1
|
Bråtveit M, Van Parys A, Olsen T, Strand E, Marienborg I, Laupsa-Borge J, Haugsgjerd TR, McCann A, Dhar I, Ueland PM, Dierkes J, Dankel SN, Nygård OK, Lysne V. Association between dietary macronutrient composition and plasma one-carbon metabolites and B-vitamin cofactors in patients with stable angina pectoris. Br J Nutr 2024; 131:1678-1690. [PMID: 38361451 PMCID: PMC11063666 DOI: 10.1017/s0007114524000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Elevated plasma concentrations of several one-carbon metabolites are associated with increased CVD risk. Both diet-induced regulation and dietary content of one-carbon metabolites can influence circulating concentrations of these markers. We cross-sectionally analysed 1928 patients with suspected stable angina pectoris (geometric mean age 61), representing elevated CVD risk, to assess associations between dietary macronutrient composition (FFQ) and plasma one-carbon metabolites and related B-vitamin status markers (GC-MS/MS, LC-MS/MS or microbiological assay). Diet-metabolite associations were modelled on the continuous scale, adjusted for age, sex, BMI, smoking, alcohol and total energy intake. Average (geometric mean (95 % prediction interval)) intake was forty-nine (38, 63) energy percent (E%) from carbohydrate, thirty-one (22, 45) E% from fat and seventeen (12, 22) E% from protein. The strongest associations were seen for higher protein intake, i.e. with higher plasma pyridoxal 5'-phosphate (PLP) (% change (95 % CI) 3·1 (2·1, 4·1)), cobalamin (2·9 (2·1, 3·7)), riboflavin (2·4 (1·1, 3·7)) and folate (2·1 (1·2, 3·1)) and lower total homocysteine (tHcy) (-1·4 (-1·9, -0·9)) and methylmalonic acid (MMA) (-1·4 (-2·0, -0·8)). Substitution analyses replacing MUFA or PUFA with SFA demonstrated higher plasma concentrations of riboflavin (5·0 (0·9, 9·3) and 3·3 (1·1, 5·6)), tHcy (2·3 (0·7, 3·8) and 1·3 (0·5, 2·2)) and MMA (2·0 (0·2, 3·9) and 1·7 (0·7, 2·7)) and lower PLP (-2·5 (-5·3, 0·3) and -2·7 (-4·2, -1·2)). In conclusion, a higher protein intake and replacing saturated with MUFA and PUFA were associated with a more favourable metabolic phenotype regarding metabolites associated with CVD risk.
Collapse
Affiliation(s)
- Marianne Bråtveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Strand
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Marienborg
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Indu Dhar
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Kjell Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Recent advance in the investigation of aquatic “blue foods” at a molecular level: A proteomics strategy. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Runau F, Arshad A, Isherwood JD, Sandhu JK, Ng LL, Dennison AR, Jones DJL. Proteomic Characterization of Circulating Molecular Perturbations Associated With Pancreatic Adenocarcinoma Following Intravenous ω-3 Fatty Acid and Gemcitabine Administration: A Pilot Study. JPEN J Parenter Enteral Nutr 2020; 45:738-750. [PMID: 32716569 DOI: 10.1002/jpen.1952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Administration of intravenous ω-3 fatty acid (ω-3FA) in advanced pancreatic adenocarcinoma patients receiving gemcitabine chemotherapy shows disease stabilization and improved progression-free survival. Using high-definition plasma proteomics, the underlying biological mechanisms responsible for these clinical effects are investigated. METHODS AND RESULTS A pilot study involving plasma that was collected at baseline from 13 patients with histologically confirmed, unresectable pancreatic adenocarcinoma (baseline group) after 1-month treatment with intravenous gemcitabine and ω-3FA (treatment group) and intravenous gemcitabine only (control group) and was prepared for proteomic analysis. A 2-arm study comparing baseline vs treatment and treatment vs control was performed. Proteins were isolated from plasma with extensive immunodepletion, then digested and labeled with isobaric tandem mass tag peptide tags. Samples were then combined, fractionated, and injected into a QExactive-Orbitrap Mass-Spectrometer and analyzed on Proteome Discoverer and Scaffold with ensuing bioinformatics analysis. Selective reaction monitoring analysis was performed for verification. In total, 3476 proteins were identified. Anti-inflammatory markers (C-reactive protein, haptoglobin, and serum amyloid-A1) were reduced in the treatment group. Enrichment analysis showed angiogenesis downregulation, complement immune systems upregulation, and epigenetic modifications on histones. Pathway analysis identified direct action via the Pi3K-AKT pathway. Serum amyloid-A1 significantly reduced (P < .001) as a potential biomarker of efficacy for ω-3FA. CONCLUSIONS This pilot study demonstrates administration of ω-3FA has potential anti-inflammatory, antiangiogenic, and proapoptotic effects via direct interaction with cancer-signaling pathways in patients with advanced pancreatic adenocarcinoma. Further studies in a larger sample size is required to validate the clinical correlation found in this preliminary study.
Collapse
Affiliation(s)
- Franscois Runau
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK.,Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Ali Arshad
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John D Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Jatinderpal K Sandhu
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.,Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| |
Collapse
|
4
|
Lysne V, Bjørndal B, Grinna ML, Midttun Ø, Ueland PM, Berge RK, Dierkes J, Nygård O, Strand E. Short-term treatment with a peroxisome proliferator-activated receptor α agonist influences plasma one-carbon metabolites and B-vitamin status in rats. PLoS One 2019; 14:e0226069. [PMID: 31805132 PMCID: PMC6894826 DOI: 10.1371/journal.pone.0226069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of one-carbon metabolism. Previously we have reported effects on plasma concentrations of metabolites along these pathways as well as markers of B-vitamin status in rats following treatment with a pan-PPAR agonist. Here we aimed to investigate the effect on these metabolites after specific activation of the PPARα and PPARγ subtypes. METHODS For a period of 12 days, Male Wistar rats (n = 20) were randomly allocated to receive treatment with the PPARα agonist WY-14.643 (n = 6), the PPARγ agonist rosiglitazone (n = 6) or placebo (n = 8). The animals were sacrificed under fasting conditions, and plasma concentration of metabolites were determined. Group differences were assessed by one-way ANOVA, and planned comparisons were performed for both active treatment groups towards the control group. RESULTS Treatment with a PPARα agonist was associated with increased plasma concentrations of most biomarkers, with the most pronounced differences observed for betaine, dimethylglycine, glycine, nicotinamide, methylnicotinamide, pyridoxal and methylmalonic acid. Lower levels were observed for flavin mononucleotide. Fewer associations were observed after treatment with a PPARγ agonist, and the most notable was increased plasma serine. CONCLUSION Treatment with a PPARα agonist influenced plasma concentration of one-carbon metabolites and markers of B-vitamin status. This confirms previous findings, suggesting specific involvement of PPARα in the regulation of these metabolic pathways as well as the status of closely related B-vitamins.
Collapse
Affiliation(s)
- Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bevital A/S, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Marine Lipids on Cardiovascular Diseases and Other Chronic Diseases Induced by Diet: An Insight Provided by Proteomics and Lipidomics. Mar Drugs 2017; 15:md15080258. [PMID: 28820493 PMCID: PMC5577612 DOI: 10.3390/md15080258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Marine lipids, especially ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have largely been linked to prevention of diet-induced diseases. The anti-inflammatory and hypolipidemic properties of EPA and DHA supplementation have been well-described. However, there is still a significant lack of information about their particular mechanism of action. Furthermore, repeated meta-analyses have not shown conclusive results in support of their beneficial health effects. Modern "omics" approaches, namely proteomics and lipidomics, have made it possible to identify some of the mechanisms behind the benefits of marine lipids in the metabolic syndrome and related diseases, i.e., cardiovascular diseases and type 2 diabetes. Although until now their use has been scarce, these "omics" have brought new insights in this area of nutrition research. The purpose of the present review is to comprehensively show the research articles currently available in the literature which have specifically applied proteomics, lipidomics or both approaches to investigate the role of marine lipids intake in the prevention or palliation of these chronic pathologies related to diet. The methodology adopted, the class of marine lipids examined, the diet-related disease studied, and the main findings obtained in each investigation will be reviewed.
Collapse
|
6
|
Liang P, Zhang M, Cheng W, Lin W, Chen L. Proteomic Analysis of the Effect of DHA-Phospholipids from Large Yellow Croaker Roe on Hyperlipidemic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5107-5113. [PMID: 28438023 DOI: 10.1021/acs.jafc.7b00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Previously, we found that phospholipids derived from large yellow croaker (Pseudosciaena crocea) roe had a higher level of docosahexaenoic acid (DHA-PL), which had beneficial effects on lipid metabolism. However, the mechanism by which DHA-PL from P. crocea roe exerts these effects has not yet been illuminated. Herein, we investigated the underlying molecular action of DHA-PL by examining changes in liver protein expression in control, hyperlipidemic, and DHA-PL-treated mice. A total of 16 proteins, 9 up-regulated and 7 down-regulated, were identified and classified into several metabolic pathways, such as fat digestion and absorption, peroxisome proliferator activated receptor (PPAR) signaling, and antigen processing and presentation; the largest functional class found was that of fat digestion and absorption. We revealed Apoa1 to be a biomarker of DHA-PL effects on hyperlipidemic mice by DHA-PL diet. These results not only improve our current understanding of hyperlipidemic regulation by DHA-PL, but also suggest that DHA-PL should be applied as a beneficial food additive.
Collapse
Affiliation(s)
- Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou 350002, P.R. China
| | - Min Zhang
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou 350002, P.R. China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou 350002, P.R. China
| | - Wenxiong Lin
- Life Sciences College, Fujian Agriculture and Forestry University , Fuzhou 350002, P.R. China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou 350002, P.R. China
| |
Collapse
|
7
|
Gil-Solsona R, Nácher-Mestre J, Lacalle-Bergeron L, Sancho JV, Calduch-Giner JA, Hernández F, Pérez-Sánchez J. Untargeted metabolomics approach for unraveling robust biomarkers of nutritional status in fasted gilthead sea bream ( Sparus aurata). PeerJ 2017; 5:e2920. [PMID: 28168106 PMCID: PMC5291114 DOI: 10.7717/peerj.2920] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023] Open
Abstract
A metabolomic study has been performed to identify sensitive and robust biomarkers of malnutrition in farmed fish, using gilthead sea bream (Sparus aurata) as a model. The metabolomic fingerprinting of serum from fasted fish was assessed by means of ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. More than 15,000 different m/z ions were detected and Partial Least Squares–Discriminant analysis allowed a clear differentiation between the two experimental groups (fed and 10-day fasted fish) with more than 90% of total variance explained by the two first components. The most significant metabolites (up to 45) were elucidated on the basis of their tandem mass spectra with a broad representation of amino acids, oligopeptides, urea cycle metabolites, L-carnitine-related metabolites, glutathione-related metabolites, fatty acids, lysophosphatidic acids, phosphatidylcholines as well as biotin- and noradrenaline-related metabolites. This untargeted approach highlighted important adaptive responses in energy and oxidative metabolism, contributing to identify robust and nutritionally-regulated biomarkers of health and metabolic condition that will serve to assess the welfare status of farmed fish.
Collapse
Affiliation(s)
- Ruben Gil-Solsona
- Research Institute for Pesticides and Water (IUPA), University Jaume I , Castellón , Spain
| | - Jaime Nácher-Mestre
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón, Spain; Institute of Aquaculture Torre de la Sal (IATS, CSIC), Ribera de Cabanes, Castellón, Spain
| | | | - Juan Vicente Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I , Castellón , Spain
| | | | - Félix Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I , Castellón , Spain
| | - Jaume Pérez-Sánchez
- Institute of Aquaculture Torre de la Sal (IATS, CSIC) , Ribera de Cabanes, Castellón , Spain
| |
Collapse
|
8
|
Changes in liver proteins of rats fed standard and high-fat and sucrose diets induced by fish omega-3 PUFAs and their combination with grape polyphenols according to quantitative proteomics. J Nutr Biochem 2016; 41:84-97. [PMID: 28064013 DOI: 10.1016/j.jnutbio.2016.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/05/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
This study considered the physiological modulation of liver proteins due to the supplementation with fish oils under two dietary backgrounds: standard or high in fat and sucrose (HFHS), and their combination with grape polyphenols. By using a quantitative proteomics approach, we showed that the capacity of the supplements for regulating proteins depended on the diet; namely, 10 different proteins changed into standard diets, while 45 changed into the HFHS diets and only scarcely proteins were found altered in common. However, in both contexts, fish oils were the main regulatory force, although the addition of polyphenols was able to modulate some fish oils' effects. Moreover, we demonstrated the ability of fish oils and their combination with grape polyphenols in improving biochemical parameters and reducing lipogenesis and glycolysis enzymes, enhancing fatty acid beta-oxidation and insulin signaling and ameliorating endoplasmic reticulum stress and protein oxidation when they are included in an unhealthy diet.
Collapse
|
9
|
Becker C, Öcal S, Nguyen HD, Phan T, Keul M, Simard JR, Rauh D. Monitoring Conformational Changes in the Receptor Tyrosine Kinase EGFR. Chembiochem 2016; 17:990-4. [DOI: 10.1002/cbic.201600115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Christian Becker
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Sinan Öcal
- Chemical Genomics Centre; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 15 44227 Dortmund Germany
- University of Cologne; Department of Mathematics and Natural Sciences; Institute of Biochemistry; Otto-Fischer-Strasse 12-14 50674 Köln Germany
| | - Hoang D. Nguyen
- Chemical Genomics Centre; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 15 44227 Dortmund Germany
- University of Science; Vietnam National University-Ho Chi Minh City; 227 Nguyen Van Cu Str., Dist. 5 Ho Chi Minh City Vietnam
| | - Trang Phan
- Chemical Genomics Centre; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 15 44227 Dortmund Germany
- University of Science; Vietnam National University-Ho Chi Minh City; 227 Nguyen Van Cu Str., Dist. 5 Ho Chi Minh City Vietnam
| | - Marina Keul
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Jeffrey R. Simard
- Chemical Genomics Centre; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 15 44227 Dortmund Germany
- Amgen Inc.; 360 Binney Street Cambridge MA 02142 USA
| | - Daniel Rauh
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
- Chemical Genomics Centre; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 15 44227 Dortmund Germany
| |
Collapse
|
10
|
Lysne V, Strand E, Svingen GFT, Bjørndal B, Pedersen ER, Midttun Ø, Olsen T, Ueland PM, Berge RK, Nygård O. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats. Nutrients 2016; 8:nu8010026. [PMID: 26742069 PMCID: PMC4728640 DOI: 10.3390/nu8010026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022] Open
Abstract
Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats.
Collapse
Affiliation(s)
- Vegard Lysne
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elin Strand
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Gard F T Svingen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Eva R Pedersen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | - Thomas Olsen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
- KG Jebsen Centre for Diabetes Research, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
11
|
Le BQ, Fernandes H, Bouten CV, Karperien M, van Blitterswijk C, de Boer J. High-Throughput Screening Assay for the Identification of Compounds Enhancing Collagenous Extracellular Matrix Production by ATDC5 Cells. Tissue Eng Part C Methods 2015; 21:726-36. [DOI: 10.1089/ten.tec.2014.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bach q. Le
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Hugo Fernandes
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Carlijn V.C. Bouten
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
12
|
Rogowska-Wrzesinska A, Wrzesinski K, Fey SJ. Heteromer score-using internal standards to assess the quality of proteomic data. Proteomics 2014; 14:1042-7. [PMID: 24616253 DOI: 10.1002/pmic.201300457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/13/2014] [Accepted: 02/20/2014] [Indexed: 11/08/2022]
Abstract
In the cell, the majority of proteins exist in complexes. Most of these complexes have a constant stoichiometry and thus can be used as internal standards. In this rapid communication, we show that it is possible to calculate a correlation coefficient that reflects the reproducibility of the analytical approach used. The abundance of one subunit in a heterodimer is plotted against the abundance of the other, and this is repeated for all subunits in all heteromers found in the data set. The correlation coefficient obtained (the "heteromer score") is a new bioinformatic tool that is independent of the method used to collect the data, requires no special sample preparation and can be used retrospectively on old datasets. It can be used for quality control, to indicate when a change becomes significant or identify complexes whose stoichiometry has been perturbed during the experiment.
Collapse
|
13
|
Peinado JR, Diaz-Ruiz A, Frühbeck G, Malagon MM. Mitochondria in metabolic disease: getting clues from proteomic studies. Proteomics 2014; 14:452-66. [PMID: 24339000 DOI: 10.1002/pmic.201300376] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/08/2013] [Accepted: 11/21/2013] [Indexed: 01/11/2023]
Abstract
Mitochondria play a key role as major regulators of cellular energy homeostasis, but in the context of mitochondrial dysfunction, mitochondria may generate reactive oxidative species and induce cellular apoptosis. Indeed, altered mitochondrial status has been linked to the pathogenesis of several metabolic disorders and specially disorders related to insulin resistance, such as obesity, type 2 diabetes, and other comorbidities comprising the metabolic syndrome. In the present review, we summarize information from various mitochondrial proteomic studies of insulin-sensitive tissues under different metabolic states. To that end, we first focus our attention on the pancreas, as mitochondrial malfunction has been shown to contribute to beta cell failure and impaired insulin release. Furthermore, proteomic studies of mitochondria obtained from liver, muscle, and adipose tissue are summarized, as these tissues constitute the primary insulin target metabolic tissues. Since recent advances in proteomic techniques have exposed the importance of PTMs in the development of metabolic disease, we also present information on specific PTMs that may directly affect mitochondria during the pathogenesis of metabolic disease. Specifically, mitochondrial protein acetylation, phosphorylation, and other PTMs related to oxidative damage, such as nitrosylation and carbonylation, are discussed.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine, Ciudad Real, Spain
| | | | | | | |
Collapse
|
14
|
Borkowski K, Wrzesinski K, Rogowska-Wrzesinska A, Audouze K, Bakke J, Petersen RK, Haj FG, Madsen L, Kristiansen K. Proteomic analysis of cAMP-mediated signaling during differentiation of 3 T3-L1 preadipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2096-107. [PMID: 25152230 DOI: 10.1016/j.bbapap.2014.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/06/2023]
Abstract
Initiation of adipocyte differentiation is promoted by the synergistic action of insulin/insulin-like growth factor, glucocorticoids, and agents activating cAMP-dependent signaling. The action of cAMP is mediated via PKA and Epac, where at least part of the PKA function relates to strong repression of Rho kinase activity, whereas Epac counteracts the reduction in insulin/insulin-like growth factor signaling associated with complete repression of Rho kinase activity. However, detailed knowledge of the Epac-dependent branch and the interplay with PKA is still limited. In the present study, we present a comprehensive evaluation of Epac-mediated processes and their interplay with PKA during the initiation of 3 T3-L1 preadipocyte differentiation using a combination of proteomics, molecular approaches, and bioinformatics. Proteomic analyses revealed 7 proteins specifically regulated in response to Epac activation, 4 in response to PKA activation, and 11 in response to the combined activation of Epac and PKA during the initial phase of differentiation. Network analyses indicated that the identified proteins are involved in pathways of importance for glucose metabolism, inositol metabolism, and calcium-dependent signaling thereby adding a novel facet to our understanding of cAMP-mediated potentiation of adipocyte differentiation.
Collapse
Affiliation(s)
- Kamil Borkowski
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Krzysztow Wrzesinski
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Karine Audouze
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Jesse Bakke
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Rasmus Koefoed Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark; National Institute of Nutrition and Seafood Research (NIFES), Bergen N-5817, Norway.
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark.
| |
Collapse
|
15
|
Schwämmle V, León IR, Jensen ON. Assessment and Improvement of Statistical Tools for Comparative Proteomics Analysis of Sparse Data Sets with Few Experimental Replicates. J Proteome Res 2013; 12:3874-83. [DOI: 10.1021/pr400045u] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veit Schwämmle
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230
Odense M, Denmark
| | - Ileana Rodríguez León
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230
Odense M, Denmark
| | - Ole Nørregaard Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230
Odense M, Denmark
| |
Collapse
|
16
|
Bjørndal B, Brattelid T, Strand E, Vigerust NF, Svingen GFT, Svardal A, Nygård O, Berge RK. Fish oil and the pan-PPAR agonist tetradecylthioacetic acid affect the amino acid and carnitine metabolism in rats. PLoS One 2013; 8:e66926. [PMID: 23826175 PMCID: PMC3691320 DOI: 10.1371/journal.pone.0066926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/10/2013] [Indexed: 01/05/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|