abundant reactive oxygen species (ROS) after light irradiation at 420 nm, which eradicated ≥99.999 % of Escherichia coli O157:H7. It was also found that ROS damaged the cell membrane, leading to the leakage of cell contents and cell shrinkage on the basis of chitosan. In addition, the production of ROS first excited the bacterial antioxidant defence system resulting in the increase of peroxidase (POD) and superoxide dismutase (SOD). ROS levels exceed its capacity, causing damage to the defence system and further oxidative decomposition of large molecules, such as DNA and proteins, eventually leading to the death of E. coli O157:H7. We also found the curcumin/chitosan coating could effectively remove E. coli O157:H7 biofilms by oxidative of extracellular polysaccharides and proteins. All the contributors made the chitosan/curcumin coating an efficient detergent comparable with HClO.
Collapse
Affiliation(s)
- Pengmin Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Shuang Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhizhou Chen
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
6
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
7
|
Chen J, Zhang H, Zhao T, Yu Y, Song J, Zhao Y, Alshawwa H, Zou X, Zhang Z. Oxygen Self-Supplied Nanoplatform for Enhanced Photodynamic Therapy against Enterococcus Faecalis within Root Canals. Adv Healthc Mater 2024; 13:e2302926. [PMID: 38273674 DOI: 10.1002/adhm.202302926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Indexed: 01/27/2024]
Abstract
The successful treatment of persistent and recurrent endodontic infections hinges upon the eradication of residual microorganisms within the root canal system, which urgently needs novel drugs to deliver potent yet gentle antimicrobial effects. Antibacterial photodynamic therapy (aPDT) is a promising tool for root canal infection management. Nevertheless, the hypoxic microenvironment within the root canal system significantly limits the efficacy of this treatment. Herein, a nanohybrid drug, Ce6/CaO2/ZIF-8@polyethylenimine (PEI), is developed using a bottom-up strategy to self-supply oxygen for enhanced aPDT. PEI provides a positively charged surface, which enables precise targeting of bacteria. CaO2 reacts with H2O to generate O2, which alleviates the hypoxia in the root canal and serves as a substrate for Ce6 under 660 nm laser irradiation, leading to the successful eradication of planktonic Enterococcus faecalis (E. faecalis) and biofilm in vitro and, moreover, the effective elimination of mature E. faecalis biofilm in situ within the root canal system. This smart design offers a viable alternative for mitigating hypoxia within the root canal system to overcome the restricted efficacy of photosensitizers, providing an exciting prospect for the clinical management of persistent endodontic infection.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Endodontics, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Hong Zhang
- Department of Endodontics, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Tiancong Zhao
- College of Chemistry and Materials, Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, P. R. China
| | - Yiyan Yu
- Department of Endodontics, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jiazhuo Song
- Department of Endodontics, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yuanhang Zhao
- Department of Endodontics, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Hamed Alshawwa
- Department of Endodontics, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xinying Zou
- Department of Endodontics, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Zhimin Zhang
- Department of Endodontics, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
8
|
Savelyeva IO, Zhdanova KA, Gradova MA, Gradov OV, Bragina NA. Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy. Curr Issues Mol Biol 2023; 45:9793-9822. [PMID: 38132458 PMCID: PMC10741785 DOI: 10.3390/cimb45120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass epidemics and global pandemics among humans. Every year, the emergence of three to four previously unknown species of viruses dangerous to humans is recorded, totaling more than 2/3 of all newly discovered human pathogens. The emergence of bacteria with multidrug resistance leads to the rapid obsolescence of antibiotics and the need to create new types of antibiotics. From this point of view, photodynamic inactivation of viruses and bacteria is of particular interest. This review summarizes the most relevant mechanisms of antiviral and antibacterial action of APDT, molecular targets and correlation between the structure of cationic porphyrins and their photodynamic activity.
Collapse
Affiliation(s)
- Inga O. Savelyeva
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Kseniya A. Zhdanova
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Margarita A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Natal’ya A. Bragina
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| |
Collapse
|
9
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
10
|
Shashin DM, Demina GR, Linge IA, Vostroknutova GN, Kaprelyants AS, Savitsky AP, Shleeva MO. The Effect of Antimicrobial Photodynamic Inactivation on the Protein Profile of Dormant Mycolicibacterium smegmatis Containing Endogenous Porphyrins. Int J Mol Sci 2023; 24:13968. [PMID: 37762271 PMCID: PMC10531400 DOI: 10.3390/ijms241813968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
During transition into a dormant state, Mycolicibacterium (Mycobacterium) smegmatis cells are able to accumulate free porphyrins that makes them sensitive to photodynamic inactivation (PDI). The formation of dormant cells in a liquid medium with an increased concentration of magnesium (up to 25 mM) and zinc (up to 62 µM) resulted in an increase in the total amount of endogenous porphyrins in dormant M. smegmatis cells and their photosensitivity, especially for bacteria phagocytosed by macrophages. To gain insight into possible targets for PDI in bacterial dormant mycobacterial cells, a proteomic profiling with SDS gel electrophoresis and mass spectrometry analysis were conducted. Illumination of dormant forms of M. smegmatis resulted in the disappearance of proteins in the separating SDS gel. Dormant cells obtained under an elevated concentration of metal ions were more sensitive to PDI. Differential analysis of proteins with their identification with MALDI-TOF revealed that 45.2% and 63.9% of individual proteins disappeared from the separating gel after illumination for 5 and 15 min, respectively. Light-sensitive proteins include enzymes belonging to the glycolytic pathway, TCA cycle, pentose phosphate pathway, oxidative phosphorylation and energy production. Several proteins involved in protecting against oxygen stress and protein aggregation were found to be sensitive to light. This makes dormant cells highly vulnerable to harmful factors during a long stay in a non-replicative state. PDI caused inhibition of the respiratory chain activity and destroyed enzymes involved in the synthesis of proteins and nucleic acids, the processes which are necessary for dormant cell reactivation and their transition to multiplying bacteria. Because of such multiple targeting, PDI action via endogenous porphyrins could be considered as an effective approach for killing dormant bacteria and a perspective to inactivate dormant mycobacteria and combat the latent form of mycobacteriosis, first of all, with surface localization.
Collapse
Affiliation(s)
- Denis M. Shashin
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Galina R. Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Irina A. Linge
- Central Institute for Tuberculosis, Moscow 107564, Russia;
| | - Galina N. Vostroknutova
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Arseny S. Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Alexander P. Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Margarita O. Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| |
Collapse
|
11
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
12
|
Mohammed A, Aabed K, Benabdelkamel H, Shami A, Alotaibi MO, Alanazi M, Alfadda AA, Rahman I. Proteomic Profiling Reveals Cytotoxic Mechanisms of Action and Adaptive Mechanisms of Resistance in Porphyromonas gingivalis: Treatment with Juglans regia and Melaleuca alternifolia. ACS OMEGA 2023; 8:12980-12991. [PMID: 37065043 PMCID: PMC10099446 DOI: 10.1021/acsomega.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The increasing trend in the rise of antibiotic-resistant bacteria pushes research to discover new efficacious antibacterial agents from natural and synthetic sources. Porphyromonas gingivalis is a well-known bacterium commonly known for causing periodontal disease, and it is associated with the pathogenesis of life-changing systemic conditions such as Alzheimer's. Proteomic research can be utilized to test new antibacterial drugs and understand the adaptive resistive mechanisms of bacteria; hence, it is important in the drug discovery process. The current study focuses on identifying the antibacterial effects of Juglans regia (JR) and Melaleuca alternifolia (MA) on P. gingivalis and uses proteomics to identify modes of action while exploring its adaptive mechanisms. JR and MA extracts were tested for antibacterial efficacy using the agar well diffusion assay. A proteomic study was conducted identifying upregulated and downregulated proteins compared to control by 2D-DIGE analysis, and proteins were identified using MADLI-TOF/MS. The bacterial inhibition for JR was 20.14 ± 0.2, and that for MA was 19.72 ± 0.5 mm. Out of 88 differentially expressed proteins, there were 17 common differentially expressed proteins: 10 were upregulated and 7 were downregulated in both treatments. Among the upregulated proteins were Arginine-tRNA ligase, ATP-dependent Clp protease proteolytic, and flavodoxins. In contrast, down-regulated proteins were ATP synthase subunit alpha and quinone, among others, which are known antibacterial targets. STRING analysis indicated a strong network of interactions between differentially expressed proteins, mainly involved in protein translation, post-translational modification, energy production, metabolic pathways, and protein repair and degradation. Both extracts were equi-efficacious at inhibiting P. gingivalis and displayed some overlapping proteomic profiles. However, the MR extract had a greater fold change in its profile than the JA extract. Downregulated proteins indicated similarity in the mode of action, and upregulated proteins appear to be related to adaptive mechanisms important in promoting repair, growth, survival, virulence, and resistance. Hence, both extracts may be useful in preventing P. gingivalis-associated conditions. Furthermore, our results may be helpful to researchers in identifying new antibiotics which may offset these mechanisms of resistance.
Collapse
Affiliation(s)
- Afrah
E. Mohammed
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kawther Aabed
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Ashwag Shami
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Modhi O. Alotaibi
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona Alanazi
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University,
P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Ishrat Rahman
- Department
of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
13
|
Bartolomeu M, Monteiro CJP, Fontes M, Neves MGPMS, Faustino MAF, Almeida A. Photodynamic inactivation of microorganisms in different water matrices: The effect of physicochemical parameters on the treatment outcome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160427. [PMID: 36435255 DOI: 10.1016/j.scitotenv.2022.160427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Wastewater (WW) insufficiently treated for the disinfection of microorganisms, including pathogenic ones, is a source of concern and a possible generator of public health problems. Traditional disinfection methods to reduce pathogens concentration (e.g., chlorination, ozonation, UV) are expensive, unsafe, and/or sometimes ineffective, highlighting the need for new disinfection technologies. The promising results of photodynamic inactivation (PDI) treatment to eradicate microorganisms suggest the efficacy of this treatment to improve WW quality. This work aimed to assess if PDI can be successfully extended to real contexts for the microbial inactivation in WW. For the first time, PDI experiments with 9 different water matrices compositions were performed to inquire about the influence of some of their physicochemical parameters on the effectiveness of microbial inactivation. Bacterial photoinactivation was tested in freshwater, aquaculture water, and seawater samples, as well as in influents and effluents samples from domestic, industrial, and a mixture of industrial and domestic WW receiving wastewater treatment plants (WWTPs). Additionally, PDI assays were performed in phosphate-buffered saline isotonic solution (PBS), used as an aqueous comparative matrix. To relate the PDI disinfection efficiency with the physicochemical compositions of the different used water matrices, a series of statistical analysis were performed, in order to support our main conclusions. Overall, the results showed that PDI is an effective and promising alternative to traditionally used WW disinfection methods, with a bacterial reduction of >3.0 log CFU/mL in all the water matrices within the first hour of PDI treatment, but also that the physicochemical composition of the aqueous matrices to be PDI-disinfected must be taken into account since they seem to influence the PDI efficacy, namely the pH, with acidic pH conditions seeming to be associated to a better PDI performance in general.
Collapse
Affiliation(s)
- Maria Bartolomeu
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos J P Monteiro
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Milton Fontes
- Águas do Centro Litoral (AdCL), 3030-410 Coimbra, Portugal.
| | | | | | - Adelaide Almeida
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Tang N, Yuan S, Luo Y, Wang AJ, Sun K, Liu NN, Tao K. Nanoparticle-Based Photodynamic Inhibition of Candida albicans Biofilms with Interfering Quorum Sensing. ACS OMEGA 2023; 8:4357-4368. [PMID: 36743058 PMCID: PMC9893753 DOI: 10.1021/acsomega.2c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Biofilm formation is a critical event in the pathogenesis and virulence of fungal infections caused by Candida albicans, giving rise to about a 1000-fold increase in the resistance to antifungal agents. Although photodynamic treatment (PDT) has been excellently implicated in bacterial infections, studies on its potential against fungal infection through the clearance of fungal biofilm formation remain at its infancy stage. Here, we have designed photodynamic nanoparticles with different sizes, modifications, and the ability of generating reactive oxygen species (ROS) to examine their effects on inhibiting biofilm formation and destructing mature biofilms of C. albicans. We found that the nanoparticles modified with oligo-chitosan exhibited a better binding efficiency for planktonic cells, leading to stronger inhibitory efficacy of the filamentation and the early-stage biofilm formation. However, for mature biofilms, the nanoparticles with the smallest size (∼15 nm) showed the fastest penetration speed and a pronounced destructing effect albeit conferring the lowest ROS-producing capability. The inhibitory effect of photodynamic nanoparticles was dependent on the disruption of fungal quorum sensing (QS) by the upregulation of QS molecules, farnesol and tyrosol, mediated through the upregulation of ARO 8 and DPP 3 expression. Our findings provide a powerful strategy of nanoparticulate PDT to combat fungal infections through the inhibition of both hyphal and biofilm formation by disrupting QS.
Collapse
Affiliation(s)
- Na Tang
- State
Key Lab of Metal Matrix Composites, School of Materials Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shenghao Yuan
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxuan Luo
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - An-Jun Wang
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kang Sun
- State
Key Lab of Metal Matrix Composites, School of Materials Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ning-Ning Liu
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ke Tao
- State
Key Lab of Metal Matrix Composites, School of Materials Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
15
|
Fabio GB, Martin BA, Dalmolin LF, Lopez RFV. Antimicrobial photodynamic therapy and the advances impacted by the association with nanoparticles. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Antimicrobial and Photoantimicrobial Activities of Chitosan/CNPPV Nanocomposites. Int J Mol Sci 2022; 23:ijms232012519. [DOI: 10.3390/ijms232012519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(p-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Chitosan’s structure was confirmed through FT-Raman spectroscopy. Bactericidal and photobactericidal activities of NCPs were tested under dark and blue-light irradiation conditions, respectively. Hydrodynamic size and aqueous stability were determined by DLS, zeta potential (ZP) and time-domain NMR. TEM micrographs of NCPs were obtained, and their capacity of generating reactive oxygen species (ROS) under blue illumination was also characterized. Meaningful variations on ZP and relaxation time T2 confirmed successful physical attachment of chitosan/CNPPV. All NCPs exhibited a similar and shrunken spherical shape according to TEM. A lower DA is responsible for driving higher bactericidal performance alongside the synergistic effect from CNPPV, lower nanosized distribution profile and higher positive charged surface. ROS production was proportionally found in NCPs with and without CNPPV by decreasing the DA, leading to a remarkable photobactericidal effect under blue-light irradiation. Overall, our findings indicate that chitosan/CNPPV NCPs may constitute a valuable asset for the development of innovative strategies for inactivation and/or photoinactivation of bacteria.
Collapse
|
17
|
Feng Y, Tonon CC, Hasan T. Dramatic destruction of methicillin-resistant Staphylococcus aureus infections with a simple combination of amoxicillin and light-activated methylene blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112563. [PMID: 36099788 DOI: 10.1016/j.jphotobiol.2022.112563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Staphylococcus aureus is and continues to be a leading cause of bacterial infections throughout the world. Given the global dissemination of multi-drug resistant (MDR) S. aureus, particularly methicillin-resistant S. aureus (MRSA), novel solutions against S. aureus infections are urgently needed. In our study on the interactions between commonly used photosensitizers and antibiotics in the clinic, we discovered that MRSA can be dramatically destroyed by a simple combination of amoxicillin and light-activated methylene blue (MB). METHODS To guide the clinical application of this combination therapy, we quantitatively assessed the interaction between light-activated MB and amoxicillin against S. aureus and its treatment order, dosage, and time length dependence. Furthermore, we evaluated the efficacy of this combination therapy in treating and halting the progression of MRSA infections with the catheter biofilm infection model and the pig skin burn infection model. In the end, we disclosed the antimicrobial mechanisms of this combination therapy to further facilitate its clinical translation. RESULTS Amoxicillin and light-activated MB can mutually boost each other's uptake in S. aureus, producing up to 8 logs of reduction of MRSA infections when they are co-administrated. Such an anti-S. aureus synergy could be triggered with the currently used MB and amoxicillin clinical administration regimens. It is effective against S. aureus pathogens regardless of their antibiotic resistance backgrounds and does not create significant bacterial resistance with five days of continuous applications. It can lead to more than 99% of reduction of S. aureus infections established not only on the medical devices but also on the body surfaces. CONCLUSIONS Possessing a fusion of effectiveness, safety, sustainability, and broad applicability, this simple combination of light-activated MB and amoxicillin can ultimately reform our treatment against MDR S. aureus pathogens including MRSA, significantly alleviating the health and economic burden of S. aureus infections across the world.
Collapse
Affiliation(s)
- Yanfang Feng
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tayyaba Hasan
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
18
|
Combination of photodynamic antimicrobial chemotherapy and ciprofloxacin to combat S. aureus and E. coli resistant biofilms. Photodiagnosis Photodyn Ther 2022; 42:103142. [PMID: 36191747 DOI: 10.1016/j.pdpdt.2022.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
Photodynamic antimicrobial chemotherapy (PACT) coupled with an antibiotic, ciprofloxacin (CIP), was investigated using two indium metallated cationic photosensitizers, a porphyrin (1) and a phthalocyanine (2). Applying PACT followed by the antibiotic treatment led to a remarkable reduction in the biofilm cell survival of two antibiotic-resistant bacterial strains, S. aureus (Gram-positive) and E. coli (Gram-nenative). Treating both bacteria strains with PACT alone showed no significant activity at 32 µM with 15 min irradiation, while CIP alone exhibited a minimum biofilm inhibition concentration (MBIC) at 4 and 8 µg/mL on S. aureus and E. coli, respectively following 24 h incubation. The combined treatment resulted in the complete eradication of the matured biofilms with high log10 reduction values of 7.05 and 7.20 on S. aureus and E. coli, respectively, at low concentrations. It was found that 15 min PACT irradiation of 8 µM of complexes (1 and 2) combined with 2 µg/mL of CIP have a 100% reduction of the resistant S. aureus biofilms. Whereas the total killing of E. coli was obtained when combining 8 µM of complex 1 and 16 µM of complex 2 both combined with 4 µg/mL of CIP.
Collapse
|
19
|
de Oliveira Silva JV, Meneguello JE, Formagio MD, de Freitas CF, Hioka N, Pilau EJ, Marchiosi R, Machinski Junior M, de Abreu Filho BA, Zanetti Campanerut-Sá PA, Graton Mikcha JM. Proteomic Investigation over the Antimicrobial Photodynamic Therapy Mediated by Rose Bengal Against Staphylococcus aureus. Photochem Photobiol 2022; 99:957-966. [PMID: 36054748 DOI: 10.1111/php.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022]
Abstract
In order, to understand the antimicrobial action of photodynamic therapy and how this technique can contribute to its application in the control of pathogens. The objective of the study was to employ a proteomic approach to investigate the protein profile of S. aureus after antimicrobial photodynamic therapy mediated by rose bengal (RB-aPDT). S. aureus was treated with RB (10 nmol/l) and illuminated with green LED (0.17 J/cm2 ) for cell viability evaluation. Afterward, proteomic analysis was employed for protein identification and bioinformatic tools to classify the differentially expressed proteins. The reduction of S. aureus after photoinactivation was ~2.5 log CFU/ml. A total of 12 proteins (four up-regulated and eight down-regulated), correspond exclusively to alteration by RB-aPDT. Functionally these proteins are distributed in protein binding, structural constituent of ribosome, proton transmembrane transporter activity, and ATPase activity. The effects of photodamage include alterations of levels of several proteins resulting in an activated stress response, altered membrane potential, and effects on energy metabolism. These 12 proteins required the presence of both light and RB suggesting a unique response to photodynamic effects. The information about this technique contributes valuable insights into bacterial mechanisms and the mode of action of photodynamic therapy.
Collapse
Affiliation(s)
| | - Jean Eduardo Meneguello
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Maíra Dante Formagio
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Camila Fabiano de Freitas
- Department of Chemistry, State University of Maringá, Paraná, Brazil.,Departament of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Paraná, Brazil
| | | | | | | | | |
Collapse
|
20
|
Yin R, Cheng J, Wang J, Li P, Lin J. Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Front Microbiol 2022; 13:955286. [PMID: 36090087 PMCID: PMC9459144 DOI: 10.3389/fmicb.2022.955286] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is one of the major pathogens implicated in human opportunistic infection and a common cause of clinically persistent infections such as cystic fibrosis, urinary tract infections, and burn infections. The main reason for the persistence of P. aeruginosa infections is due to the ability of P. aeruginosa to secrete extracellular polymeric substances such as exopolysaccharides, matrix proteins, and extracellular DNA during invasion. These substances adhere to and wrap around bacterial cells to form a biofilm. Biofilm formation leads to multiple antibiotic resistance in P. aeruginosa, posing a significant challenge to conventional single antibiotic therapeutic approaches. It has therefore become particularly important to develop anti-biofilm drugs. In recent years, a number of new alternative drugs have been developed to treat P. aeruginosa infectious biofilms, including antimicrobial peptides, quorum-sensing inhibitors, bacteriophage therapy, and antimicrobial photodynamic therapy. This article briefly introduces the process and regulation of P. aeruginosa biofilm formation and reviews several developed anti-biofilm treatment technologies to provide new directions for the treatment of P. aeruginosa biofilm infection.
Collapse
|
21
|
Awad M, Barnes TJ, Joyce P, Thomas N, Prestidge CA. Liquid crystalline lipid nanoparticle promotes the photodynamic activity of gallium protoporphyrin against S. aureus biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112474. [PMID: 35644068 DOI: 10.1016/j.jphotobiol.2022.112474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as an innovative strategy to combat antibiotic resistant microbes; yet aPDT efficacies against biofilms are sub-optimal due to inability of photosenstizers to reach microbes embedded in biofilm matrix. To overcome this challenge, liquid crystal lipid nanoparticles (LCNP) were employed in this study as a smart, biocompatible and triggerable delivery system for the new photosensitizer gallium protoporphyrin (GaPP), due to their capabilities in promoting efficient antimicrobial delivery to biofilms. The relationship between GaPP loading of LCNP, reactive oxygen species (ROS) production and the in vitro antibacterial activity against two antibiotic resistant Staphylococcus aureus strains was established. LCNP substantially improved the antibacterial activity of GaPP, completely eradicating S. aureus and MRSA planktonic cultures, using a GaPP concentration of 0.8 μM and light dose 1.9 J/cm2. At the same concentration and light dose, unformulated GaPP triggered only a 4 log10 and 2 log10 reduction in respective planktonic cultures. Most importantly, the activity of GaPP against biofilms was enhanced by 2-fold compared to unformulated GaPP, reducing the viability of S. aureus and MRSA biofilms by 8 log10 and 5 log10, respectively. The biosafety of photoactivated GaPP-LCNP was evaluated against human fibroblasts, which indicated a high safety profile of the treatment. Therefore, these findings encourage further investigations of GaPP-LCNP as a potential treatment for localized chronic infections.
Collapse
Affiliation(s)
- Muhammed Awad
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Timothy J Barnes
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
22
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Yu Y, Zhao Y, He Y, Pang J, Yang Z, Zheng M, Yin R. Inhibition of efflux pump encoding genes and biofilm formation by sub-lethal photodynamic therapy in methicillin susceptible and resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2022; 39:102900. [PMID: 35525433 DOI: 10.1016/j.pdpdt.2022.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective method to inactivate microorganisms based on reactive oxygen species (ROS) generated by photosensitizer and light at certain wavelength. Exposure to sub-lethal dose of PDT (sPDT) could activate the regulatory systems in the surviving bacteria in response to oxidative stress. This study aimed to evaluate the effect of sPDT on efflux pump and biofilm formation in Staphylococcus aureus (S. aureus), which are two important virulence related factors. METHODS Different light irradiation time and toluidine blue O (TBO) concentrations were tested to select a sPDT in methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA). Efflux function was evaluated with EtBr efflux experiment. Biofilm formation was evaluated by crystal violet staining. Gene expressions of norA, norB, sepA, mepA and mdeA following sPDT were analyzed with real-time PCR. RESULTS Sub-lethal PDT was set at 40 J/cm2 associated with 0.5 μM TBO. Efflux function was significantly inhibited in both strains. The average expression levels of mdeA and mepA in MSSA and MRSA were increased by (3.09, 1.77, 1.57) and (3,44, 1.59, 6.29) fold change respectively, norB and sepA were decreased by (3.77, 6.14) and (3.02, 3.47) fold change respectively. Expression level of norA was decreased by 5.44-fold change in MSSA but increased by 2.80-fold change in MRSA. Biofilm formation in both strains was impeded. CONCLUSIONS TBO-mediated sPDT could inhibit efflux pump function, alter efflux pump encoding gene expression levels and retard biofilm formation in MSSA and MRSA. Therefore, sPDT is proposed as a potential adjuvant therapy for infections.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Yan Zhao
- Department of Microbiology,Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Yaxiong He
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Jiayin Pang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| |
Collapse
|
24
|
Wang Y, Xu Y, Guo X, Wang L, Zeng J, Qiu H, Tan Y, Chen D, Zhao H, Gu Y. Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation. Adv Drug Deliv Rev 2022; 183:114168. [PMID: 35189265 DOI: 10.1016/j.addr.2022.114168] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
The rapid increase of antibiotic resistance in pathogenic microorganisms has become one of the most severe threats to human health. Antimicrobial photodynamic therapy (aPDT), a light-based regimen, has offered a compelling nonpharmacological alternative to conventional antibiotics. The activity of aPDT is based on cytotoxic effect of reactive oxygen species (ROS), which are generated through the photosensitized reaction between photon, oxygen and photosensitizer. However, limited by the penetration of light and photosensitizers in human tissues and/or the infiltration of oxygen and photosensitizers in biofilms, the eradication of deeply located or biofilm-associated infections by aPDT remains challenging. Ultrasound irradiation bears a deeper penetration in human tissues than light and, sequentially, can promote drug delivery through cavitation effect. As such, the combination of ultrasound and aPDT represents a potent antimicrobial strategy. In this review, we summarized the recent progresses in the area of the combination therapy using ultrasound and aPDT, and discussed the potential mechanisms underlying enhanced antimicrobial effect by this combination therapy. The future research directions are also highlighted.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yixuan Xu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xianghuan Guo
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Lei Wang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Zeng
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yizhou Tan
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Defu Chen
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Hongyou Zhao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Gu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; Precision Laser Medical Diagnosis and Treatment Innovation Unit, Chinese Academy of Medical Sciences, Beijing 100000, China.
| |
Collapse
|
25
|
Lebedeva NS, Koifman OI. Supramolecular Systems Based on Macrocyclic Compounds with Proteins: Application Prospects. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
28
|
Farah N, Chin VK, Chong PP, Lim WF, Lim CW, Basir R, Chang SK, Lee TY. Riboflavin as a promising antimicrobial agent? A multi-perspective review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100111. [PMID: 35199072 PMCID: PMC8848291 DOI: 10.1016/j.crmicr.2022.100111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Riboflavin demonstrates antioxidant and photosensitizing properties. Riboflavin is able to induce ROS and modulate immune response. Riboflavin possesses potent antimicrobial activity when used alone or combined with other anti-infectives. The riboflavin biosynthesis pathway serves as an ideal drug target against microbes. UVA combination with riboflavin exhibits remarkable antimicrobial effects.
Riboflavin, or more commonly known as vitamin B2, forms part of the component of vitamin B complex. Riboflavin consisting of two important cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are involved in multiple oxidative-reduction processes and energy metabolism. Besides maintaining human health, different sources reported that riboflavin can inhibit or inactivate the growth of different pathogens including bacteria, viruses, fungi and parasites, highlighting the possible role of riboflavin as an antimicrobial agent. Moreover, riboflavin and flavins could produce reactive oxygen species (ROS) when exposed to light, inducing oxidative damage in cells and tissues, and thus are excellent natural photosensitizers. Several studies have illustrated the therapeutic efficacy of photoactivated riboflavin against nosocomial infections and multidrug resistant bacterial infections as well as microbial associated biofilm infections, revealing the potential role of riboflavin as a promising antimicrobial candidate, which could serve as one of the alternatives in fighting the global crisis of the emergence of antimicrobial resistance seen in different pathogenic microbes. Riboflavin could also be involved in modulating host immune responses, which might increase the pathogen clearance from host cells and increase host defense against microbial infections. Thus, the dual effects of riboflavin on both pathogens and host immunity, reflected by its potent bactericidal effect and alleviation of inflammation in host cells further imply that riboflavin could be a potential candidate for therapeutic intervention in resolving microbial infections. Hence, this review aimed to provide some insights on the promising role of riboflavin as an antimicrobial candidate and also a host immune-modulator from a multi-perspective view as well as to discuss the application and challenges on using riboflavin in photodynamic therapy against various pathogens and microbial biofilm-associated infections.
Collapse
Affiliation(s)
- Nuratiqah Farah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Wai Feng Lim
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Sui Kiat Chang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture. South China Botanical Garden, Chinese Academy of Sciences. Guangzhou, 510650 China
| | - Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia
- Corresponding author.
| |
Collapse
|
29
|
Enhancement of photodynamic bactericidal activity of curcumin against Pseudomonas Aeruginosa using polymyxin B. Photodiagnosis Photodyn Ther 2021; 37:102677. [PMID: 34890782 DOI: 10.1016/j.pdpdt.2021.102677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa) is an emerging opportunistic pathogen, which can cause bacterial skin diseases such as green nail syndrome, interdigital infections and folliculitis. Curcumin-mediated antimicrobial photodynamic therapy (aPDT) has been demonstrated as a promising therapeutic option for the treatment of skin infection though its inactivation of gram-negative bacteria such as P. aeruginosa. MATERIALS AND METHODS In the present study, we examined the adjuvant effect of polymyxin B on the antibacterial activity of curcumin-mediated aPDT against P. aeruginosa. P. aeruginosa was treated with curcumin in the presence of 0.1-0.5 mg/L polymyxin B and irradiated by blue LED light (10 J/cm2). Bacterial cultures treated with curcumin alone served as controls. Colony forming units (CFU) were counted and the viability of P. aeruginosa was calculated after aPDT treatment. The possible underlying mechanisms for the enhanced killing effects were also explored. RESULTS The killing effects of curcumin-mediated aPDT against P. aeruginosa was significantly enhanced by polymyxin B (over 2-log reductions). Moreover, it was also observed that addition of polymyxin B in the curcumin-mediated aPDT led to the apparent bacterial membrane damage with increased leakage of cytoplasmic contents and extensive DNA and protein degradation. DISCUSSION The photodynamic action of curcumin against P. aeruginosa could be significantly enhanced by the FDA-approved drug polymyxin B. Our results highlight the potential of introducing polymyxin B to enhance the effects of aPDT treatment against gram-negative skin infections, in particular, P. aeruginosa.
Collapse
|
30
|
Nanostructures as Targeted Therapeutics for Combating Oral Bacterial Diseases. Biomedicines 2021; 9:biomedicines9101435. [PMID: 34680553 PMCID: PMC8533418 DOI: 10.3390/biomedicines9101435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Pathogenic oral biofilms are now recognized as a key virulence factor in many microorganisms that cause the heavy burden of oral infectious diseases. Recently, new investigations in the nanotechnology field have propelled the development of novel biomaterials and approaches to control bacterial biofilms, either independently or in combination with other substances such as drugs, bioactive molecules, and photosensitizers used in antimicrobial photodynamic therapy (aPDT) to target different cells. Moreover, nanoparticles (NPs) showed some interesting capacity to reverse microbial dysbiosis, which is a major problem in oral biofilm formation. This review provides a perspective on oral bacterial biofilms targeted with NP-mediated treatment approaches. The first section aims to investigate the effect of NPs targeting oral bacterial biofilms. The second part of this review focuses on the application of NPs in aPDT and drug delivery systems.
Collapse
|
31
|
Zhou Y, Deng W, Mo M, Luo D, Liu H, Jiang Y, Chen W, Xu C. Stimuli-Responsive Nanoplatform-Assisted Photodynamic Therapy Against Bacterial Infections. Front Med (Lausanne) 2021; 8:729300. [PMID: 34604266 PMCID: PMC8482315 DOI: 10.3389/fmed.2021.729300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial infections are common diseases causing tremendous deaths in clinical settings. It has been a big challenge to human beings because of the antibiotics abuse and the newly emerging microbes. Photodynamic therapy (PDT) is a reactive oxygen species-based therapeutic technique through light-activated photosensitizer (PS). Recent studies have highlighted the potential of PDT as an alternative method of antibacterial treatment for its broad applicability and high efficiency. However, there are some shortcomings due to the low selectivity and specificity of PS. Growing evidence has shown that drug delivery nanoplatforms have unique advantages in enhancing therapeutic efficacy of drugs. Particularly, stimuli-responsive nanoplatforms, as a promising delivery system, provide great opportunities for the effective delivery of PS. In the present mini-review, we briefly introduced the unique microenvironment in bacterial infection tissues and the application of PDT on bacterial infections. Then we review the stimuli-responsive nanoplatforms (including pH-, enzymes-, redox-, magnetic-, and electric-) used in PDT against bacterial infections. Lastly, some perspectives have also been proposed to further promote the future developments of antibacterial PDT.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenmin Deng
- Department of Clinical Pharmacy, The People's Hospital of Dianbai District, Maoming, China
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou, China.,Sydney Vital Translational Cancer Research Centre, Sydney, NSW, Australia
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Feng Y, Coradi Tonon C, Ashraf S, Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Adv Drug Deliv Rev 2021; 177:113941. [PMID: 34419503 DOI: 10.1016/j.addr.2021.113941] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment, the mainstay for the control of bacterial infections, is greatly hampered by the global prevalence of multidrug-resistant (MDR) bacteria. Photodynamic therapy (PDT) is effective against MDR infections, but PDT-induced bacterial inactivation is often incomplete, causing the relapse of infections. Combination of PDT and antibiotics is a promising strategy to overcome the limitation of both antibiotic treatment and PDT, exerting increased disinfection efficacy on MDR bacterial pathogens versus either of the monotherapies alone. In this review, we present an overview of the therapeutic effects of PDT/antibiotic combinations that have been developed. We further summarize the influencing factors and the governing molecular mechanisms of the therapeutic outcomes of PDT/antibiotic combinations. In the end, we provide concluding remarks on the strengths, limitations, and future research directions of PDT/antibiotic combination therapy to guide its appropriate usage and further development.
Collapse
Affiliation(s)
- Yanfang Feng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Health Sciences and Technology (Harvard-MIT), Cambridge, MA, USA.
| |
Collapse
|
33
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|
34
|
Martins Antunes de Melo WDC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021; 12:2247-2272. [PMID: 34496717 PMCID: PMC8437467 DOI: 10.1080/21505594.2021.1960105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, microbial biofilms have been the cause of a wide variety of infections in the human body, reaching 80% of all bacterial and fungal infections. The biofilms present specific properties that increase the resistance to antimicrobial treatments. Thus, the development of new approaches is urgent, and antimicrobial photodynamic therapy (aPDT) has been shown as a promising candidate. aPDT involves a synergic association of a photosensitizer (PS), molecular oxygen and visible light, producing highly reactive oxygen species (ROS) that cause the oxidation of several cellular components. This therapy attacks many components of the biofilm, including proteins, lipids, and nucleic acids present within the biofilm matrix; causing inhibition even in the cells that are inside the extracellular polymeric substance (EPS). Recent advances in designing new PSs to increase the production of ROS and the combination of aPDT with other therapies, especially pulsed electric fields (PEF), have contributed to enhanced biofilm inhibition. The PEF has proven to have antimicrobial effect once it is known that extensive chemical reactions occur when electric fields are applied. This type of treatment kills microorganisms not only due to membrane rupture but also due to the formation of reactive compounds including free oxygen, hydrogen, hydroxyl and hydroperoxyl radicals. So, this review aims to show the progress of aPDT and PEF against the biofilms, suggesting that the association of both methods can potentiate their effects and overcome biofilm infections.
Collapse
Affiliation(s)
- Wanessa de Cassia Martins Antunes de Melo
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Raimonda Celiešiūtė-Germanienė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
35
|
Vera C, Tulli F, Borsarelli CD. Photosensitization With Supramolecular Arrays for Enhanced Antimicrobial Photodynamic Treatments. Front Bioeng Biotechnol 2021; 9:655370. [PMID: 34307317 PMCID: PMC8293899 DOI: 10.3389/fbioe.2021.655370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial infections represent a silent threat to health that has worsened in recent decades due to microbial resistance to multiple drugs, preventing the fight against infectious diseases. Therefore, the current postantibiotic era forces the search for new microbial control strategies. In this regard, antimicrobial photodynamic therapy (aPDT) using supramolecular arrays with photosensitizing capabilities showed successful emerging applications. This exciting field makes it possible to combine applied aspects of molecular photochemistry and supramolecular chemistry, together with the development of nano- and biomaterials for the design of multifunctional or "smart" supramolecular photosensitizers (SPS). This minireview aims to collect the concepts of the photosensitization process and supramolecular chemistry applied to the development of efficient applications of aPDT, with a brief discussion of the most recent literature in the field.
Collapse
Affiliation(s)
| | | | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET – Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| |
Collapse
|
36
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
37
|
Pérez C, Zúñiga T, Palavecino CE. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn Ther 2021; 34:102285. [PMID: 33836278 DOI: 10.1016/j.pdpdt.2021.102285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Staphylococcus aureus is a Gram-positive spherical bacterium that commonly causes various infections which can range from superficial to life-threatening. Hospital strains of S. aureus are often resistant to antibiotics, which has made their treatment difficult in recent decades. Other therapeutic alternatives have been postulated to overcome the drawbacks of antibiotic multi-resistance. Of these, photodynamic therapy (PDT) is a promising approach to address the notable shortage of new active antibiotics against multidrug-resistant S. aureus. PDT combines the use of a photosensitizer agent, light, and oxygen to eradicate pathogenic microorganisms. Through a systematic analysis of published results, this work aims to verify the usefulness of applying PDT in treating multidrug-resistant S.aureus infections. METHODS This review was based on a bibliographic search in various databases and the analysis of relevant publications. RESULTS There is currently a large body of evidence demonstrating the efficacy of photodynamic therapy in eliminating S.aureus strains. Both biofilm-producing strains, as well as multidrug-resistant strains. CONCLUSION We conclude that there is sufficient scientific evidence that PDT is a useful adjunct to traditional antibiotic therapy for treating S. aureus infections. Clinical application through appropriate trials should be introduced to further define optimal treatment protocols, safety and efficay.
Collapse
Affiliation(s)
- Camila Pérez
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Tania Zúñiga
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile.
| |
Collapse
|
38
|
Snell SB, Gill AL, Haidaris CG, Foster TH, Baran TM, Gill SR. Staphylococcus aureus Tolerance and Genomic Response to Photodynamic Inactivation. mSphere 2021; 6:e00762-20. [PMID: 33408223 PMCID: PMC7845598 DOI: 10.1128/msphere.00762-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen with a clinical spectrum ranging from asymptomatic skin colonization to invasive infections. While traditional antibiotic therapies can be effective against S. aureus, the increasing prevalence of antibiotic-resistant strains results in treatment failures and high mortality rates. Photodynamic inactivation (PDI) is an innovative and promising alternative to antibiotics. While progress has been made in our understanding of the bacterial response to PDI, major gaps remain in our knowledge of PDI tolerance, the global cellular response, and adaptive genomic mutations acquired as a result of PDI. To address these gaps, S. aureus HG003 and isogenic mutants with mutations in agr, mutS, mutL, and mutY exposed to single or multiple doses of PDI were assessed for survival and tolerance and examined by global transcriptome and genome analyses to identify regulatory and genetic adaptations that contribute to tolerance. Pathways in inorganic ion transport, oxidative response, DNA replication recombination and repair, and cell wall and membrane biogenesis were identified in a global cellular response to PDI. Tolerance to PDI was associated with superoxide dismutase and the S. aureus global methylhydroquinone (MHQ)-quinone transcriptome network. Genome analysis of PDI-tolerant HG003 identified a nonsynonymous mutation in the quinone binding domain of the transcriptional repressor QsrR, which mediates quinone sensing and oxidant response. Acquisition of a heritable QsrR mutation through repeated PDI treatment demonstrates selective adaption of S. aureus to PDI. PDI tolerance of a qsrR gene deletion in HG003 confirmed that QsrR regulates the S. aureus response to PDI.IMPORTANCEStaphylococcus aureus can cause disease at most body sites, with illness ranging from asymptomatic infection to death. The increasing prevalence of antibiotic-resistant strains results in treatment failures and high mortality rates. S. aureus acquires resistance to antibiotics through multiple mechanisms, often by genetic variation that alters antimicrobial targets. Photodynamic inactivation (PDI), which employs a combination of a nontoxic dye and low-intensity visible light, is a promising alternative to antibiotics that effectively eradicates S. aureus in human infections when antibiotics are no longer effective. In this study, we demonstrate that repeated exposure to PDI results in resistance of S. aureus to further PDI treatment and identify the underlying bacterial mechanisms that contribute to resistance. This work supports further analysis of these mechanisms and refinement of this novel technology as an adjunctive treatment for S. aureus infections.
Collapse
Affiliation(s)
- Sara B Snell
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Constantine G Haidaris
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas H Foster
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Timothy M Baran
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
39
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
40
|
Zhou S, Feng G, Wang S, Qi G, Wu M, Liu B. Fast and High-Throughput Evaluation of Photodynamic Effect by Monitoring Specific Protein Oxidation with MALDI-TOF Mass Spectrometry. Anal Chem 2020; 92:12176-12184. [PMID: 32786497 DOI: 10.1021/acs.analchem.0c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In antibacterial practices by photodynamic treatment, bacteria are incubated with photosensitizers and then oxidized to death by generating reactive oxygen species (ROS) under light irradiation. Generally, Luria-Bertani (LB) agar colony is a conventional method to evaluate the photodynamic effect. However, this method is time consuming, easily disturbed by pollutants, and limited to the analysis of a pure bacteria sample. Herein, we introduce a novel method of photodynamic effect evaluation through in situ detection of specific protein oxidation by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) with only 1 μL of sample in a fast (less than 1 min per sample) and high-throughput (up to 384 samples per run) way. The oxidation rates of specific proteins stayed highly consistent with bactericidal rates and thus MALDI-TOF MS might be able to replace the LB agar colony to evaluate the photodynamic effect. With the present method, several experimental conditions including different photosensitizer types, dosage controls, and different illumination times were easily screened to optimize photodynamic effect. Photodynamic effects of various bacteria species, cancer cells, and even mixture samples were also evaluated. The results demonstrate the promising application of MALDI-TOF MS in evaluating the photodynamic effect of each component in a mixture sample without any separation or purification, which could not be achieved by the traditional LB agar colony method.
Collapse
Affiliation(s)
- Shiwei Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Shaowei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
41
|
Dharmaratne P, Sapugahawatte DN, Wang B, Chan CL, Lau KM, Lau CB, Fung KP, Ng DK, Ip M. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem 2020; 200:112341. [PMID: 32505848 DOI: 10.1016/j.ejmech.2020.112341] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | | | - Baiyan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | - Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kit-Man Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Clara Bs Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kwok Pui Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; CUHK-Zhejiang University Joint Laboratory on Natural Products and Toxicology Research, China.
| | - Dennis Kp Ng
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
42
|
Kossakowska-Zwierucho M, Szewczyk G, Sarna T, Nakonieczna J. Farnesol potentiates photodynamic inactivation of Staphylococcus aureus with the use of red light-activated porphyrin TMPyP. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111863. [PMID: 32224392 DOI: 10.1016/j.jphotobiol.2020.111863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Photodynamic inactivation (PDI) or antibacterial photodynamic therapy (aPDT) is a method based on the use of a photosensitizer, light of a proper wavelength and oxygen, which combined together leads to an oxidative stress and killing of target cells. PDI can be applied towards various pathogenic bacteria independently on their antibiotic resistance profile. Optimization of photodynamic treatment to eradicate the widest range of human pathogens remains challenging despite the availability of numerous photosensitizing compounds. Therefore, a search for molecules that could act as adjuvants potentiating antibacterial photoinactivation is of high scientific and clinical importance. Here we propose farnesol (FRN), a well described sesquiterpene, as a potent adjuvant of PDI, which specifically sensitizes Staphylococcus aureus to 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetratosylate (TMPyP) upon red light irradiation. Interestingly, the observed potentiation strongly depends on the presence of light. Analysis of this combined action of FRN and TMPyP, however, showed no influence of farnesol on TMPyP photochemical properties, i.e. the amount of reactive oxygen species that were produced by TMPyP in the presence of FRN. The accumulation rate of TMPyP in Staphylococcus aureus cells did not change, as well as the influence of staphyloxanthin inhibition. The precise mechanism of observed sensitization is unclear and probably involves specific molecular targets.
Collapse
Affiliation(s)
- Monika Kossakowska-Zwierucho
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
43
|
Alves FCB, Albano M, Andrade BFMT, Chechi JL, Pereira AFM, Furlanetto A, Rall VLM, Fernandes AAH, dos Santos LD, Barbosa LN, Fernandes Junior A. Comparative Proteomics of Methicillin-Resistant Staphylococcus aureus Subjected to Synergistic Effects of the Lantibiotic Nisin and Oxacillin. Microb Drug Resist 2020; 26:179-189. [DOI: 10.1089/mdr.2019.0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fernanda Cristina Bergamo Alves
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Mariana Albano
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Jéssica Luana Chechi
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Flávia Marques Pereira
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Alessandra Furlanetto
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Vera Lúcia Mores Rall
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucilene Delazari dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Center for the Study of Venom and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lidiane Nunes Barbosa
- Graduate Program in Animal Sciences with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama, Brazil
| | - Ary Fernandes Junior
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
- Electronic Microscopy Center, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
44
|
Zhou K, Tian R, Li G, Qiu X, Xu L, Guo M, Chigan D, Zhang Y, Chen X, He G. Cationic Chalcogenoviologen Derivatives for Photodynamic Antimicrobial Therapy and Skin Regeneration. Chemistry 2019; 25:13472-13478. [DOI: 10.1002/chem.201903278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Kun Zhou
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ran Tian
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Guoping Li
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xinyu Qiu
- Center for Tissue Engineering, School of StomatologyFourth Military Medical University Xi'an Shaanxi Province 710032 China
| | - Letian Xu
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Mengying Guo
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Dongdong Chigan
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Yanfeng Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xin Chen
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Gang He
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
45
|
Hendiani S, Rybtke ML, Tolker-Nielsen T, Kashef N. Sub-lethal antimicrobial photodynamic inactivation affects Pseudomonas aeruginosa PAO1 quorum sensing and cyclic di-GMP regulatory systems. Photodiagnosis Photodyn Ther 2019; 27:467-473. [PMID: 31362113 DOI: 10.1016/j.pdpdt.2019.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Antimicrobial photodynamic inactivation (APDI) is a new therapeutic modality which needs more precision during application due to the possibility of exposure of bacteria to sub-lethal doses (sAPDI). In this study, we aimed to evaluate the effect of sAPDI on Pseudomonas aeruginosa quorum sensing (QS) and c-di-GMP signaling which are important virulence factor regulatory systems. METHODS Biofilm formation, pyoverdine, pyocyanin and protease production of P. aeruginosa was evaluated before and after a single sAPDI treatment with 0.8 mM methylene blue (MB) plus 1, 2, and 5-min irradiation with red laser light. Fluorescent lasB, rhlA, pqsA, and cdrA reporters of P. aeruginosa PAO1 and P. aeruginosa ΔmexAB-oprM were treated individually with sAPDI and the regulatory signals were detected. The gene expressions were also assessed after sAPDI using quantitative real-time PCR analysis. RESULTS Morphological observations and molecular assessments indicated that sAPDI with 0.8 mM MB along with 2- and 5-min irradiation led to an increase in the expression of the Las QS system and c-di-GMP signaling, while 1 min irradiation revealed dissimilar results (increase in lasB expression and decrease in c-di-GMP levels). Expression of rhlA and pqsA did not change in response to sAPDI. Further, a severe lethal effect of sAPDI was observed in P. aeruginosa ΔmexAB-oprM as compared with the wild type strain, whilst there was no difference in QS and c-di-GMP levels as detected by reporters between treated and untreated samples. CONCLUSION The results suggest that sAPDI affects QS and c-di-GMP signaling inP. aeruginosa in a time-dependent manner.
Collapse
Affiliation(s)
- Saghar Hendiani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Morten Levin Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nasim Kashef
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
46
|
Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur J Med Chem 2019; 175:72-106. [PMID: 31096157 DOI: 10.1016/j.ejmech.2019.04.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/27/2018] [Accepted: 04/19/2019] [Indexed: 12/28/2022]
Abstract
The multi-drug resistant bacteria have become a serious problem complicating therapies to such a degree that often the term "post-antibiotic era" is applied to describe the situation. The infections with methicillin-resistant S. aureus, vancomycin-resistant E. faecium, third generation cephalosporin-resistant E. coli, third generation cephalosporin-resistant K. pneumoniae and carbapenem-resistant P. aeruginosa have become commonplace. Thus, the new strategies of infection treatment have been searched for, and one of the approaches is based on photodynamic antimicrobial chemotherapy. Photodynamic protocols require the interaction of photosensitizer, molecular oxygen and light. The aim of this review is to provide a comprehensive overview of photodynamic antimicrobial chemotherapy by porphyrinoid photosensitizers. In the first part of the review information on the mechanism of photodynamic action and the mechanism of the bacteria resistance to the photodynamic technique were described. In the second one, it was described porphyrinoids photosensitizers like: porphyrins, chlorins and phthalocyanines useable in photodynamic bacteria inactivation.
Collapse
|
47
|
Boluki E, Moradi M, Azar PS, Fekrazad R, Pourhajibagher M, Bahador A. The effect of antimicrobial photodynamic therapy against virulence genes expression in colistin-resistance Acinetobacter baumannii. Laser Ther 2019; 28:27-33. [PMID: 31190695 DOI: 10.5978/islsm.28_19-or-03] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/31/2018] [Indexed: 11/06/2022]
Abstract
Background and Aims The emergence of drug-resistant infections is a global problem. Acinetobacter baumannii has attracted much attention over the last few years because of resistance to a wide range of antibiotics. Applying new non-antibiotic methods can save lives of many people around the world. Antimicrobial photodynamic therapy (aPDT) technique can be used as a new method for controlling the infections. In this study we investigated the effect of aPDT on the expression of pathogenic genes in colistin-resistance A. baumannii isolated from a burn patient. Materials and methods The suspension of colistin-resistance A. baumannii was incubated with 0.01 mg/ml of toluidine blue O (TBO) in the dark; then the light emitting diode device with a wavelength of 630 ± 10 nm and output intensity of 2000-4000 mW /cm2 was irradiated to the suspension at room temperature. Subsequently, after the aPDT, genes expression of ompA and pilZ was investigated by using real-time polymerase chain reaction technique. Result Among the genes studied, the transcript of the ompA gene after aPDT was increased significantly in comparison with control groups (P < 0.05). Whereas, there was no remarkable different in pilZ gene expression (P > 0.05). Conclusions It can be concluded from the results that the ompA as an outer membrane of A. baumannii is degraded after exposing aPDT and it will probably be done the penetration of antibiotics into cells of this bacterium easily.
Collapse
Affiliation(s)
- Ebrahim Boluki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Moradi
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser research center in medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Hu J, Lin S, Tan BK, Hamzah SS, Lin Y, Kong Z, Zhang Y, Zheng B, Zeng S. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res Int 2018; 111:265-271. [DOI: 10.1016/j.foodres.2018.05.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
49
|
Al-Mutairi R, Tovmasyan A, Batinic-Haberle I, Benov L. Sublethal Photodynamic Treatment Does Not Lead to Development of Resistance. Front Microbiol 2018; 9:1699. [PMID: 30108561 PMCID: PMC6079231 DOI: 10.3389/fmicb.2018.01699] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
A promising new alternative approach for eradication of antibiotic-resistant strains is to expose microbes to photosensitizers, which upon illumination generate reactive oxygen species. Among the requirements for a potent, medically applicable photosensitizer, are high efficacy in killing microbes and low toxicity to the host. Since photodynamic treatment is based on production of reactive species which are potentially DNA damaging and mutagenic, it might be expected that under selective pressure, microbes would develop resistance. The aim of this study was to determine if antibacterial photodynamic treatment with a highly photoefficient photosensitizer, Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin would lead to development of resistance. To answer that question, bacterial cultures were subjected to multiple cycles of sublethal photodynamic stress and regrowth, and to continuous growth under photodynamic exposure. Antibiotic-resistant Staphylococcus aureus and Escherichia coli clinical isolates were also tested for susceptibility to photodynamic inactivation and for development of resistance. Results demonstrated that multiple photodynamic exposures and regrowth of surviving cells or continuous growth under sublethal photodynamic conditions, did not lead to development of resistance to photosensitizers or to antibiotics. Antibiotic-resistant E. coli and S. aureus were as sensitive to photodynamic killing as were their antibiotic-sensitive counterparts and no changes in their sensitivity to antibiotics or to photodynamic inactivation after multiple cycles of photodynamic treatment and regrowth were observed. In conclusion, photosensitizers with high photodynamic antimicrobial efficiency can be used successfully for eradication of antibiotic-resistant bacterial strains without causing development of resistance.
Collapse
Affiliation(s)
- Rawan Al-Mutairi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
50
|
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol 2018; 9:1299. [PMID: 29997579 PMCID: PMC6030385 DOI: 10.3389/fmicb.2018.01299] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biofilm describes a microbially-derived sessile community in which microbial cells are firmly attached to the substratum and embedded in extracellular polymeric matrix. Microbial biofilms account for up to 80% of all bacterial and fungal infections in humans. Biofilm-associated pathogens are particularly resistant to antibiotic treatment, and thus novel antibiofilm approaches needed to be developed. Antimicrobial Photodynamic therapy (aPDT) had been recently proposed to combat clinically relevant biofilms such as dental biofilms, ventilator associated pneumonia, chronic wound infections, oral candidiasis, and chronic rhinosinusitis. aPDT uses non-toxic dyes called photosensitizers (PS), which can be excited by harmless visible light to produce reactive oxygen species (ROS). aPDT is a multi-stage process including topical PS administration, light irradiation, and interaction of the excited state with ambient oxygen. Numerous in vitro and in vivo aPDT studies have demonstrated biofilm-eradication or substantial reduction. ROS are produced upon photo-activation and attack adjacent targets, including proteins, lipids, and nucleic acids present within the biofilm matrix, on the cell surface and inside the microbial cells. Damage to non-specific targets leads to the destruction of both planktonic cells and biofilms. The review aims to summarize the progress of aPDT in destroying biofilms and the mechanisms mediated by ROS. Finally, a brief section provides suggestions for future research.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Ying-Ying Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Yuguang Wang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michael R. Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|