1
|
Ma Q, Sun J, Liu Q, Fu J, Wen Y, Zhang F, Wu Y, Zhang X, Gong L, Zhang W. Identification of a biomarker to predict doxorubicin/cisplatin chemotherapy efficacy in osteosarcoma patients using primary, recurrent and metastatic specimens. Transl Oncol 2024; 49:102098. [PMID: 39153366 PMCID: PMC11381801 DOI: 10.1016/j.tranon.2024.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Doxorubicin and cisplatin are both first-line chemotherapeutics for osteosarcoma (OS) treatment. However, the efficacy of doxorubicin/cisplatin chemotherapy varies considerably. Thus, identifying an efficient diagnostic biomarker to distinguish patients with good and poor responses to doxorubicin/cisplatin chemotherapy is of paramount importance. METHODS To predict the efficacy of doxorubicin/cisplatin chemotherapy, we analyzed the differentially expressed proteins in 37 resected OS samples, which were categorized into the primary group (PG), the recurrent group (RG) and the metastatic group (MG). The characteristics of the enriched differentially expressed proteins were assessed via GO and KEGG analyses. Protein‒protein interactions were identified to determine the relationships among the differentially expressed proteins. Receiver operating characteristic (ROC) curve analyses were performed to explore the clinical significance of the differentially expressed proteins. Parallel reaction monitoring (PRM) was used to validate the candidate proteins. Immunohistochemical (IHC) staining was performed to confirm the expression of cathepsin (CTSG) in patients with good and poor response to doxorubicin/cisplatin. RESULTS A total of 9458 proteins were identified and quantified, among which 143 and 208 exhibited significant changes (|log2FC|>1, p < 0.05) in the RG and MG compared with the PG, respectively. GO and KEGG enrichment led to the identification of neutrophil extracellular traps (NETs). ROC curve analyses revealed 74 and 86 proteins with areas under the curve greater than 0.7 in the RG and MG, respectively. PRM validation revealed the statistical significance of CTSG, which is involved in NET formation, at the protein level in both the RG and MG. IHC staining of another cohort revealed that CTSG was prominently upregulated in the poor response group after treatment with doxorubicin/cisplatin. CONCLUSION CTSG and its associated NETs are potential biomarkers with which the efficacy of doxorubicin/cisplatin chemotherapy could be predicted in OS patients.
Collapse
Affiliation(s)
- Qiong Ma
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China; Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Jin Sun
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Jin Fu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Yanhua Wen
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Fuqin Zhang
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Yonghong Wu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Xiaoyu Zhang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China.
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|
2
|
Noma IHY, Carvalho LADC, Camarena DEM, Silva RO, Moraes Junior MOD, de Souza ST, Newton-Bishop J, Nsengimana J, Maria-Engler SS. Peroxiredoxin-2 represses NRAS-mutated melanoma cells invasion by modulating EMT markers. Biomed Pharmacother 2024; 177:116953. [PMID: 38955087 DOI: 10.1016/j.biopha.2024.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
The second most common mutation in melanoma occurs in NRAS oncogene, being a more aggressive disease that has no effective approved treatment. Besides, cellular plasticity limits better outcomes of the advanced and therapy-resistant patients. Peroxiredoxins (PRDXs) control cellular processes through direct hydrogen peroxide oxidation or by redox-relaying processes. Here, we demonstrated that PRDX2 could act as a modulator of multiple EMT markers in NRAS-mutated melanomas. PRDX2 knockdown lead to phenotypic changes towards invasion in human reconstructed skin and the treatment with a PRDX mimetic (gliotoxin), decreased migration in PRDX2-deficient cells. We also confirmed the favorable clinical outcome of patients expressing PRDX2 in a large primary melanoma cohort. This study contributes to our knowledge about genes involved in phenotype switching and opens a new perspective for PRDX2 as a biomarker and target in NRAS-mutated melanomas.
Collapse
Affiliation(s)
- Isabella Harumi Yonehara Noma
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Larissa Anastacio da Costa Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Denisse Esther Mallaupoma Camarena
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Renaira Oliveira Silva
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Manoel Oliveira de Moraes Junior
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Sophia Tavares de Souza
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil
| | - Julia Newton-Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BN, UK
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo, SP 05508-00, Brazil.
| |
Collapse
|
3
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
4
|
Grünewald TGP, Postel-Vinay S, Nakayama RT, Berlow NE, Bolzicco A, Cerullo V, Dermawan JK, Frezza AM, Italiano A, Jin JX, Le Loarer F, Martin-Broto J, Pecora A, Perez-Martinez A, Tam YB, Tirode F, Trama A, Pasquali S, Vescia M, Wortmann L, Wortmann M, Yoshida A, Webb K, Huang PH, Keller C, Antonescu CR. Translational Aspects of Epithelioid Sarcoma: Current Consensus. Clin Cancer Res 2024; 30:1079-1092. [PMID: 37916971 PMCID: PMC10947972 DOI: 10.1158/1078-0432.ccr-23-2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Epithelioid sarcoma (EpS) is an ultra-rare malignant soft-tissue cancer mostly affecting adolescents and young adults. EpS often exhibits an unfavorable clinical course with fatal outcome in ∼50% of cases despite aggressive multimodal therapies combining surgery, chemotherapy, and irradiation. EpS is traditionally classified in a more common, less aggressive distal (classic) type and a rarer aggressive proximal type. Both subtypes are characterized by a loss of nuclear INI1 expression, most often following homozygous deletion of its encoding gene, SMARCB1-a core subunit of the SWI/SNF chromatin remodeling complex. In 2020, the EZH2 inhibitor tazemetostat was the first targeted therapy approved for EpS, raising new hopes. Still, the vast majority of patients did not benefit from this drug or relapsed rapidly. Further, other recent therapeutic modalities, including immunotherapy, are only effective in a fraction of patients. Thus, novel strategies, specifically targeted to EpS, are urgently needed. To accelerate translational research on EpS and eventually boost the discovery and development of new diagnostic tools and therapeutic options, a vibrant translational research community has formed in past years and held two international EpS digital expert meetings in 2021 and 2023. This review summarizes our current understanding of EpS from the translational research perspective and points to innovative research directions to address the most pressing questions in the field, as defined by expert consensus and patient advocacy groups.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Sophie Postel-Vinay
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- U981 INSERM, ERC StG team, Gustave Roussy, Villejuif, France
| | - Robert T Nakayama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Hillsboro, Oregon
| | - Andrea Bolzicco
- Patients association 'Orchestra per la vita' Aps, Rome, Italy
- Patients association: 'MC4 in corsa per la vita!' ETS, Milan, Italy
| | - Vincenzo Cerullo
- Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anna Maria Frezza
- Department of Medical Oncology 2, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Antoine Italiano
- Early Phase Trials and Sarcoma Units, Institut Bergonie, Bordeaux, France
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Jia Xiang Jin
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Francois Le Loarer
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
- Department of Pathology, Institut Bergonie, Bordeaux, France
| | - Javier Martin-Broto
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital; University Hospital General de Villalba, and Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain
| | - Andrew Pecora
- John Theurer Cancer Center, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | - Antonio Perez-Martinez
- Patients association: 'MC4 in corsa per la vita!' ETS, Milan, Italy
- Department of Pediatric Hemato-Oncology, Autonomous University of Madrid, Institute for Health Research, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Yuen Bun Tam
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Franck Tirode
- Université Claude Bernard, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | - Annalisa Trama
- Department of Epidemiology and Data Science; Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Lukas Wortmann
- Patients association "Smarcb1" e.V., Bergisch Gladbach, Germany
| | | | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kim Webb
- Patients association "Smarcb1" e.V., Bergisch Gladbach, Germany
| | - Paul H Huang
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
- Sarcoma Unit, Royal Marsden Hospital, Belmont, United Kingdom
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Hillsboro, Oregon
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
5
|
Connolly EA, Grimison PS, Horvath LG, Robinson PJ, Reddel RR. Quantitative proteomic studies addressing unmet clinical needs in sarcoma. Front Oncol 2023; 13:1126736. [PMID: 37197427 PMCID: PMC10183589 DOI: 10.3389/fonc.2023.1126736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 05/19/2023] Open
Abstract
Sarcoma is a rare and complex disease comprising over 80 malignant subtypes that is frequently characterized by poor prognosis. Challenges in clinical management include uncertainties in diagnosis and disease classification, limited prognostic and predictive biomarkers, incompletely understood disease heterogeneity among and within subtypes, lack of effective treatment options, and limited progress in identifying new drug targets and novel therapeutics. Proteomics refers to the study of the entire complement of proteins expressed in specific cells or tissues. Advances in proteomics have included the development of quantitative mass spectrometry (MS)-based technologies which enable analysis of large numbers of proteins with relatively high throughput, enabling proteomics to be studied on a scale that has not previously been possible. Cellular function is determined by the levels of various proteins and their interactions, so proteomics offers the possibility of new insights into cancer biology. Sarcoma proteomics therefore has the potential to address some of the key current challenges described above, but it is still in its infancy. This review covers key quantitative proteomic sarcoma studies with findings that pertain to clinical utility. Proteomic methodologies that have been applied to human sarcoma research are briefly described, including recent advances in MS-based proteomic technology. We highlight studies that illustrate how proteomics may aid diagnosis and improve disease classification by distinguishing sarcoma histologies and identify distinct profiles within histological subtypes which may aid understanding of disease heterogeneity. We also review studies where proteomics has been applied to identify prognostic, predictive and therapeutic biomarkers. These studies traverse a range of histological subtypes including chordoma, Ewing sarcoma, gastrointestinal stromal tumors, leiomyosarcoma, liposarcoma, malignant peripheral nerve sheath tumors, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, osteosarcoma, and undifferentiated pleomorphic sarcoma. Critical questions and unmet needs in sarcoma which can potentially be addressed with proteomics are outlined.
Collapse
Affiliation(s)
- Elizabeth A. Connolly
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- *Correspondence: Elizabeth A. Connolly,
| | - Peter S. Grimison
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Lisa G. Horvath
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Phillip J. Robinson
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Roger R. Reddel
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
6
|
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int J Mol Sci 2022; 23:ijms23179741. [PMID: 36077137 PMCID: PMC9456544 DOI: 10.3390/ijms23179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to a lack of novel therapies and biomarkers, the clinical outcomes of osteosarcoma patients have not significantly improved for decades. The advancement of mass spectrometry (MS), peptide quantification, and downstream pathway analysis enables the investigation of protein profiles across a wide range of input materials, from cell culture to long-term archived clinical specimens. This can provide insight into osteosarcoma biology and identify candidate biomarkers for diagnosis, prognosis, and stratification of chemotherapy response. In this review, we provide an overview of proteomics studies of osteosarcoma, indicate potential biomarkers that might be promising therapeutic targets, and discuss the challenges and opportunities of mass spectrometric-based proteomics in future osteosarcoma research.
Collapse
Affiliation(s)
- Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.C.); (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (P.C.); (S.C.)
| |
Collapse
|
7
|
Zhang SQ, Pan SM, Lai SZ, Situ HJ, Liu J, Dai WJ, Liang SX, Zhou LQ, Lu QQ, Ke PF, Zhang F, Chen HB, Li JC. Novel Plasma Proteomic Biomarkers for Early Identification of Induction Chemotherapy Beneficiaries in Locoregionally Advanced Nasopharyngeal Carcinoma. Front Oncol 2022; 12:889516. [PMID: 35847896 PMCID: PMC9279567 DOI: 10.3389/fonc.2022.889516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background Induction chemotherapy (IC) can alleviate locoregionally advanced nasopharyngeal carcinoma (LA-NPC), but effectiveness differs between patients, toxicity is problematic, and effective blood-based IC efficacy predictors are lacking. Here, we aimed to identify biomarkers for early identification of IC beneficiaries. Methods Sixty-four pairs of matched plasma samples collected before and after IC from LA-NPC patients including 34 responders and 30 non-responders, as well as 50 plasma samples of healthy individuals, were tested using data-independent acquisition mass spectrometry. The proteins associated with clinical traits or IC benefits were investigated by weighted gene co-expression network analysis (WGCNA) and soft cluster analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional annotations were performed to determine the potential function of the identified proteins. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of candidate biomarkers in predicting IC beneficiaries. Results Compared with healthy individuals, 1027 differentially expressed proteins (DEPs) were found in the plasma of LA-NPC patients. Based on feedback from IC outcomes, 463 DEPs were identified in the pre-IC plasma between responders and non-responders. A total of 1212 DEPs represented the proteomic changes before and after IC in responders, while 276 DEPs were identified in post-IC plasma between responders and non-responders. WGCNA identified nine protein co-expression modules correlated with clinical traits. Soft cluster analysis identified four IC benefits-related protein clusters. Functional enrichment analysis showed that these proteins may play a role in IC via immunity, complement, coagulation, glycosaminoglycan and serine. Four proteins differentially expressed in all group comparisons, paraoxonase/arylesterase 1 (PON1), insulin-like growth factor-binding protein 3 (IGFBP-3), rheumatoid factor D5 light chain (v-kappa-3) and RNA helicase (DDX55), were associated with clinical traits or IC benefits. A four-protein model accurately identified potential IC beneficiaries (AUC=0.95) while diagnosing LA-NPC (AUC=0.92), and the prediction performance was verified using the models to confirm the effective IC (AUC=0.97) and evaluate IC outcome (AUC=0.94). Conclusion The plasma protein profiles among IC responders and non-responders were different. PON1, IGFBP3, v-kappa-3 and DDX55 could serve as potential biomarkers for early identification of IC beneficiaries for individualised treatment of LA-NPC.
Collapse
Affiliation(s)
- Shan-Qiang Zhang
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Su-Ming Pan
- Department of Radiation Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Shu-Zhen Lai
- Department of Radiation Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Hui-Jing Situ
- Department of Radiation Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Jun Liu
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Wen-Jie Dai
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Si-Xian Liang
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Li-Qing Zhou
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Qi-Qi Lu
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Pei-Feng Ke
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Fan Zhang
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Ji-Cheng Li
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging (Albany NY) 2021; 13:11170-11187. [PMID: 33819194 PMCID: PMC8109100 DOI: 10.18632/aging.202784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Colon cancer stem cells (CCSCs) play an important role in facilitating colon cancer occurrence, metastasis and drug resistance. The results of our previous studies confirmed that the well-studied antioxidant gene peroxiredoxin-2 (PRDX2) promotes colon cancer progression. However, the underlying function and mechanisms associated with PRDX2 remodeling in the context of CCSCs have remained poorly studied. In our present study, we demonstrated that PRDX2 is highly expressed in CD133/CD44-positive colon cancer tissues and spheroid CD133+CD44+ CCSCs. PRDX2 overexpression was shown to be closely correlated with CD133+CD44+ CCSCs in colon cancer. Furthermore, PRDX2 depletion markedly suppressed CD133+CD44+ CCSC stemness maintenance, tumor initiation, migration and invasion and liver metastasis. Furthermore, the expression of various EMT markers and Wnt/β-catenin signaling proteins was altered after PRDX2 inhibition. In addition, PRDX2 knockdown led to increased ROS production in CD133+CD44+ CCSCs, sensitizing CCSCs to oxidative stress and chemotherapy. These results suggest that PRDX2 could be a possible therapeutic target in CCSCs.
Collapse
|
9
|
Burns J, Wilding CP, L Jones R, H Huang P. Proteomic research in sarcomas - current status and future opportunities. Semin Cancer Biol 2019; 61:56-70. [PMID: 31722230 PMCID: PMC7083238 DOI: 10.1016/j.semcancer.2019.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Sarcomas are a rare group of mesenchymal cancers comprising over 70 different histological subtypes. For the majority of these diseases, the molecular understanding of the basis of their initiation and progression remains unclear. As such, limited clinical progress in prognosis or therapeutic regimens have been made over the past few decades. Proteomics techniques are being increasingly utilised in the field of sarcoma research. Proteomic research efforts have thus far focused on histological subtype characterisation for the improvement of biological understanding, as well as for the identification of candidate diagnostic, predictive, and prognostic biomarkers for use in clinic. However, the field itself is in its infancy, and none of these proteomic research findings have been translated into the clinic. In this review, we provide a brief overview of the proteomic strategies that have been employed in sarcoma research. We evaluate key proteomic studies concerning several rare and ultra-rare sarcoma subtypes including, gastrointestinal stromal tumours, osteosarcoma, liposarcoma, leiomyosarcoma, malignant rhabdoid tumours, Ewing sarcoma, myxofibrosarcoma, and alveolar soft part sarcoma. Consequently, we illustrate how routine implementation of proteomics within sarcoma research, integration of proteomics with other molecular profiling data, and incorporation of proteomics into clinical trial studies has the potential to propel the biological and clinical understanding of this group of complex rare cancers moving forward.
Collapse
Affiliation(s)
- Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher P Wilding
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Robin L Jones
- Division of Clinical Studies, The Institute of Cancer Research, London SW3 6JB, UK; Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
10
|
Chandimali N, Jeong DK, Kwon T. Peroxiredoxin II Regulates Cancer Stem Cells and Stemness-Associated Properties of Cancers. Cancers (Basel) 2018; 10:cancers10090305. [PMID: 30177619 PMCID: PMC6162743 DOI: 10.3390/cancers10090305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) represent a sub-population of cancer cells with the ability to regulate stemness-associated properties which are specifically responsible for unlimited growth of cancers, generation of diverse cancer cells in differentiated state and resistance to existing chemotherapy and radiotherapy. Even though, current therapies destroy majority of cancer cells, it is believed to leave CSCs without eradicating which may be the conceptualization for chemoresistance and radio-resistance. Reactive oxygen species (ROS) maintain stem cells and regulate the stemness-associated properties of cancers. Beyond the maximum limit, ROS can damage cellular functions of cancers by subjecting them to oxidative stress. Thus, maintenance of ROS level plays an important role in cancers to regulate stemness-associated properties. Peroxiredoxin II (Prx II) is a member of peroxiredoxin antioxidant enzyme family which considers as a regulator of ROS in cellular environments by modulating redox status to maintain CSC phenotype and stemness properties. Prx II has cell type-dependent expression in various types of cancer cells and overexpression or silenced expression of Prx II in cancers is associated with stem cell phenotype and stemness-associated properties via activation or deactivation of various signaling pathways. In this review, we summarized available studies on Prx II expression in cancers and the mechanisms by which Prx II takes parts to regulate CSCs and stemness-associated properties. We further discussed the potential therapeutic effects of altering Prx II expression in cancers for better anticancer strategies by sensitizing cancer cells and stem cells to oxidative stress and inhibiting stemness-associated properties.
Collapse
Affiliation(s)
- Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
11
|
Kondo T. Cancer biomarker development and two-dimensional difference gel electrophoresis (2D-DIGE). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:2-8. [PMID: 30392560 DOI: 10.1016/j.bbapap.2018.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
Cancer results from the accumulation of genomic alterations. As the genome is functionally translated to the proteome and regulates tumor cell behavior, proteomics studies are expected to further the current understanding of the molecular mechanisms underlying carcinogenesis and cancer progression. Biomarkers are potential tools to classify cancers for therapy, predict responses to treatments, and support treatment-related decision-making. Biomarker development has been actively pursued in oncology by proteomic approaches. Two-dimensional difference gel electrophoresis (2D-DIGE) is a proteomics technique based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In 2D-DIGE, protein samples are labeled with distinct fluorescent dyes before fractionation via 2D-PAGE. 2D-DIGE offers advantages to identify biomarker candidates, including reproducibility, high sensitivity, comprehensiveness, and high throughput. 2D-DIGE has contributed to the establishment of tissue biomarkers, which potentially facilitate precision medicine. 2D-DIGE is thus expected to yield major advancements in cancer biomarker identification and development.
Collapse
Affiliation(s)
- Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Japan.
| |
Collapse
|
12
|
Holthoff ER, Byrum SD, Mackintosh SG, Kelly T, Tackett AJ, Quick CM, Post SR. Vulvar squamous cell carcinoma aggressiveness is associated with differential expression of collagen and STAT1. Clin Proteomics 2017; 14:40. [PMID: 29225558 PMCID: PMC5717999 DOI: 10.1186/s12014-017-9175-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/25/2017] [Indexed: 02/08/2023] Open
Abstract
Background Vulvar squamous cell carcinoma (vSCC) is a rare but debilitating disease. One vSCC variant comprises tumor cells that grow and expand as a cohesive sheet of cells that “pushes” and compresses the associated lymphoplasmacytic (LPC) stroma. Another vSCC variant features tumor cells that grow in loose association with one another and infiltrate the associated fibromyxoid (FMX) stroma consisting mainly of extracellular matrix. Clinically, infiltrative vSCC with FMX stroma (Inf/FMX) is significantly associated with lymph node metastases and recurrence. Methods An unbiased proteomic approach was used to identify pathways involved in the development of the different vSCC variants. Proteins extracted from formalin-fixed and paraffin-embedded tissues of 10 cases of pushing vSCC with LPC stroma (Push/LPC) and eight cases of Inf/FMX were subjected to liquid chromatography-tandem mass spectrometry (LC–MS/MS). Results Analysis identified 2265 different proteins in the 18 samples of vSCC. Of these, 282 proteins were differentially expressed between vSCC variants. Of these, 45 were higher and 237 lower in Inf/FMX compared to Push/LPC tumors. Consistent with the desmoplastic morphology and increased picrosirius red staining, expression of subunits of several collagens (Col 1, 3, 6, 14) was higher in the more aggressive Inf/FMX tumors. In contrast, signal transducer and activator of transcription 1 (STAT1), an important regulator of several inflammatory pathways, was expressed at lower levels in the Inf/FMX tumors. This finding was confirmed by immunohistochemistry using an antibody to STAT1. Informatics analysis of the differing profiles identified differences in pathways associated with integrin signaling and inflammation mediated by chemokines and cytokines. Conclusions Comparing the proteomic profiles of vSCC morphologic variants indicates that increased expression of collagen subunits and decreased expression of STAT1 are associated with a more aggressive tumor variant, defined by increased incidence of nodal metastases and tumor recurrence. Informatic analyses further identify that both alterations in cell interaction with matrix and immune function differ with tumor aggressiveness. Identification of these pathways provides a molecular basis for understanding aggressiveness of vSCC. Electronic supplementary material The online version of this article (10.1186/s12014-017-9175-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily R Holthoff
- Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 845, Little Rock, AR 72205 USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 845, Little Rock, AR 72205 USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 845, Little Rock, AR 72205 USA
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 845, Little Rock, AR 72205 USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 845, Little Rock, AR 72205 USA
| | - Charles M Quick
- Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 845, Little Rock, AR 72205 USA
| | - Steven R Post
- Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 845, Little Rock, AR 72205 USA
| |
Collapse
|
13
|
Djuričić GJ, Radulovic M, Sopta JP, Nikitović M, Milošević NT. Fractal and Gray Level Cooccurrence Matrix Computational Analysis of Primary Osteosarcoma Magnetic Resonance Images Predicts the Chemotherapy Response. Front Oncol 2017; 7:246. [PMID: 29098142 PMCID: PMC5653945 DOI: 10.3389/fonc.2017.00246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 01/16/2023] Open
Abstract
The prediction of induction chemotherapy response at the time of diagnosis may improve outcomes in osteosarcoma by allowing for personalized tailoring of therapy. The aim of this study was thus to investigate the predictive potential of the so far unexploited computational analysis of osteosarcoma magnetic resonance (MR) images. Fractal and gray level cooccurrence matrix (GLCM) algorithms were employed in retrospective analysis of MR images of primary osteosarcoma localized in distal femur prior to the OsteoSa induction chemotherapy. The predicted and actual chemotherapy response outcomes were then compared by means of receiver operating characteristic (ROC) analysis and accuracy calculation. Dbin, Λ, and SCN were the standard fractal and GLCM features which significantly associated with the chemotherapy outcome, but only in one of the analyzed planes. Our newly developed normalized fractal dimension, called the space-filling ratio (SFR) exerted an independent and much better predictive value with the prediction significance accomplished in two of the three imaging planes, with accuracy of 82% and area under the ROC curve of 0.20 (95% confidence interval 0-0.41). In conclusion, SFR as the newly designed fractal coefficient provided superior predictive performance in comparison to standard image analysis features, presumably by compensating for the tumor size variation in MR images.
Collapse
Affiliation(s)
- Goran J Djuričić
- Department of Diagnostic Imaging, University Children's Hospital, University of Belgrade, Belgrade, Serbia
| | - Marko Radulovic
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jelena P Sopta
- Medical Faculty, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | | | - Nebojša T Milošević
- Medical Faculty, Department of Biophysics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Peng L, Wang R, Shang J, Xiong Y, Fu Z. Peroxiredoxin 2 is associated with colorectal cancer progression and poor survival of patients. Oncotarget 2017; 8:15057-15070. [PMID: 28125800 PMCID: PMC5362467 DOI: 10.18632/oncotarget.14801] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/10/2017] [Indexed: 12/21/2022] Open
Abstract
The present study was to investigate the clinical significance of peroxiredoxin 2 (PRDX2), an oncoenzyme, in the development and progression of colorectal cancer(CRC).We found levels of PRDX2 mRNA and protein were higher in CRC cell lines than in normal human colonic epithelial cells. PRDX2 expression was significantly up-regulated in CRC lesions compared with that in the adjacent noncancerous tissues. CRC tissues from 148 of 226 (65.5%) patients revealed high level of PRDX2 protein expression in contrast to only 13 of 226 (5.8%) PRDX2 strong staining cases in the adjacent noncancerous tissues. Increased expression of PRDX2 protein was significantly associated with poor tumor differentiation (p = 0.001), advanced local invasion (p = 0.046), increased lymph node metastasis (p = 0.008), and advanced TNM stage (p = 0.020). Patients with higher PRDX2 expression had a significantly shorter disease-free survival and worse disease-specific survival than those with low expression. Importantly, PRDX2 up-regulation was an independent prognostic indicator for stage I–III, early stage (stage I-II) and advanced stage (stage III) patients. In conclusion, our findings suggest PRDX2 up-regulation correlates with tumor progression and could serve as a useful marker for the prognosis of CRC.
Collapse
Affiliation(s)
- LingLong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Rong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - JingKun Shang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - YongFu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - ZhongXue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
15
|
Kikuta K, Kubota D, Yoshida A, Qiao Z, Morioka H, Nakamura M, Matsumoto M, Chuman H, Kawai A, Kondo T. Discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2) is a novel biomarker of myxofibrosarcoma invasion identified by global protein expression profiling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1160-1166. [PMID: 28668639 DOI: 10.1016/j.bbapap.2017.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022]
Abstract
Myxofibrosarcoma (MFS) is a mesenchymal malignancy characterized by frequent recurrence even after radical wide resection. To optimize therapy for MFS patients, we aimed to identify candidate tissue biomarkers of MFS invasion potential. Invasion characteristics of MFS were evaluated by magnetic resonance imaging and protein expression profiling of primary tumor tissues performed using two-dimensional difference gel electrophoresis (2D-DIGE). Protein expression profiles were compared between invasive and non-invasive tumors surgically resected from 11 patients. Among the 3453 protein spots observed, 59 demonstrated statistically significant difference in intensity (≥2-fold) between invasive and non-invasive tumors (p<0.01 by Wilkoxon test), and were identified by mass spectrometry as 47 individual proteins. Among them, we further focused on discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2), a receptor tyrosine kinase with aberrant expression in malignant tumors. Immunohistochemistry analysis of 21 additional MFS cases revealed that higher DCBLD2 expression was significantly associated with invasive properties of tumor cells. DCBLD2 sensitivity and specificity, and positive and negative predictive values for MFS invasion were 69.2%, 87.5%, 90%, and 63.6%, respectively. The expression level of DCBLD2 was consistent in different portions of tumor tissues. Thus, DCBLD2 expression can be a useful biomarker to evaluate invasive properties of MFS. Further validation studies based on multi-institutional collaboration and comprehensive analysis of DCBLD2 biological functions in MFS are required to confirm its prognostic utility for clinical application.
Collapse
Affiliation(s)
- Kazutaka Kikuta
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Orthopedic Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Daisuke Kubota
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akihiko Yoshida
- Pathology and Clinical Laboratory Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Zhiwei Qiao
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirokazu Chuman
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
16
|
Knockdown of PRDX2 sensitizes colon cancer cells to 5-FU by suppressing the PI3K/AKT signaling pathway. Biosci Rep 2017; 37:BSR20160447. [PMID: 28432271 PMCID: PMC5426286 DOI: 10.1042/bsr20160447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/07/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023] Open
Abstract
Although, 5-Fluorouracil (5-FU) remains widely used in adjuvant therapy in patients with colon cancer, resistance to 5-FU-based chemotherapy is an important reason for treatment failure. Recent studies have reported that an enhanced reactive oxygen species (ROS) scavenging system shows drug resistance to 5-FU. Peroxiredoxin-2 (PRDX2), is an important member of the ROS scavenging system, and may be a potential target that promotes chemosensitivity to 5-FU in colon cancer. Here, we depleted PRDX2 by PRDX2-shRNA-LV transduction in two colon cancer cell lines and found that in vitro PRDX2 knockdown facilitates cell death, and apoptosis in 5-FU-treated colon cancer cells. In addition, we found that PRDX2 depletion in mice treated with 5-FU resulted in, inhibition of tumor growth, compared with mice treated with 5-FU alone. Our data also suggested that the PI3K/AKT signaling pathway links PRDX2 with 5-FU-induced apoptosis in colon cancer. Furthermore, when PRDX2 was overexpressed in colon cancer cells, we found increased p-AKT protein expression and reduced Bcl-2/Bax protein expression. PRDX2 and p-AKT protein expression were analyzed by immunohistochemistry technology in human colon carcinoma tissues. Pearson correlation coefficient is 0.873 and P<0.05. PRDX2 depletion led to reduced p-AKT expression and PI3K/AKT pathway inhibition promoted cell apoptosis in HT29 cell line. Taken together, our study suggests that decreasing the expression of PRDX2 could be a promising strategy for increasing the sensitivity of colon cancer cells to 5-FU.
Collapse
|
17
|
Ura B, Scrimin F, Franchin C, Arrigoni G, Licastro D, Monasta L, Ricci G. Identification of proteins with different abundance associated with cell migration and proliferation in leiomyoma interstitial fluid by proteomics. Oncol Lett 2017; 13:3912-3920. [PMID: 28521489 DOI: 10.3892/ol.2017.5943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Uterine leiomyoma is the most common female reproductive tract benign tumor. Little is known about protein composition and changes in the leiomyoma interstitial fluid (IF). The present study focused on changes in protein abundance in the IF of leiomyoma. Leiomyoma IFs and adjacent myometrial IFs were obtained and analyzed by two-dimensional electrophoresis (2-DE) coupled with mass spectrometry and western blotting for 2-DE data validation. A total of 25 unique proteins were observed to change significantly (P<0.05). Of these proteins with different abundance, 22 had not been previously identified in leiomyoma IF. In silico analysis predicted that three of these proteins were secreted via classical mechanisms, while 22 were secreted via non-classical mechanisms. Ingenuity Pathway Analysis identified 17 proteins associated with cellular migration and proliferation. Among these, phosphoglycerate mutase 1 had not been previously associated with leiomyoma. The abundance of seven proteins was further validated by western blotting. A comparative proteomic approach identified a number of proteins associated with cellular migration and proliferation, with changes in abundance in IF likely to be involved in tumor development. Further studies will be required to investigate the role of these proteins in leiomyoma IF and their possible association with tumor development and growth.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I-34137 Trieste, Italy
| | - Federica Scrimin
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I-34137 Trieste, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, I-35122 Padova, Italy.,Proteomics Center, University of Padua and Padua Hospital, I-35129 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, I-35122 Padova, Italy.,Proteomics Center, University of Padua and Padua Hospital, I-35129 Padova, Italy
| | - Danilo Licastro
- Consortium for Molecular Biomedicine Genomics, Area Science Park, Basovizza, I-34149 Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I-34137 Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I-34137 Trieste, Italy.,Department of Medical, Surgery and Health Sciences, University of Trieste, I-34128 Trieste, Italy
| |
Collapse
|
18
|
Redox Regulating Enzymes and Connected MicroRNA Regulators Have Prognostic Value in Classical Hodgkin Lymphomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2696071. [PMID: 28377796 PMCID: PMC5362709 DOI: 10.1155/2017/2696071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 12/28/2022]
Abstract
There are no previous studies assessing the microRNAs that regulate antioxidant enzymes in Hodgkin lymphomas (HLs). We determined the mRNA levels of redox regulating enzymes peroxiredoxins (PRDXs) I–III, manganese superoxide dismutase (MnSOD), nuclear factor erythroid-derived 2-like 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) from a carefully collected set of 41 classical HL patients before receiving any treatments. The levels of redoxmiRs, miRNAs known to regulate the above-mentioned enzymes, were also assessed, along with CD3, CD20, and CD30 protein expression. RNAs were isolated from freshly frozen lymph node samples and the expression levels were analyzed by qPCR. mir23b correlated inversely with CD3 and CD20 expressions (p = 0.00076; r = −0.523 and p = 0.0012; r = −0.507) and miR144 with CD3, CD20, and CD30 (p = 0.030; r = −0.352, p = 0.041; r = −0.333 and p = 0.0032; r = −0.47, resp.). High MnSOD mRNA levels associated with poor HL-specific outcome in the patients with advanced disease (p = 0.045) and high miR-122 levels associated with worse HL-specific survival in the whole patient population (p = 0.015). When standardized according to the CD30 expression, high miR212 and miR510 predicted worse relapse-free survival (p = 0.049 and p = 0.0058, resp.). In conclusion, several redoxmiRs and redox regulating enzyme mRNA levels associate with aggressive disease outcome and may also produce prognostic information in classical HL.
Collapse
|
19
|
Cheng DD, Li J, Li SJ, Yang QC, Fan CY. CNOT1 cooperates with LMNA to aggravate osteosarcoma tumorigenesis through the Hedgehog signaling pathway. Mol Oncol 2017; 11:388-404. [PMID: 28188704 PMCID: PMC5527480 DOI: 10.1002/1878-0261.12043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 02/02/2017] [Indexed: 01/16/2023] Open
Abstract
While treatments for childhood osteosarcoma have improved, the overall survival for this common type of bone cancer has not changed for three decades, and thus, new targets for therapeutic development are needed. To identify tumor-related proteins in osteosarcoma, we used isobaric tags in a relative and absolute quantitation proteomic approach to analyze the differentially expressed proteins between osteosarcoma cells and human osteoblastic cells. Through clinical screening and functional evaluation, CCR4-NOT transcription complex subunit 1 (CNOT1) correlated with the growth of osteosarcoma cells. To date, the mechanisms and regulatory roles of CNOT1 in tumors, including osteosarcoma, remain largely elusive. Here, we present evidence that knockdown of CNOT1 inhibits the growth of osteosarcoma in vitro and in vivo. Mechanistically, we observed that CNOT1 interacted with LMNA (lamin A) and functioned as a positive regulator of this intermediate filament protein. The RNA-seq analysis revealed that CNOT1 depletion inhibited the Hedgehog signaling pathway in osteosarcoma cells. A rescue study showed that the decreased growth of osteosarcoma cells and inhibition of the Hedgehog signaling pathway by CNOT1 depletion were reversed by LMNA overexpression, indicating that the activity of CNOT1 was LMNA dependent. Notably, the CNOT1 expression was significantly associated with tumor recurrence, Enneking stage, and poor survival in patients with osteosarcoma. Examination of clinical samples confirmed that CNOT1 expression positively correlated with LMNA protein expression. Taken together, these results suggest that the CNOT1-LMNA-Hedgehog signaling pathway axis exerts an oncogenic role in osteosarcoma progression, which could be a potential target for gene therapy.
Collapse
Affiliation(s)
- Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Shi-Jie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Cun-Yi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| |
Collapse
|
20
|
Chaiyawat P, Settakorn J, Sangsin A, Teeyakasem P, Klangjorhor J, Soongkhaw A, Pruksakorn D. Exploring targeted therapy of osteosarcoma using proteomics data. Onco Targets Ther 2017; 10:565-577. [PMID: 28203090 PMCID: PMC5295800 DOI: 10.2147/ott.s119993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite multimodal therapeutic treatments of osteosarcoma (OS), some patients develop resistance to currently available regimens and eventually end up with recurrent or metastatic outcomes. Many attempts have been made to discover effective drugs for improving outcome; however, due to the heterogeneity of the disease, new therapeutic options have not yet been identified. This study aims to explore potential targeted therapy related to protein profiles of OS. In this review of proteomics studies, we extracted data on differentially expressed proteins (DEPs) from archived literature in PubMed and our in-house repository. The data were divided into three experimental groups, DEPs in 1) OS/OB: OS vs osteoblastic (OB) cells, 2) metastasis: metastatic vs non-metastatic sublines plus fresh tissues from primary OS with and without pulmonary metastasis, and 3) chemoresistance: spheroid (higher chemoresistance) vs monolayer cells plus fresh tissues from biopsies from good and poor responders. All up-regulated protein entities in the list of DEPs were sorted and cross-referenced with identifiers of targets of US Food and Drug Administration (FDA)-approved agents and chemical inhibitors. We found that many targets of FDA-approved antineoplastic agents, mainly a group of epigenetic regulators, kinases, and proteasomes, were highly expressed in OS cells. Additionally, some overexpressed proteins were targets of FDA-approved non-cancer drugs, including immunosuppressive and antiarrhythmic drugs. The resulting list of chemical agents showed that some transferase enzyme inhibitors might have anticancer activity. We also explored common targets of OS/OB and metastasis groups, including amidophosphoribosyltransferase (PPAT), l-lactate dehydrogenase B chain (LDHB), and pyruvate kinase M2 (PKM2) as well as the common target of all categories, cathepsin D (CTSD). This study demonstrates the benefits of a text mining approach to exploring therapeutic targets related to protein expression patterns. These results suggest possible repurposing of some FDA-approved medicines for the treatment of OS and using chemical inhibitors in drug screening tests.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | | | - Apiruk Sangsin
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | - Pimpisa Teeyakasem
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | | | | | - Dumnoensun Pruksakorn
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics; Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
miR-125b and miR-100 Are Predictive Biomarkers of Response to Induction Chemotherapy in Osteosarcoma. Sarcoma 2016; 2016:1390571. [PMID: 27990096 PMCID: PMC5136640 DOI: 10.1155/2016/1390571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignancy in bone. Patients who respond poorly to induction chemotherapy are at higher risk of adverse prognosis. The molecular basis for such poor prognosis remains unclear. We investigated miRNA expression in eight open biopsy samples to identify miRNAs predictive of response to induction chemotherapy and thus maybe used for risk stratification therapy. The samples were obtained from four patients with inferior necrosis (Huvos I/II) and four patients with superior necrosis (Huvos III/IV) following induction chemotherapy. We found six miRNAs, including miR-125b and miR-100, that were differentially expressed > 2-fold (p < 0.05) in patients who respond poorly to treatment. The association between poor prognosis and the abundance of miR-125b and miR-100 was confirmed by quantitative reverse transcriptase-polymerase chain reaction in 20 additional osteosarcoma patients. Accordingly, overexpression of miR-125b and miR-100 in three osteosarcoma cell lines enhanced cell proliferation, invasiveness, and resistance to chemotherapeutic drugs such as methotrexate, doxorubicin, and cisplatin. In addition, overexpression of miR-125b blocked the ability of these chemotherapy agents to induce apoptosis. As open biopsy is routinely performed to diagnose osteosarcoma, levels of miR-125b and miR-100 in these samples may be used as basis for risk stratification therapy.
Collapse
|
22
|
Cheng DD, Yu T, Hu T, Yao M, Fan CY, Yang QC. MiR-542-5p is a negative prognostic factor and promotes osteosarcoma tumorigenesis by targeting HUWE1. Oncotarget 2016; 6:42761-72. [PMID: 26498360 PMCID: PMC4767468 DOI: 10.18632/oncotarget.6199] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
Recent evidence has demonstrated that microRNAs (miRNAs) are involved in the proliferation and metastasis of osteosarcoma. Using miRNA microarray and functional screening methods to compare miRNA expression profiles in osteosarcoma cell lines treated with Trichostatin A (TSA), overexpression of miR-542-5p was determined to be involved in the proliferation of osteosarcoma. We used isobaric tags for relative and absolute quantitation (iTRAQ) and nanoscale liquid chromatography-mass spectrometry (NanoLC−MS/MS) to identify differentially expressed proteins in MNNG/HOS and U2OS osteosarcoma cell lines transfected with miR-542-5p; in both cell lines, seven proteins were downregulated, and nine were upregulated. HUWE1 was found to be a direct target of miR-542-5p in both osteosarcoma cell lines, and was negatively correlated with miR-542-5p levels in human osteosarcoma tissues. Moreover, the expression of miR-542-5p was upregulated in human osteosarcoma tissue compared with non-tumor adjacent tissue. Kaplan-Meier analysis revealed that overexpression of miR-542-5p predicted poor prognosis for osteosarcoma patients. Taken together, our results indicated that miR-542-5p plays a critical role in the proliferation of osteosarcoma and targets HUWE1.
Collapse
Affiliation(s)
- Dong-dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tu Hu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun-yi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qing-cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Pruksakorn D, Teeyakasem P, Klangjorhor J, Chaiyawat P, Settakorn J, Diskul-Na-Ayudthaya P, Chokchaichamnankit D, Pothacharoen P, Srisomsap C. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma. Int J Oncol 2016; 49:903-12. [PMID: 27573585 PMCID: PMC4948955 DOI: 10.3892/ijo.2016.3601] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/15/2016] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma.
Collapse
Affiliation(s)
- Dumnoensun Pruksakorn
- Department of Orthopedics, Faculty of Medicine, Orthopedic Laboratory and Research Netting Center (OLARN Center), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pimpisa Teeyakasem
- Department of Orthopedics, Faculty of Medicine, Orthopedic Laboratory and Research Netting Center (OLARN Center), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeerawan Klangjorhor
- Department of Orthopedics, Faculty of Medicine, Orthopedic Laboratory and Research Netting Center (OLARN Center), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Department of Orthopedics, Faculty of Medicine, Orthopedic Laboratory and Research Netting Center (OLARN Center), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jongkolnee Settakorn
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | |
Collapse
|
24
|
Total peroxiredoxin expression is associated with survival in patients with follicular lymphoma. Virchows Arch 2016; 468:623-30. [PMID: 26983700 DOI: 10.1007/s00428-016-1920-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
Abstract
Redox state-regulating enzymes may have roles in chemoresistance and also in lymphomagenesis, but there have been only a limited number of studies on this topic in lymphomas. Our aim was to assess expression of the redox state-regulating enzymes peroxiredoxins (Prxs) I-VI and thioredoxin (Trx) and the oxidative stress marker nitrotyrosine in follicular lymphomas (FLs). We immunohistochemically assessed Prxs I-VI, Trx and nitrotyrosine in a cohort of 76 histologically confirmed, untreated FLs. We also studied the localisation of Prxs I, II, III, V and VI by means of immunoelectron microscopy (IEM). Immunohistochemistry results were correlated with disease-specific survival (DSS), progression-free survival (PFS), overall survival (OS) and clinical prognostic factors. When all Prx expression intensities were grouped as a single variable, we discovered that high total Prx intensity correlated with favourable DSS (p = 0.024) and OS (p = 0.035) but not with PFS. No deaths due to lymphoma were recorded amongst patients with high total Prx expression during the median follow-up period of 7.6 years. IEM results were in line with earlier ones demonstrating wide subcellular localisation of Prx isoenzymes. In conclusion, our results demonstrate an association between high total Prx expression and prolonged survival and suggest that Prxs may have a protective role in FL that cannot be compensated by other antioxidant mechanisms.
Collapse
|
25
|
Pan X, Yoshida A, Kawai A, Kondo T. Current status of publicly available sarcoma cell lines for use in proteomic studies. Expert Rev Proteomics 2015; 13:227-40. [PMID: 26653594 DOI: 10.1586/14789450.2016.1132166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell lines are valuable resources for proteomic studies and can be used as tools to verify the significance of proteomic findings. Here, the authors overview the current status of the publicly available sarcoma cell lines. The authors surveyed seven major cell banks and found that the diversity observed in the sarcoma cell banks was largely insufficient; sarcoma cell lines are available for only a limited histological subtype. They also observed a number of issues with the pathological diagnosis of the cell lines, limitations in their behavioral diversity, and various unmet needs. Well characterized cell lines with accurate diagnosis based on modern diagnosis criteria should be available from public cell banks. The authors conclude that additional cell lines, along with detailed genetic and pathological analyses, should be prepared and deposited in order to promote sarcoma-specific proteomic research. The authors focused on sarcoma cell lines, but their discussion can be applied to the other cancers.
Collapse
Affiliation(s)
- Xiaoqing Pan
- a Division of Rare Cancer Research , National Cancer Center Research Institute , Tokyo , Japan
| | - Akihiko Yoshida
- b Department of Pathology , National Cancer Center Hospital , Tokyo , Japan
| | - Akira Kawai
- c Division of Musculoskeletal Oncology , National Cancer Center Hospital , Tokyo , Japan
| | - Tadashi Kondo
- a Division of Rare Cancer Research , National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|
26
|
Ura B, Scrimin F, Zanconati F, Arrigoni G, Monasta L, Romano A, Banco R, Zweyer M, Milani D, Ricci G. Two-dimensional gel electrophoresis analysis of the leiomyoma interstitial fluid reveals altered protein expression with a possible involvement in pathogenesis. Oncol Rep 2015; 33:2219-26. [PMID: 25738828 DOI: 10.3892/or.2015.3827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/30/2014] [Indexed: 11/05/2022] Open
Abstract
Uterine leiomyoma is the most common smooth benign neoplasm. In the present study, we analyzed the global interstitial fluid (IF) profile of leiomyoma vs. normal myometrium to identify protein dysregulation involved in leiomyoma pathogenesis. Two-dimensional gel electrophoresis and mass spectrometry were used to generate and compare the global interstitial fluid profiles of the leiomyoma and of the normal tissue. Two proteins were validated by immunohistochemistry. By comparing the interstitial fluid profile of the leiomyoma with that of the normal myometrium, the levels of seven proteins were found to be significantly different: four structural organization proteins (desmin, prelamin-A/C, transgelin and α-actinin-1), an inflammatory response (α1-antitrypsin), a response to oxidative stress (peroxiredoxin-2), and a folding protein (heat shock 70 kDa protein 1A/1B). Desmin, α1-antitrypsin and peroxiredoxin-2 were upregulated in the leiomyoma, whereas heat shock 70 kDa protein 1A/1B, α-actinin-1, prelamin-A/C and transgelin were downregulated. Desmin and α1-antitrypsin were further validated by immunohistochemistry. By identifying proteins with altered expression levels compared to the myometrium from several pathways of the leiomyoma pathogenesis, we found the leiomyoma interstitial fluid to have a characteristic proteomic profile. A better appreciation of the pathophysiology of the disease can be useful in the development of conservative treatments that serve as viable alternatives to hysterectomy.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Federica Scrimin
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Andrea Romano
- UCO Pathological Anatomy and Histology, Azienda Ospedaliera-Universitaria Ospedali Riuniti, Trieste, Italy
| | - Rubina Banco
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Marina Zweyer
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| |
Collapse
|
27
|
Hu T, He N, Yang Y, Yin C, Sang N, Yang Q. DEC2 expression is positively correlated with HIF-1 activation and the invasiveness of human osteosarcomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:22. [PMID: 25884381 PMCID: PMC4379712 DOI: 10.1186/s13046-015-0135-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/12/2015] [Indexed: 11/10/2022]
Abstract
Background Osteosarcoma is the most common malignancy of bone. HIF-1 (hypoxia-inducible factor 1) activation is critical for the metabolic reprogramming and progression of solid tumors, and DEC2 (differentiated embryonic chondrocyte gene 2) has been recently reported to suppress HIF-1 in human breast and endometrial cancers. However, the roles of HIF-1 and DEC2 in human osteosarcomas remain unclear. Methods We evaluated the correlation of DEC2 and HIF-1 expression to the prognosis, and studied the roles of DEC2 and HIF-1 activation in the invasiveness of osteosarcoma. Multiple approaches including immunohistochemical staining of clinical osteosarcoma tissues, siRNA-based knockdown and other molecular biology techniques were used. Particularly, by using a repetitive trans-well culture-based in vitro evolution system, we selected a more invasive subpopulation (U2OS-M) of osteosarcoma cells from U2OS and used it as a model to study the roles of DEC2 and HIF-1 in the invasiveness of osteosarcoma. Results We found that the expression of DEC2 was positively correlated with HIF-1α levels, and HIF-1α expression positively correlated with poor prognosis in osteosarcomas. DEC2 knockdown in osteosarcoma cell lines (U2OS, MNNG and 143B) attenuated HIF-1α accumulation and impaired the up-regulation of HIF-1 target genes in response to hypoxia. Compared with the low invasive parental U2OS, U2OS-M showed higher levels of DEC2 expression which were confirmed at both mRNA and protein levels. Importantly, we found that the increased DEC2 expression resulted in a more rapid accumulation of HIF-1α in U2OS-M cells in response to hypoxia. Finally, we found that HIF-1 activation is sufficient to upregulate DEC2 expression in osteosarcoma cells. Conclusion Taken together, whereas DEC2 was found to promote HIF-1α degradation in other types of tumors, our data indicate that DEC2 facilitates HIF-1α stabilization and promotes HIF-1 activation in osteosarcoma. This implies that DEC2 may contribute to the progression and metastasis of human osteosarcoma by sensitizing tumor cells to hypoxia. On the other hand, HIF-1 activation may contribute to the expression of DEC2 in osteosarcoma. This is the first demonstration of a novel DEC2-HIF-1 vicious cycle in osteosarcoma and a tumor-type specific role for DEC2. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0135-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tu Hu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China.
| | - Nengbin He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China.
| | - Yunsong Yang
- Huazhong University of Science and Technology, Wuhan, China.
| | - Chengqian Yin
- Departments of Biology, Pathology & Laboratory Medicine, Drexel University CoAS, 3245 Chestnut St, PISB 417, Philadelphia, PA, 19104, USA.
| | - Nianli Sang
- Departments of Biology, Pathology & Laboratory Medicine, Drexel University CoAS, 3245 Chestnut St, PISB 417, Philadelphia, PA, 19104, USA. .,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
28
|
Park H, Noh ALSM, Kang JH, Sim JS, Lee DS, Yim M. Peroxiredoxin II negatively regulates lipopolysaccharide-induced osteoclast formation and bone loss via JNK and STAT3. Antioxid Redox Signal 2015; 22:63-77. [PMID: 25074339 PMCID: PMC4270137 DOI: 10.1089/ars.2013.5748] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Lipopolysaccharide (LPS) is considered a prominent pathogenic factor in inflammatory bone diseases. LPS challenge contributes to the production of reactive oxygen species (ROS) in diverse inflammatory diseases. However, its mechanism remains to be clarified in bone. Thus, we investigated the critical mechanism of ROS in LPS-induced osteoclastogenesis and bone loss. RESULTS Antioxidant prevented LPS-induced osteoclast formation via inhibition of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and c-Fos expression in preosteoclasts. Moreover, LPS-induced osteoclast formation via ROS was attenuated by treatment with c-Jun N-terminal protein kinase (JNK) inhibitor. Interestingly, LPS also activated signal transducer and activator of transcription 3 (STAT3), which is suppressed by antioxidants. We found that knockdown of STAT3 or use of a STAT3 inhibitor resulted in a significant reduction in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and nitric oxide (NO) production, followed by decreased osteoclast formation by LPS. Peroxiredoxin II (PrxII) is a member of the antioxidant enzyme family, and it plays a protective role against oxidative damage caused by ROS. In our study, ROS production and osteoclast formation by LPS was significantly enhanced in PrxII(-/-) cells. Moreover, JNK-mediated c-Fos and NFATc1 expression was promoted in PrxII(-/-) cells. Furthermore, STAT3 activation and accompanying IL-1β, IL-6, and NO production was also increased in PrxII(-/-) cells. Consistent with the in vitro result, PrxII-deficient mice showed increased osteoclast formation and bone loss by LPS challenge compared with wild-type mice. INNOVATION For the first time, we showed that LPS-induced ROS signaling is dependent on the coordinated mechanism of JNK and STAT3 during osteoclastogenesis, which is negatively regulated by PrxII. CONCLUSION We suggest that PrxII could be useful in the development of a novel target for inflammatory bone loss.
Collapse
Affiliation(s)
- Hyojung Park
- 1 College of Pharmacy, Sookmyung Women's University , Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Araujo TDO, Costa LT, Fernandes J, Aucélio RQ, de Campos RC. Biomarkers to assess the efficiency of treatment with platinum-based drugs: what can metallomics add? Metallomics 2014; 6:2176-88. [PMID: 25387565 DOI: 10.1039/c4mt00192c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the approval of cisplatin as an antineoplastic drug, the medical and the scientific communities have been concerned about the side effects of platinum-based drugs, and this has been the dose-limiting factor that leads to reduced treatment efficiency. Another important issue is the intrinsic or acquired resistance of some patients to treatment. Identifying proper biomarkers is crucial in evaluating the efficiency of a treatment, assisting physicians in determining, at early stages, whether or not the patient presents resistance to the drug, minimizing severe side effects, and allowing them to redirect the established course of chemotherapy. A great effort is being made to identify biomarkers that can be used to predict the outcome of the treatment of cancer patients with platinum-based drugs. In this context, the metallomic approach has not yet been used to its full potential. Since the basis of these drugs is platinum, the monitoring of biomarkers containing this metal should be the natural approach to evaluate treatment progress. This review intends to show where the research in this field stands and points out some gaps that can be filled by metallomics.
Collapse
|
30
|
Mimae T, Ito A. New challenges in pseudopodial proteomics by a laser-assisted cell etching technique. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:538-46. [PMID: 25461796 DOI: 10.1016/j.bbapap.2014.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022]
Abstract
Pseudopodia are ventral membrane protrusions that extend toward higher concentrations of chemoattractants and play key roles in cell migration and cancer cell invasion. Cancers, including carcinoma and sarcoma, become life threatening when they invade surrounding structures and other organs. Understanding the molecular basis of invasiveness is important for the elimination of cancers. Thus, determining the pseudopodial composition will offer insights into the mechanisms underlying tumor cell invasiveness and provide potential biomarkers and therapeutic targets. Pseudopodial composition has been extensively investigated by using proteomic approaches. A variety of modalities, including gel-based and mass spectrometry-based methods, have been employed for pseudopodial proteomics. Our research group recently established a novel method using excimer laser pulses to selectively harvest pseudopodia, and we successfully identified a number of new pseudopodial constituents. Here, we summarized the conventional proteomic procedures and describe our new excimer laser-assisted method, with a special emphasis on the differences in the methods used to isolate pseudopodia. In addition, we discussed the theoretical background for the use of excimer laser-mediated cell ablation in proteomic applications. Using the excimer laser-assisted method, we showed that alpha-parvin, an actin-binding adaptor protein, is localized to pseudopodia, and is involved in breast cancer invasiveness. Our results clearly indicate that excimer laser-assisted cell etching is a useful technique for pseudopodial proteomics. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Takahiro Mimae
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka 589-8511, Japan
| |
Collapse
|
31
|
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone and the third most common cancer in childhood and adolescence. Nowadays, early diagnosis, drug resistance and recurrence of the disease represent the major challenges in OS treatment. Post-genomics, and in particular proteomic technologies, offer an invaluable opportunity to address the level of biological complexity expressed by OS. Although the main goal of OS oncoproteomics is focused on diagnostic and prognostic biomarker discovery, in this review we describe and discuss global protein profiling approaches to other aspects of OS biology and pathophysiology, or to investigate the mechanism of action of chemotherapeutics. In addition, we present proteomic analyses carried out on OS cell lines as in vitro models for studying osteoblastic cell biology and the attractive opportunity offered by proteomics of OS cancer stem cells.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, via Fiorentina 1, Università degli Studi di Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
32
|
Abstract
Osteosarcoma (OS), the commonest malignancy of osteoarticular origin, is a very aggressive neoplasm. Divergent histologic differentiation is common in OS; hence triple diagnostic approach is essential in all cases. 20% cases are atypical owing to lack of concurrence among clinicoradiologic and pathologic features necessitating resampling. Recognition of specific anatomic and histologic variants is essential in view of better outcome. Traditional prognostic factors of OS do stratify patients for short term outcome, but often fail to predict their long term outcome. Considering the negligible improvement in the patient outcome during the last 20 years, search for novel prognostic factors is in progress like ezrin vascular endothelial growth factor, chemokine receptors, dysregulation of various micro ribonucleic acid are potentially promising. Their utility needs to be validated by long term followup studies before they are incorporated in routine clinical practice.
Collapse
Affiliation(s)
- Neelam Wadhwa
- Department of Pathology, University College of Medical Sciences, University of Delhi, Shahdra, New Delhi, India,Address for correspondence: Dr. Neelam Wadhwa, Department of Pathology, University College of Medical Sciences, University of Delhi, Shahdra, New Delhi - 110 095, India. E-mail:
| |
Collapse
|