1
|
Paes LCF, Lima DB, Silva DMAD, Valentin JT, Aquino PEAD, García-Jareño AB, Orzaéz M, Fonteles MMDF, Martins AMC. Exploring the neuroprotective potential of antimicrobial peptides from Dinoponera quadriceps venom against pentylenetetrazole-induced seizures in vivo. Toxicon 2024; 237:107538. [PMID: 38030096 DOI: 10.1016/j.toxicon.2023.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Epilepsy affects around 50 million people worldwide and 30% of patients have difficulty controlling the disease. The search for substances that can fill the existing gaps in the treatment of epilepsy is of great importance. Arthropod venoms are promising sources for this purpose due to the presence of small peptides that modulate the activity of ion channels and neuron receptors. The aim of this study was to investigate dinoponeratoxins from the Dinoponera quadriceps ant venom (M-PONTX-Dq3a, M-PONTX-Dq3b and M-PONTX-Dq3c) as potential anticonvulsants. We evaluated them in a seizure model induced by pentylenetetrazole (PTZ) in male swiss mice. Interestingly, intraperitoneal treatment with each peptide increased the time until the first seizure and the percentage of survival, with M-PONTX-Dq3b showing the best results. M-PONTX-Dq3a was discarded due to the appearance of some signs of toxicity with the increase in malondialdehyde (MDA) levels in the striatum. Both, M-PONTX-Dq3b and M-PONTX-Dq3c decreased iNOS and TNF-α in the hippocampus. Notably, M-PONTX-Dq3c treatment decreased the levels of MDA and nitrite in the cortex and hippocampus. Our results indicate that, M-PONTX-Dq3b and M-PONTX-Dq3c have anticonvulsant activity and exhibit anti-inflammatory effects in epilepsy, offering new perspectives for biopharmaceutical development.
Collapse
Affiliation(s)
- Livia Correia Fernandes Paes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | - Dânya Bandeira Lima
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil.
| | - Daniel Moreira Alves da Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | - José Tiago Valentin
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | | | - Alicia Belén García-Jareño
- Targeted Therapies on Cancer and Inflammation Lab and Peptide Synthesis Platform, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Mar Orzaéz
- Targeted Therapies on Cancer and Inflammation Lab and Peptide Synthesis Platform, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Marta Maria de França Fonteles
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil.
| |
Collapse
|
2
|
Ascoët S, Touchard A, Téné N, Lefranc B, Leprince J, Paquet F, Jouvensal L, Barassé V, Treilhou M, Billet A, Bonnafé E. The mechanism underlying toxicity of a venom peptide against insects reveals how ants are master at disrupting membranes. iScience 2023; 26:106157. [PMID: 36879819 PMCID: PMC9985030 DOI: 10.1016/j.isci.2023.106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Hymenopterans represent one of the most abundant groups of venomous organisms but remain little explored due to the difficult access to their venom. The development of proteo-transcriptomic allowed us to explore diversity of their toxins offering interesting perspectives to identify new biological active peptides. This study focuses on U9 function, a linear, amphiphilic and polycationic peptide isolated from ant Tetramorium bicarinatum venom. It shares physicochemical properties with M-Tb1a, exhibiting cytotoxic effects through membrane permeabilization. In the present study, we conducted a comparative functional investigation of U9 and M-Tb1a and explored the mechanisms underlying their cytotoxicity against insect cells. After showing that both peptides induced the formation of pores in cell membrane, we demonstrated that U9 induced mitochondrial damage and, at high concentrations, localized into cells and induced caspase activation. This functional investigation highlighted an original mechanism of U9 questioning on potential valorization and endogen activity in T. bicarinatum venom.
Collapse
Affiliation(s)
- Steven Ascoët
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP316 97310 Kourou, France
| | - Nathan Téné
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Benjamin Lefranc
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Laurence Jouvensal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Valentine Barassé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Michel Treilhou
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Arnaud Billet
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Elsa Bonnafé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| |
Collapse
|
3
|
Guimarães DO, Ferro M, Santos TS, Costa TR, Yoneyama KAG, Rodrigues VDM, Henrique-Silva F, Rodrigues RS. Transcriptomic and biochemical analysis from the venom gland of the neotropical ant Odontomachus chelifer. Toxicon 2023; 223:107006. [PMID: 36572114 DOI: 10.1016/j.toxicon.2022.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
The genus Odontomachus is widely distributed in neotropical areas throughout Central and South America. It is a stinging ant that subdues its prey (insects) by injecting them a cocktail of toxic molecules (venom). Ant venoms are generally composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Odontomachus chelifer is an ant that inhabits neotropical regions from Mexico to Argentina. Unlike the venom of other animals such as scorpions, spiders and snakes, this ant venom has seldom been analyzed comprehensively, and their compositions are not yet completely known. In the present study, we performed a partial investigation of enzymatic and functional activities of O. chelifer ant venom, and we provide a global insight on the transcripts expressed in the venom gland to better understand their properties. The crude venom showed phospholipase A2 and antiparasitic activities. RNA sequencing (Illumina platform) of the venom gland of O. chelifer generated 61, 422, 898 reads and de novo assembly Trinity generated 50,220 contigs. BUSCO analysis against Arthropoda_db10 showed that 92.89% of the BUSCO groups have complete gene representation (single-copy or duplicated), while 4.05% are only partially recovered, and 3.06% are missing. The 30 most expressed genes in O. chelifer venom gland transcriptome included important transcripts involved in venom function such as U-poneritoxin (01)-Om1a-like (pilosulin), chitinase 2, venom allergen 3, chymotrypsin 1 and 2 and glutathione S-transferase. Analysis of the molecular function revealed that the largest number of transcripts were related to catalytic activity, including phospholipases. These data emphasize the potential of O. chelifer venom for prospection of molecules with biotechnological application.
Collapse
Affiliation(s)
- Denise Oliveira Guimarães
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Thamires Silva Santos
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Tassia Rafaela Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Flávio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luis, Km 235, São Carlos, 13565-905, SP, Brazil.
| | - Renata Santos Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
4
|
Guido-Patiño JC, Plisson F. Profiling hymenopteran venom toxins: Protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 2022; 14:100119. [PMID: 35372826 PMCID: PMC8971319 DOI: 10.1016/j.toxcx.2022.100119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hymenopterans are an untapped source of venom secretions. Their recent proteo-transcriptomic studies have revealed an extraordinary pool of toxins that participate in various biological processes, including pain, paralysis, allergic reactions, and antimicrobial activities. Comprehensive and clade-specific campaigns to collect hymenopteran venoms are therefore needed. We consider that data-driven bioprospecting may help prioritise sampling and alleviate associated costs. This work established the current protein landscape from hymenopteran venoms to evaluate possible sample bias by studying their origins, sequence diversity, known structures, and biological functions. We collected all 282 reported hymenopteran toxins (peptides and proteins) from the UniProt database that we clustered into 21 protein families from the three studied clades - wasps, bees, and ants. We identified 119 biological targets of hymenopteran toxins ranging from pathogen membranes to eukaryotic proteases, ion channels and protein receptors. Our systematic study further extended to hymenopteran toxins' therapeutic and biotechnological values, where we revealed promising applications in crop pests, human infections, autoimmune diseases, and neurodegenerative disorders. The hymenopteran toxin diversity includes 21 protein families from 81 species. Some toxins are shared across wasps, bees and ants, others are clade-specific. Their venoms contain membrane-active peptides, neurotoxins, allergens and enzymes. Hymenopteran toxins have been tested against a total of 119 biological targets. Hymenopteran toxins were predominantly evaluated as anti-infective agents.
Collapse
Affiliation(s)
- Juan Carlos Guido-Patiño
- Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
- Corresponding author.
| |
Collapse
|
5
|
Yoon KA, Kim WJ, Lee SH. Expression profiles of venom components in some social hymenopteran species over different post-capture periods. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109247. [PMID: 34826612 DOI: 10.1016/j.cbpc.2021.109247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
Abstract
To explore and compare the expression patterns of venom components depending on post-capture periods, venom gland-specific transcriptome and proteome analyses were conducted for five model hymenopteran species at a series of time points after capture. Venom gland-specific genes with signal sequences were considered as putative venom component genes. Expression patterns of venom gland-specific genes in all the social wasps and bees examined varied considerably depending on the post-capture period. Higher numbers of venom genes exhibited a decreasing expression pattern than an increasing pattern as the capture period increased. For example, genes encoding most of the allergens (dipeptidyl peptidase 4, endocuticle structural glycoprotein, odorant-binding protein, phospholipase A1, A2, B1, serine protease, serine protease inhibitor and venom allergen 5), pain-producing factor (mast cell degranulating peptide), and paralyzing factor (neprilysin) commonly exhibited decreasing expression patterns in all of the hymenopteran species tested, except for some of the major venom genes in Apis mellifera and Bombus ignitus, which showed an increasing pattern. These findings indicate species- or group-specific variations in the expression patterns of major venom genes. Taken together, flash freezing in liquid nitrogen immediately after capture was determined to be the best way to obtain the most natural expression profiles of venom components in social wasp species, thus, enabling a better understanding of the toxic potential of venom in wasp sting accidents. This study provides guidance for establishing optimal protocols for venom gland isolation and venom extraction from wasps and bees that can ensure the most naturally represented venom composition.
Collapse
Affiliation(s)
- Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woo-Jin Kim
- EntoCode Co., Seoul 06028, Republic of Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Shedding Lights on Crude Venom from Solitary Foraging Predatory Ant Ectatomma opaciventre: Initial Toxinological Investigation. Toxins (Basel) 2022; 14:toxins14010037. [PMID: 35051015 PMCID: PMC8781531 DOI: 10.3390/toxins14010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/17/2023] Open
Abstract
Some species of primitive predatory ants, despite living in a colony, exercise their hunting collection strategy individually; their venom is painful, paralyzing, digestive, and lethal for their prey, yet the toxins responsible for these effects are poorly known. Ectatomma opaciventre is a previously unrecorded solitary hunting ant from the Brazilian Cerrado. To overcome this hindrance, the present study performed the in vitro enzymatic, biochemical, and biological activities of E. opaciventre to better understand the properties of this venom. Its venom showed several proteins with masses ranging from 1-116 kDa, highlighting the complexity of this venom. Compounds with high enzymatic activity were described, elucidating different enzyme classes present in the venom, with the presence of the first L-amino acid oxidase in Hymenoptera venoms being reported. Its crude venom contributes to a state of blood incoagulability, acting on primary hemostasis, inhibiting collagen-induced platelet aggregation, and operating on the fibrinolysis of loose red clots. Furthermore, the E. opaciventre venom preferentially induced cytotoxic effects on lung cancer cell lines and three different species of Leishmania. These data shed a comprehensive portrait of enzymatic components, biochemical and biological effects in vitro, opening perspectives for bio-pharmacological application of E. opaciventre venom molecules.
Collapse
|
7
|
Robinson SD, Kambanis L, Clayton D, Hinneburg H, Corcilius L, Mueller A, Walker AA, Keramidas A, Kulkarni SS, Jones A, Vetter I, Thaysen-Andersen M, Payne RJ, King GF, Undheim EAB. A pain-causing and paralytic ant venom glycopeptide. iScience 2021; 24:103175. [PMID: 34693225 PMCID: PMC8517206 DOI: 10.1016/j.isci.2021.103175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Ants (Hymenoptera: Formicidae) are familiar inhabitants of most terrestrial environments. Although we are aware of the ability of many species to sting, knowledge of ant venom chemistry remains limited. Herein, we describe the discovery and characterization of an O-linked glycopeptide (Mg7a) as a major component of the venom of the ant Myrmecia gulosa. Electron transfer dissociation and higher-energy collisional dissociation tandem mass spectrometry were used to localize three α-N-acetylgalactosaminyl residues (α-GalNAc) present on the 63-residue peptide. To allow for functional studies, we synthesized the full-length glycosylated peptide via solid-phase peptide synthesis, combined with diselenide-selenoester ligation-deselenization chemistry. We show that Mg7a is paralytic and lethal to insects, and triggers pain behavior and inflammation in mammals, which it achieves through a membrane-targeting mode of action. Deglycosylation of Mg7a renders it insoluble in aqueous solution, suggesting a key solubilizing role of the O-glycans.
Collapse
Affiliation(s)
- Samuel D Robinson
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Daniel Clayton
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Hannes Hinneburg
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Alexander Mueller
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, St Lucia, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, St Lucia, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, The University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
8
|
dos Santos AT, Cruz GS, Baptista GR. Anti-inflammatory activities of arthropod peptides: a systematic review. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200152. [PMID: 34795699 PMCID: PMC8564866 DOI: 10.1590/1678-9199-jvatitd-2020-0152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.
Collapse
Affiliation(s)
- Ariane Teixeira dos Santos
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriela Silva Cruz
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gandhi Rádis Baptista
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Global View on Ant Venom Allergy: from Allergenic Components to Clinical Management. Clin Rev Allergy Immunol 2021; 62:123-144. [PMID: 34075569 DOI: 10.1007/s12016-021-08858-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Hymenoptera venom allergy is characterised by systemic anaphylactic reactions that occur in response to stings from members of the Hymenoptera order. Stinging by social Hymenoptera such as ants, honeybees, and vespids is one of the 3 major causes of anaphylaxis; along with food and drug exposure, it accounts for up to 43% of anaphylaxis cases and 20% of anaphylaxis-related fatalities. Despite their recognition as being of considerable public health significance, stinging ant venoms are relatively unexplored in comparison to other animal venoms and may be overlooked as a cause of venom allergy. Indeed, the venoms of stinging ants may be the most common cause of anaphylaxis in ant endemic areas. A better understanding of the natural history of venom allergy caused by stinging ants, their venom components, and the management of ant venom allergy is therefore required. This article provides a global view on allergic reactions to the venoms of stinging ants and the contemporary approach to diagnose and manage ant venom allergy.
Collapse
|
10
|
Rocha LQ, Orzaéz M, García-Jareño AB, Nunes JVS, Duque BR, Sampaio TL, Alves RS, Lima DB, Martins AMC. Dinoponera quadriceps venom as a source of active agents against Staphylococcus aureus. Toxicon 2020; 189:33-38. [PMID: 33188823 DOI: 10.1016/j.toxicon.2020.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is a highly virulent pathogen, capable of biofilm formation and responsible for thousands of deaths each year. The prevalence of Methicillin-Resistant S. aureus (MRSA) strains has increased in recent years and thus, the development of new antibiotics has become necessary. Antimicrobial Peptides (AMPs) are effective against a variety of multidrug-resistant bacteria and low levels of resistance have been reported regarding these molecules. Dinoponera quadriceps ant venom (DqV) has been described regarding its effect against S. aureus. In this study, we have evaluated the antibacterial effect of DqV-AMPs, the dinoponeratoxins (DNTxs), against Methicillin-Sensitive and a Methicillin-Resistant S. aureus strains. Our results show DNTx M-PONTX-Dq3a as a potent inhibitor of both strains, being able to prevent biofilm formation at low micromolar range (0.78-3.12 μM). It also showed a short-time effect through membrane disruption. M-PONTX-Dq3a opens up new perspectives for the prevention of biofilm formation through the development of anti-adhesive surface coatings on medical devices, as well as the treatment of resistant strains in skin or soft tissue infections.
Collapse
Affiliation(s)
- Larissa Queiroz Rocha
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mar Orzaéz
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Joao Victor Serra Nunes
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bruna Ribeiro Duque
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renata Sousa Alves
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Dânya Bandeira Lima
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
11
|
Dodou Lima HV, Sidrim de Paula Cavalcante C, Rádis-Baptista G. Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant Dinoponera quadriceps venom, against carbapenem-resistant bacteria. Toxicon 2020; 187:19-28. [DOI: 10.1016/j.toxicon.2020.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
|
12
|
Yu C, Yu H, Li P. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy. Int J Biol Macromol 2020; 165:2994-3006. [PMID: 33122066 DOI: 10.1016/j.ijbiomac.2020.10.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023]
Abstract
Geographical variation of animal venom is common among venomous animals. This kind of intraspecific variation based on geographical location mainly concerned from envenomation cases and brought new problems in animal venom studies, including venom components regulatory mechanisms, differentiation of venom activities, and clinical treatment methods. At present, food is considered as the most related factor influencing venom development. Related research defined the variational venomous animal species by the comparison of venom components and activities in snakes, jellyfish, scorpions, cone snails, ants, parasitoid wasps, spiders and toads. In snake venom studies, researchers found that antivenom effectiveness was variated to different located venom samples. As described in some snake venom research, developing region-specific antivenom is the development trend. The difficulties of developing region-specific antivenom and theoretical solutions have been discussed. This review summarized biological studies of animal venom geographical variation by species, compared venom components and major biological activities of the vary venom from the same species, and listed the basic methods in comparing venom protein compositions and major toxicity differences to provide a comprehensive reference.
Collapse
Affiliation(s)
- Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
13
|
Reynaud S, Ciolek J, Degueldre M, Saez NJ, Sequeira AF, Duhoo Y, Brás JLA, Meudal H, Cabo Díez M, Fernández Pedrosa V, Verdenaud M, Boeri J, Pereira Ramos O, Ducancel F, Vanden Driessche M, Fourmy R, Violette A, Upert G, Mourier G, Beck-Sickinger AG, Mörl K, Landon C, Fontes CMGA, Miñambres Herráiz R, Rodríguez de la Vega RC, Peigneur S, Tytgat J, Quinton L, De Pauw E, Vincentelli R, Servent D, Gilles N. A Venomics Approach Coupled to High-Throughput Toxin Production Strategies Identifies the First Venom-Derived Melanocortin Receptor Agonists. J Med Chem 2020; 63:8250-8264. [PMID: 32602722 DOI: 10.1021/acs.jmedchem.0c00485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal venoms are rich in hundreds of toxins with extraordinary biological activities. Their exploitation is difficult due to their complexity and the small quantities of venom available from most venomous species. We developed a Venomics approach combining transcriptomic and proteomic characterization of 191 species and identified 20,206 venom toxin sequences. Two complementary production strategies based on solid-phase synthesis and recombinant expression in Escherichia coli generated a physical bank of 3597 toxins. Screened on hMC4R, this bank gave an incredible hit rate of 8%. Here, we focus on two novel toxins: N-TRTX-Preg1a, exhibiting an inhibitory cystine knot (ICK) motif, and N-BUTX-Ptr1a, a short scorpion-CSαβ structure. Neither N-TRTX-Preg1a nor N-BUTX-Ptr1a affects ion channels, the known targets of their toxin scaffolds, but binds to four melanocortin receptors with low micromolar affinities and activates the hMC1R/Gs pathway. Phylogenetically, these two toxins form new groups within their respective families and represent novel hMC1R agonists, structurally unrelated to the natural agonists.
Collapse
Affiliation(s)
- Steve Reynaud
- Université Paris-Sud, 15 Rue Georges Clemenceau, Orsay 91405 France.,Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Justyna Ciolek
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Michel Degueldre
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium.,Department of Analytical Science Biologicals, UCB, Chemin du Foriest, Braine L'Alleud 1420 Belgium
| | - Natalie J Saez
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France.,Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Ana Filipa Sequeira
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Yoan Duhoo
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France.,Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Joana L A Brás
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Hervé Meudal
- Centre National de la Recherche Scientifique, Centre de Biophysique Moléculaire, rue Charles Sadron, Orléans 45071 France
| | - Miguel Cabo Díez
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | - Victoria Fernández Pedrosa
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | - Marion Verdenaud
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Julia Boeri
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Oscar Pereira Ramos
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Frédéric Ducancel
- Université Paris Saclay, CEA, Département IDMIT, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Margot Vanden Driessche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, Montroeul-au-bois 7911 Belgium
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, Montroeul-au-bois 7911 Belgium
| | - Grégory Upert
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Gilles Mourier
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | | | - Karin Mörl
- Institute of Biochemistry, Universitat Leipzig, Leipzig 04103 Germany
| | - Céline Landon
- Centre National de la Recherche Scientifique, Centre de Biophysique Moléculaire, rue Charles Sadron, Orléans 45071 France
| | - Carlos M G A Fontes
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Rebeca Miñambres Herráiz
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | | | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Herestraat 49, Leuven 3000 Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Herestraat 49, Leuven 3000 Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France
| | - Denis Servent
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Nicolas Gilles
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| |
Collapse
|
14
|
Rádis-Baptista G, Dodou HV, Prieto-da-Silva ÁRB, Zaharenko AJ, Kazuma K, Nihei KI, Inagaki H, Mori-Yasumoto K, Konno K. Comprehensive analysis of peptides and low molecular weight components of the giant ant Dinoponera quadriceps venom. Biol Chem 2020; 401:945-954. [PMID: 32229648 DOI: 10.1515/hsz-2019-0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Ants (Hymenoptera, Apocrita, Aculeata, Formicoidea) comprise a well-succeeded group of animals. Like bees and wasps, ants are mostly venomous, having a sting system to deliver a mixture of bioactive organic compounds and peptides. The predatory giant ant Dinoponera quadriceps belongs to the subfamily Ponerinae that includes one of the largest known ant species in the world. In the present study, low molecular weight compounds and peptides were identified by online peptide mass fingerprint. These include neuroactive biogenic amines (histamine, tyramine, and dopamine), monoamine alkaloid (phenethylamine), free amino acids (e.g. glutamic acid and proline), free thymidine, and cytosine. To the best of our knowledge, most of these components are described for the first time in an ant venom. Multifunctional dinoponeratoxin peptide variants (pilosulin- and ponericin-like peptides) were characterized that possess antimicrobial, hemolytic, and histamine-releasing properties. These venom components, particularly peptides, might synergistically contribute to the overall venom activity and toxicity, for immobilizing live prey, and for defending D. quadriceps against aggressors, predators, and potential microbial infection.
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Av da Abolição 3207, Fortaleza 60165-081, CE, Brazil
| | - Hilania V Dodou
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Av da Abolição 3207, Fortaleza 60165-081, CE, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | | | - André J Zaharenko
- Laboratory of Genetics, Butantan Institute, Sao Paulo 05503-900, SP, Brazil
| | - Kohei Kazuma
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
- present address: Eco-Frontier Center of Medicinal Resources, School of Pharmacy, Kumamoto University, 5-1 Oe, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ken-Ichi Nihei
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Hidetoshi Inagaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kanami Mori-Yasumoto
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
15
|
Antifungal In Vitro Activity of Pilosulin- and Ponericin-Like Peptides from the Giant Ant Dinoponera quadriceps and Synergistic Effects with Antimycotic Drugs. Antibiotics (Basel) 2020; 9:antibiotics9060354. [PMID: 32585881 PMCID: PMC7344683 DOI: 10.3390/antibiotics9060354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Venoms from ants comprise a rich source of bioactive peptides, including antimicrobial peptides. From the proteome and peptidome of the giant ant Dinoponera quadriceps venom, members of five known classes of antimicrobial peptides were disclosed (e.g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like types). Based on comparative analysis, these family members have structural determinants that indicate they could display antimicrobial activities. In previous works, pilosulin- and ponericin-like peptides were demonstrated to be active against bacteria, fungi, and parasites. Herein, the antifungal activity of ponericin- and pilosulin-like peptides were assessed, aiming at the expansion of the knowledge about AMPs in predatory ants and the development of new microbicide strategies to deal with difficult-to-treat fungal infections. Synthetic pilosulin- (Dq-2562, Dq-1503, and Dq-1319) and ponericin-like (Dq-3162) peptides were evaluated for their fungicide and fungistatic activities against different species of Candida, including a drug-resistant clinical strain. The MICs and MLCs were determined for all peptides individually and in combination with general antifungal drugs by the microdilution method. The time-kill kinetic curves were set up by means of a luminescent reagent, of which the light signal is proportional to the number of viable cells. The candicidal synergism observed by the combination of subinhibitory concentrations of peptides and general antimycotic drugs were quantified by the checkerboard test and fluorescent dye permeation assay. The influence of ergosterol on the antifungal activity was verified by supplementation of culture medium. The pilosulin- (Dq-2562 and Dq-1503) and ponericin-like (Dq-3162) were the most active peptides, displaying a broad spectrum of antifungal activity in vitro, with MICs in the range of 0.625 to 10 µM. The combination of peptides and conventional antimycotic drugs displayed a synergistic reduction in the MIC values of individual peptides and drugs, while soluble ergosterol in the culture medium increased the MICs. The fungicide and fungistatic activity of the individual peptides and peptides in combination with antimycotics were time-dependent with a rapid onset of action and long-lasting effect, which involved membrane disruption as an underlying mechanism of their action. Altogether, pilosulin- and ponericin-like peptides from the giant ant D. quadriceps venom display a broad-spectrum of candicidal activity, what allows their inclusion in the row of the antifungal peptides and gives support for further studies on the development of strategies to fight candidiasis.
Collapse
|
16
|
Firmino ELB, Mendonça A, Michelutti KB, Bernardi RC, Lima-Junior SE, Cardoso CAL, Antonialli-Junior WF. Intraspecific variation of cuticular hydrocarbons and apolar compounds in the venom of Ectatomma brunneum. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Touchard A, Aili SR, Téné N, Barassé V, Klopp C, Dejean A, Kini RM, Mrinalini, Coquet L, Jouenne T, Lefranc B, Leprince J, Escoubas P, Nicholson GM, Treilhou M, Bonnafé E. Venom Peptide Repertoire of the European Myrmicine Ant Manica rubida: Identification of Insecticidal Toxins. J Proteome Res 2020; 19:1800-1811. [PMID: 32182430 DOI: 10.1021/acs.jproteome.0c00048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using an integrated transcriptomic and proteomic approach, we characterized the venom peptidome of the European red ant, Manica rubida. We identified 13 "myrmicitoxins" that share sequence similarities with previously identified ant venom peptides, one of them being identified as an EGF-like toxin likely resulting from a threonine residue modified by O-fucosylation. Furthermore, we conducted insecticidal assays of reversed-phase HPLC venom fractions on the blowfly Lucilia caesar, permitting us to identify six myrmicitoxins (i.e., U3-, U10-, U13-, U20-MYRTX-Mri1a, U10-MYRTX-Mri1b, and U10-MYRTX-Mri1c) with an insecticidal activity. Chemically synthesized U10-MYRTX-Mri1a, -Mri1b, -Mri1c, and U20-MYRTX-Mri1a irreversibly paralyzed blowflies at the highest doses tested (30-125 nmol·g-1). U13-MYRTX-Mri1a, the most potent neurotoxic peptide at 1 h, had reversible effects after 24 h (150 nmol·g-1). Finally, U3-MYRTX-Mri1a has no insecticidal activity, even at up to 55 nmol·g-1. Thus, M. rubida employs a paralytic venom rich in linear insecticidal peptides, which likely act by disrupting cell membranes.
Collapse
Affiliation(s)
- Axel Touchard
- Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Samira R Aili
- Neurotoxin Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nathan Téné
- Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Valentine Barassé
- Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Christophe Klopp
- Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, INRA Toulouse, 31326 Castanet-Tolosan, France
| | - Alain Dejean
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRAE, Université des Antilles, Université de la Guyane, 97310 Kourou, France.,Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543 Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Mrinalini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543 Singapore
| | - Laurent Coquet
- CNRS UMR 6270, Normandie University, UNIROUEN, PISSARO, 76130 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- CNRS UMR 6270, Normandie University, UNIROUEN, PISSARO, 76130 Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- Inserm U 1239, Normandie University, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN), 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U 1239, Normandie University, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN), 76000 Rouen, France
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines - Villa 3, 06560 Valbonne, France
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michel Treilhou
- Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Elsa Bonnafé
- Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| |
Collapse
|
18
|
Development of an LC-MS multivariate nontargeted methodology for differential analysis of the peptide profile of Asian hornet venom (Vespa velutina nigrithorax): application to the investigation of the impact of collection period variation. Anal Bioanal Chem 2020; 412:1419-1430. [PMID: 31940089 DOI: 10.1007/s00216-019-02372-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Insect venom is a highly complex mixture of bioactive compounds, containing proteins, peptides, and small molecules. Environmental factors can alter the venom composition and lead to intraspecific variation in its bioactivity properties. The investigation of discriminating compounds caused by variation impacts can be a key to manage sampling and explore the bioactive compounds. The present study reports the development of a peptidomic methodology based on UHPLC-ESI-QTOF-HRMS analysis followed by a nontargeted multivariate analysis to reveal the profile variance of Vespa velutina venom collected in different conditions. The reliability of the approach was enhanced by optimizing certain XCMS data processing parameters and determining the sample peak threshold to eliminate the interfering features. This approach demonstrated a good repeatability and a criterion coefficient of variation (CV) > 30% was set for deleting nonrepeatable features from the matrix. The methodology was then applied to investigate the impact of collection period variation. PCA and PLS-DA models were used and validated by cross-validation and permutation tests. A slight discrimination was found between winter and summer hornet venom in two successive years with 10 common discriminating compounds. Graphical abstract.
Collapse
|
19
|
Leal LC, Silva DP, Peixoto PE. When the company does not matter: High-quality ant seed-disperser does not drive the spatial distribution of large-seeded myrmecochorous plants. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura C. Leal
- Departamento de Ecologia e Biologia Evolutiva; Universidade Federal de São Paulo; Rua Conceição, 215, 09972-270 Diadema Brazil
| | - Daniel Paiva Silva
- COBIMA Lab; Departamento de Ciências Biológicas; Instituto Federal Goiano; Urutaí Goiás Brazil
| | - Paulo E.C. Peixoto
- Departamento de Genética; Universidade Federal de Minas Gerais; Ecologia e Evolução Belo Horizonte Brazil
| |
Collapse
|
20
|
The Peptide Venom Composition of the Fierce Stinging Ant Tetraponera aethiops (Formicidae: Pseudomyrmecinae). Toxins (Basel) 2019; 11:toxins11120732. [PMID: 31847368 PMCID: PMC6950161 DOI: 10.3390/toxins11120732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC–MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.
Collapse
|
21
|
Ceolin Mariano DO, de Oliveira ÚC, Zaharenko AJ, Pimenta DC, Rádis-Baptista G, Prieto-da-Silva ÁRDB. Bottom-Up Proteomic Analysis of Polypeptide Venom Components of the Giant Ant Dinoponera Quadriceps. Toxins (Basel) 2019; 11:toxins11080448. [PMID: 31362422 PMCID: PMC6722740 DOI: 10.3390/toxins11080448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
Ant species have specialized venom systems developed to sting and inoculate a biological cocktail of organic compounds, including peptide and polypeptide toxins, for the purpose of predation and defense. The genus Dinoponera comprises predatory giant ants that inoculate venom capable of causing long-lasting local pain, involuntary shaking, lymphadenopathy, and cardiac arrhythmias, among other symptoms. To deepen our knowledge about venom composition with regard to protein toxins and their roles in the chemical-ecological relationship and human health, we performed a bottom-up proteomics analysis of the crude venom of the giant ant D. quadriceps, popularly known as the "false" tocandiras. For this purpose, we used two different analytical approaches: (i) gel-based proteomics approach, wherein the crude venom was resolved by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and all protein bands were excised for analysis; (ii) solution-based proteomics approach, wherein the crude venom protein components were directly fragmented into tryptic peptides in solution for analysis. The proteomic data that resulted from these two methodologies were compared against a previously annotated transcriptomic database of D. quadriceps, and subsequently, a homology search was performed for all identified transcript products. The gel-based proteomics approach unequivocally identified nine toxins of high molecular mass in the venom, as for example, enzymes [hyaluronidase, phospholipase A1, dipeptidyl peptidase and glucose dehydrogenase/flavin adenine dinucleotide (FAD) quinone] and diverse venom allergens (homologous of the red fire ant Selenopsis invicta) and venom-related proteins (major royal jelly-like). Moreover, the solution-based proteomics revealed and confirmed the presence of several hydrolases, oxidoreductases, proteases, Kunitz-like polypeptides, and the less abundant inhibitor cysteine knot (ICK)-like (knottin) neurotoxins and insect defensin. Our results showed that the major components of the D. quadriceps venom are toxins that are highly likely to damage cell membranes and tissue, to cause neurotoxicity, and to induce allergic reactions, thus, expanding the knowledge about D. quadriceps venom composition and its potential biological effects on prey and victims.
Collapse
Affiliation(s)
| | | | | | - Daniel Carvalho Pimenta
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo SP 05503-900, Brazil
| | - Gandhi Rádis-Baptista
- Laboratorio of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza CE 60165-081, Brazil.
| | | |
Collapse
|
22
|
Heep J, Klaus A, Kessel T, Seip M, Vilcinskas A, Skaljac M. Proteomic Analysis of the Venom from the Ruby Ant Myrmica rubra and the Isolation of a Novel Insecticidal Decapeptide. INSECTS 2019; 10:E42. [PMID: 30717163 PMCID: PMC6409562 DOI: 10.3390/insects10020042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/24/2022]
Abstract
Ants are a biodiverse group of insects that have evolved toxic venom containing many undiscovered bioactive molecules. In this study, we found that the venom of the ruby ant Myrmica rubra is a rich source of peptides. LC-MS analysis revealed the presence of 142 different peptides varying in molecular weight, sequence length, and hydrophobicity. One of the most abundant peaks was selected for further biochemical and functional characterization. Combined Edman degradation and de novo peptide sequencing revealed the presence of a novel decapeptide (myrmicitoxin) with the amino acid sequence NH₂-IDPKLLESLA-CONH₂. The decapeptide was named U-MYRTX-MRArub1 and verified against a synthetic standard. The amidated peptide was tested in a synthetic form to determine the antimicrobial activity towards the bacterial pathogens and insecticidal potential against pea aphids (Acyrthosiphon pisum). This peptide did not show antimicrobial activity but it significantly reduced the survival of aphids. It also increased the sensitivity of the aphids to two commonly used chemical insecticides (imidacloprid and methomyl). Since ant venom research is still in its infancy, the findings of this first study on venom peptides derived from M. rubra highlight these insects as an important and rich source for discovery of novel lead structures with potential application in pest control.
Collapse
Affiliation(s)
- John Heep
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Alica Klaus
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Tobias Kessel
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Maximilian Seip
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Andreas Vilcinskas
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Marisa Skaljac
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| |
Collapse
|
23
|
Robinson SD, Mueller A, Clayton D, Starobova H, Hamilton BR, Payne RJ, Vetter I, King GF, Undheim EAB. A comprehensive portrait of the venom of the giant red bull ant, Myrmecia gulosa, reveals a hyperdiverse hymenopteran toxin gene family. SCIENCE ADVANCES 2018; 4:eaau4640. [PMID: 30214940 PMCID: PMC6135544 DOI: 10.1126/sciadv.aau4640] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/26/2018] [Indexed: 05/02/2023]
Abstract
Ants (Hymenoptera: Formicidae) are diverse and ubiquitous, and their ability to sting is familiar to many of us. However, their venoms remain largely unstudied. We provide the first comprehensive characterization of a polypeptidic ant venom, that of the giant red bull ant, Myrmecia gulosa. We reveal a suite of novel peptides with a range of posttranslational modifications, including disulfide bond formation, dimerization, and glycosylation. One venom peptide has sequence features consistent with an epidermal growth factor fold, while the remaining peptides have features suggestive of a capacity to form amphipathic helices. We show that these peptides are derived from what appears to be a single, pharmacologically diverse, gene superfamily (aculeatoxins) that includes most venom peptides previously reported from the aculeate Hymenoptera. Two aculeatoxins purified from the venom were found to be capable of activating mammalian sensory neurons, consistent with the capacity to produce pain but via distinct mechanisms of action. Further investigation of the major venom peptide MIITX1-Mg1a revealed that it can also incapacitate arthropods, indicative of dual utility in both defense and predation. MIITX1-Mg1a accomplishes these functions by generating a leak in membrane ion conductance, which alters membrane potential and triggers neuronal depolarization. Our results provide the first insights into the evolution of the major toxin gene superfamily of the aculeate Hymenoptera and provide a new paradigm in the functional evolution of toxins from animal venoms.
Collapse
Affiliation(s)
- Samuel D. Robinson
- Centre for Advance Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alexander Mueller
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Daniel Clayton
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Brett R. Hamilton
- Centre for Advance Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Eivind A. B. Undheim
- Centre for Advance Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
24
|
Touchard A, Téné N, Song PCT, Lefranc B, Leprince J, Treilhou M, Bonnafé E. Deciphering the Molecular Diversity of an Ant Venom Peptidome through a Venomics Approach. J Proteome Res 2018; 17:3503-3516. [DOI: 10.1021/acs.jproteome.8b00452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Axel Touchard
- Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Nathan Téné
- Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Philippe Chan Tchi Song
- Normandie Univ, UNIROUEN, Institut de Recherche et d’Innovation Biomédicale (IRIB), 76000 Rouen, France
| | - Benjamin Lefranc
- Inserm U 1239, Normandie Univ, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire Normandie (PRIMACEN), 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U 1239, Normandie Univ, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire Normandie (PRIMACEN), 76000 Rouen, France
| | - Michel Treilhou
- Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Elsa Bonnafé
- Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| |
Collapse
|
25
|
dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148:172-196. [DOI: 10.1016/j.toxicon.2018.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
26
|
Cologna CT, Rodrigues RS, Santos J, de Pauw E, Arantes EC, Quinton L. Peptidomic investigation of Neoponera villosa venom by high-resolution mass spectrometry: seasonal and nesting habitat variations. J Venom Anim Toxins Incl Trop Dis 2018; 24:6. [PMID: 29467797 PMCID: PMC5816382 DOI: 10.1186/s40409-018-0141-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/18/2018] [Indexed: 11/22/2022] Open
Abstract
Background Advancements in proteomics, including the technological improvement in instrumentation, have turned mass spectrometry into an indispensable tool in the study of venoms and toxins. In addition, the advance of nanoscale liquid chromatography coupled to nanoelectrospray mass spectrometry allows, due to its high sensitivity, the study of venoms from species previously left aside, such as ants. Ant venoms are a complex mixture of compounds used for defense, predation or communication purposes. The venom from Neoponera ants, a genus restricted to Neotropical regions, is known to have cytolytic, hemolytic, antimicrobial and insecticidal activities. Moreover, venoms from several Neoponera species have been compared and differences in their toxicity related to nesting habitat variation were reported. Therefore, the present study aimed to perform a deep peptidomic analysis of Neoponera villosa venom and a comparison of seasonal and nesting habitat variations using high-resolution mass spectrometry. Methods Specimens of N. villosa ants were captured in Panga Natural Reserve (Uberlândia, MG, Brazil) from arboreal and ground-dwelling nests during summer and winter time. The venom glands were dissected, pooled and disrupted by ultra-sonic waves. The venom collected from different habitats (arboreal and ground-dwelling) and different seasons (summer and winter) was injected into a nanoACQUITY ULPC hyphened to a Q-Exactive Orbitrap mass spectrometer. The raw data were analyzed using PEAKS 7. Results The results showed a molecular diversity of more than 500 peptides among these venoms, mostly in the mass range of 800–4000 Da. Mutations and post-translational modifications were described and differences among the venoms were observed. Part of the peptides matched with ponericins, a well-known antimicrobial peptide family. In addition, smaller fragments related to ponericins were also identified, suggesting that this class of antimicrobial peptide might undergo enzymatic cleavages. Conclusion There are substantial differences among the venom of N. villosa ants collected in different seasons and from different nest habitats. The venom composition is affected by climate changes that influence prey availability and predator presence. Clearly, nano-LC-MS boosted the knowledge about ant venom, a rich source of unexplored and promising bioactive compounds. Electronic supplementary material The online version of this article (10.1186/s40409-018-0141-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Takeno Cologna
- 1School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil.,2Laboratory of Mass Spectrometry, MolSys, Department of Chemistry, Liège Université, Liège, Belgium
| | | | - Jean Santos
- 3Federal University of Uberlândia, Uberlândia, MG Brazil
| | - Edwin de Pauw
- 2Laboratory of Mass Spectrometry, MolSys, Department of Chemistry, Liège Université, Liège, Belgium
| | - Eliane Candiani Arantes
- 1School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Loïc Quinton
- 2Laboratory of Mass Spectrometry, MolSys, Department of Chemistry, Liège Université, Liège, Belgium
| |
Collapse
|
27
|
The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biol Chem 2018; 399:187-196. [DOI: 10.1515/hsz-2017-0198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
Abstract
The crude venom of the giant ant Dinoponera quadriceps is a cocktail of polypeptides and organic compounds that shows antiparasitic effects against Trypanosoma cruzi, the causative agent of Chagas disease. In order to investigate the venom-derived components responsible for such antitrypanosomal activity, four dinoponeratoxins (DnTxs) were identified, namely M-PONTX-Dq3a, -Dq3b, -Dq3c and -Dq4e, that are diverse in size, net charge, hydrophobicity and propensity to interact with eukaryote cell membranes. These peptides were tested against epimastigote, trypomastigote and amastigote forms of benznidazole (Bz)-resistant Y strain of T. cruzi and in mammalian host cells. The M-PONTX-Dq3a and -Dq4e inhibited all developmental forms of T. cruzi, including amastigotes, the responsible form for the maintenance of infection on chronic phase of the disease. The M-PONTX-Dq3a showed the highest selectivity index (SI) (80) and caused morphological alterations in T. cruzi, as observed by scanning electron microscopy (SEM), and induced cell death through necrosis, as seen by multiparametric flow cytometry analysis with specific biochemical markers. Altogether, the D. quadriceps venom appears as a source for the prospection of trypanocidal peptides and the M-PONTX-Dq3a arises as a candidate among the dinoponeratoxin-related peptides in the development of compounds against Chagas disease.
Collapse
|
28
|
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources mainly by HPLC and mass spectrometry. Mass spectrometry allows the detection of a multitude of single peptides in complex mixtures. The term first appeared in full papers in the year 2001, after over 100 years of peptide research with a main focus on one or a few specific peptides. Within the last 15 years, this new field has grown to over 1200 publications. Mass spectrometry techniques, in combination with other analytical methods, were developed for the fast and comprehensive analysis of peptides in proteomics and specifically adjusted to implement peptidomics technologies. Although peptidomics is closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. The development of peptidomics is described, including the most important implementations for its technological basis. Different strategies are covered which are applied to several important applications, such as neuropeptidomics and discovery of bioactive peptides or biomarkers. This overview includes links to all other chapters in the book as well as recent developments of separation, mass spectrometric, and data processing technologies. Additionally, some new applications in food and plant peptidomics as well as immunopeptidomics are introduced.
Collapse
|
29
|
Santos PP, Games PD, Azevedo DO, Barros E, de Oliveira LL, de Oliveira Ramos HJ, Baracat-Pereira MC, Serrão JE. Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21424. [PMID: 29024043 DOI: 10.1002/arch.21424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two-dimensional gel electrophoresis and separation by ion-exchange and reverse-phase high-performance liquid chromatography followed by mass spectrometry using tanden matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF/TOF) mass spectrometry and electrospray ionization-quadrupole with time-of-flight (ESI-Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10-ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.
Collapse
Affiliation(s)
- Pollyanna Pereira Santos
- Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, Maranhão, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Patricia Dias Games
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Edvaldo Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
30
|
Intraspecific variation and influence of diet on the venom chemical profile of the Ectatomma brunneum Smith (Formicidae) ant evaluated by photoacoustic spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:200-206. [DOI: 10.1016/j.jphotobiol.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 11/18/2022]
|
31
|
Mendonça A, Paula MC, Fernandes WD, Andrade LHC, Lima SM, Antonialli-Junior WF. Variation in Venoms of Polybia Paulista Von Ihering and Polybia Occidentalis Olivier (Hymenoptera: Vespidae), Assessed by the FTIR-PAS Technique. NEOTROPICAL ENTOMOLOGY 2017; 46:8-17. [PMID: 27457373 DOI: 10.1007/s13744-016-0426-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Wasps are able to synthesize toxic compounds known as venoms, which form a part of a mechanism to overcome prey and also to defend their colonies. Study of the compounds that constitute these substances is essential in order to understand how this defense mechanism evolved, since there is evidence that the venoms can vary both intra- and interspecifically. Some studies have used liquid and gas chromatography as a reliable technique to analyze these compounds. However, the use of Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) to analyze the variations in venom's chemical profile has been proposed recently. This study evaluated whether the FTIR-PAS technique is effective for assessing the role of environmental factors on intra- and interspecific differences in the venom of the wasps Polybia paulista Von Ihering and Polybia occidentalis Olivier by FTIR-PAS. The colonies were collected in three municipalities of Mato Grosso do Sul, Brazil, in different types of environments. The results showed that the venoms of P. paulista and P. occidentalis differed significantly in profile. In addition, the intraspecific differences in the venom's chemical profile of P. paulista are related to the type of environment where they nested, regardless of the geographical distance between the nests. The FTIR-PAS technique proved to be reliable and effective to evaluate the variations in the venom's chemical profile in social wasps.
Collapse
Affiliation(s)
- A Mendonça
- Univ Federal da Grande Dourados, Dourados, MS, Brasil.
- Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil.
| | - M C Paula
- Univ Federal da Grande Dourados, Dourados, MS, Brasil
- Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - W D Fernandes
- Univ Federal da Grande Dourados, Dourados, MS, Brasil
| | - L H C Andrade
- Grupo de Espectroscopia Óptica e Fototérmica, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - S M Lima
- Grupo de Espectroscopia Óptica e Fototérmica, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - W F Antonialli-Junior
- Univ Federal da Grande Dourados, Dourados, MS, Brasil
- Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| |
Collapse
|
32
|
Aili SR, Touchard A, Petitclerc F, Dejean A, Orivel J, Padula MP, Escoubas P, Nicholson GM. Combined Peptidomic and Proteomic Analysis of Electrically Stimulated and Manually Dissected Venom from the South American Bullet Ant Paraponera clavata. J Proteome Res 2017; 16:1339-1351. [DOI: 10.1021/acs.jproteome.6b00948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Samira R. Aili
- Neurotoxin
Research Group, School of Life Sciences, University of Technology Sydney, New South Wales 2007, Australia
| | - Axel Touchard
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Frédéric Petitclerc
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Alain Dejean
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
- Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31400 Toulouse, France
| | - Jérôme Orivel
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Matthew P. Padula
- Proteomics
Core Facility, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines — Villa
3, Valbonne 06560, France
| | - Graham M. Nicholson
- Neurotoxin
Research Group, School of Life Sciences, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
33
|
Nôga DAMF, Brandão LEM, Cagni FC, Silva D, de Azevedo DLO, Araújo A, Dos Santos WF, Miranda A, da Silva RH, Ribeiro AM. Anticonvulsant Effects of Fractions Isolated from Dinoponera quadriceps (Kempt) Ant Venom (Formicidae: Ponerinae). Toxins (Basel) 2016; 9:toxins9010005. [PMID: 28025529 PMCID: PMC5308238 DOI: 10.3390/toxins9010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt) protects mice against bicuculline (BIC)-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC) resulting in six fractions referred to as DqTx1-DqTx6. A liquid chromatography-mass spectrometry (LC/MS) analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL) was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM), DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.
Collapse
Affiliation(s)
| | | | - Fernanda Carvalho Cagni
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | - Delano Silva
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | | | - Arrilton Araújo
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | | | - Antonio Miranda
- Biophysics Department, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | - Regina Helena da Silva
- Pharmacology Department, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | | |
Collapse
|
34
|
Touchard A, Brust A, Cardoso FC, Chin YKY, Herzig V, Jin AH, Dejean A, Alewood PF, King GF, Orivel J, Escoubas P. Isolation and characterization of a structurally unique β-hairpin venom peptide from the predatory ant Anochetus emarginatus. Biochim Biophys Acta Gen Subj 2016; 1860:2553-2562. [PMID: 27474999 DOI: 10.1016/j.bbagen.2016.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/24/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Most ant venoms consist predominantly of small linear peptides, although some contain disulfide-linked peptides as minor components. However, in striking contrast to other ant species, some Anochetus venoms are composed primarily of disulfide-rich peptides. In this study, we investigated the venom of the ant Anochetus emarginatus with the aim of exploring these novel disulfide-rich peptides. METHODS The venom peptidome was initially investigated using a combination of reversed-phase HPLC and mass spectrometry, then the amino acid sequences of the major peptides were determined using a combination of Edman degradation and de novo MS/MS sequencing. We focused on one of these peptides, U1-PONTX-Ae1a (Ae1a), because of its novel sequence, which we predicted would form a novel 3D fold. Ae1a was chemically synthesized using Fmoc chemistry and its 3D structure was elucidated using NMR spectroscopy. The peptide was then tested for insecticidal activity and its effect on a range of human ion channels. RESULTS Seven peptides named poneritoxins (PONTXs) were isolated and sequenced. The three-dimensional structure of synthetic Ae1a revealed a novel, compact scaffold in which a C-terminal β-hairpin is connected to the N-terminal region via two disulfide bonds. Synthetic Ae1a reversibly paralyzed blowflies and inhibited human L-type voltage-gated calcium channels (CaV1). CONCLUSIONS Poneritoxins from Anochetus emarginatus venom are a novel class of toxins that are structurally unique among animal venoms. GENERAL SIGNIFICANCE This study demonstrates that Anochetus ant venoms are a rich source of novel ion channel modulating peptides, some of which might be useful leads for the development of biopesticides.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou, France.
| | - Andreas Brust
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fernanda Caldas Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alain Dejean
- CNRS, UMR Ecologie des forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou, France; CNRS, UMR 5245, Laboratoire Écologie Fonctionnelle et Environnement, 118 route de Narbonne, 31062 Toulouse, France; Université de Toulouse, UPS, INP, Ecolab, Toulouse, France
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jérôme Orivel
- CNRS, UMR Ecologie des forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou, France
| | | |
Collapse
|
35
|
Sousa PL, Quinet YP, Cavalcante Brizeno LA, Sampaio TL, Torres AFC, Martins AMC, Assreuy AMS. The acute inflammatory response induced in mice by the venom of the giant ant Dinoponera quadriceps involves macrophage and interleukin-1β. Toxicon 2016; 117:22-9. [DOI: 10.1016/j.toxicon.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 02/04/2023]
|
36
|
Lopes-Ferreira M, Sosa-Rosales I, Bruni FM, Ramos AD, Vieira Portaro FC, Conceição K, Lima C. Analysis of the intersexual variation in Thalassophryne maculosa fish venoms. Toxicon 2016; 115:70-80. [DOI: 10.1016/j.toxicon.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 01/20/2023]
|
37
|
Touchard A, Aili SR, Fox EGP, Escoubas P, Orivel J, Nicholson GM, Dejean A. The Biochemical Toxin Arsenal from Ant Venoms. Toxins (Basel) 2016; 8:E30. [PMID: 26805882 PMCID: PMC4728552 DOI: 10.3390/toxins8010030] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Écologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex 97379, France.
- BTSB (Biochimie et Toxicologie des Substances Bioactives) Université de Champollion, Place de Verdun, Albi 81012, France.
| | - Samira R Aili
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia.
| | | | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines-Villa 3, Valbonne 06560, France.
| | - Jérôme Orivel
- CNRS, UMR Écologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex 97379, France.
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia.
| | - Alain Dejean
- CNRS, UMR Écologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex 97379, France.
- Laboratoire Écologie Fonctionnelle et Environnement, 118 Route de Narbonne, Toulouse 31062, France.
| |
Collapse
|
38
|
Silva MF, Mota CM, Miranda VDS, Cunha ADO, Silva MC, Naves KSC, de Oliveira F, Silva DADO, Mineo TWP, Santiago FM. Biological and Enzymatic Characterization of Proteases from Crude Venom of the Ant Odontomachus bauri. Toxins (Basel) 2015; 7:5114-28. [PMID: 26633501 PMCID: PMC4690119 DOI: 10.3390/toxins7124869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022] Open
Abstract
Hymenoptera venoms constitute an interesting source of natural toxins that may lead to the development of novel therapeutic agents. The present study investigated the enzymatic and biological characteristics of the crude venom of the ant Odontomachus bauri. Its crude venom presents several protein bands, with higher staining for six proteins with gelatinolytic activity (17, 20, 26, 29, 43 and 48 kDa). The crude venom showed high proteolytic activity on azocasein at optimal pH 8.0 and 37 °C. In the presence of protease inhibitors as aprotinin, leupeptin and EDTA, the azocaseinolytic activity was reduced by 45%, 29% and 9%, respectively, suggesting that the enzymes present in the crude venom belong to the three classes of proteases, with the serine proteases in greater intensity. The crude venom degraded the fibrinogen α-chain faster than the β-chain, while the fibrinogen γ-chain remained unchanged. In biological assays, O. bauri venom showed hemolytic and coagulant activity in vitro, and defibrinating activity in vivo. In addition, the venom showed antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as antiparasitic activity on Toxoplasma gondii infection in vitro. In that sense, this study sheds perspectives for pharmacological applications of O. bauri venom enzymes.
Collapse
Affiliation(s)
- Mariana Ferreira Silva
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Caroline Martins Mota
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Vanessa dos Santos Miranda
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Amanda de Oliveira Cunha
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Maraísa Cristina Silva
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Karinne Spirandelli Carvalho Naves
- Institute of Biomedical Sciences, Laboratory of Clinical Bacteriology, Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Fábio de Oliveira
- Institute of Biomedical Sciences, Laboratory of Biophysics, Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
- National Institute in Science and Technology in Nanobiopharmaceutics (NanoBiofar), Belo Horizonte-MG 31270-901, Brazil.
| | - Deise Aparecida de Oliveira Silva
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Tiago Wilson Patriarca Mineo
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Fernanda Maria Santiago
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| |
Collapse
|
39
|
Danneels EL, Van Vaerenbergh M, Debyser G, Devreese B, de Graaf DC. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins (Basel) 2015; 7:4468-83. [PMID: 26529016 PMCID: PMC4663515 DOI: 10.3390/toxins7114468] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/22/2022] Open
Abstract
Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.
Collapse
Affiliation(s)
- Ellen L Danneels
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281 S2, B-9000 Ghent, Belgium.
| | - Matthias Van Vaerenbergh
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281 S2, B-9000 Ghent, Belgium.
| | - Griet Debyser
- Laboratory of Protein Biochemistry and Biomolecular Engineering, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | - Bart Devreese
- Laboratory of Protein Biochemistry and Biomolecular Engineering, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281 S2, B-9000 Ghent, Belgium.
| |
Collapse
|
40
|
Sunagar K, Morgenstern D, Reitzel AM, Moran Y. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J Proteomics 2015; 135:62-72. [PMID: 26385003 DOI: 10.1016/j.jprot.2015.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Morgenstern
- Proteomics Resource Center, Langone Medical Center, New York University, New York, USA.
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
41
|
Madeira JDC, Quinet YP, Nonato DTT, Sousa PL, Chaves EMC, Júnior JERH, Pereira MG, Assreuy AMS. Novel Pharmacological Properties of Dinoponera quadriceps Giant Ant Venom. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The South American giant ant, Dinoponera quadriceps (Hymenoptera, Formicidae, Ponerinae), produces proteinaceous venom that has antinociceptive, neuroprotective and antimicrobial effects, thereby supporting the popular use of these ants to treat asthma, rheumatism, earache and back pain. Anticoagulant activity is another biological property that has been shown for the venom of other hymenopteran species, like wasps. The aim of this study was to assess the anti-inflammatory, anticoagulant and antiplatelet properties of D. quadriceps venom (DqV). DqV anti-inflammatory activity was assessed by intravenous administration in Swiss mice in the models of paw edema and peritonitis. In vitro, DqV was assessed in coagulation (activated partial thromboplastin time) and platelet aggregation tests. DqV inhibited (27–33%) the edema elicited by carrageenan and the leucocyte migration (43%) elicited by zymosan. DqV decreased by 57% and 42%, respectively, the content of malondialdehyde and nitrite in the peritoneal fluid. DqV prolonged (1.8x) the clotting time and decreased (27%) the platelet aggregation induced by adenosine diphosphate. The crude venom of D. quadriceps presents an anti-inflammatory effect in mice and in vitro anticoagulant and antiplatelet effects.
Collapse
Affiliation(s)
- Juliana da Costa Madeira
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Yves Patric Quinet
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, 60714-903, Brazil
| | | | - Paloma Leão Sousa
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Edna Maria Camelo Chaves
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, 60714-903, Brazil
| | | | - Maria Gonçalves Pereira
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Ana Maria Sampaio Assreuy
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, 60714-903, Brazil
| |
Collapse
|
42
|
Touchard A, Koh JMS, Aili SR, Dejean A, Nicholson GM, Orivel J, Escoubas P. The complexity and structural diversity of ant venom peptidomes is revealed by mass spectrometry profiling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:385-396. [PMID: 26349460 DOI: 10.1002/rcm.7116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE Compared with other animal venoms, ant venoms remain little explored. Ants have evolved complex venoms to rapidly immobilize arthropod prey and to protect their colonies from predators and pathogens. Many ants have retained peptide-rich venoms that are similar to those of other arthropod groups. METHODS With the goal of conducting a broad and comprehensive survey of ant venom peptide diversity, we investigated the peptide composition of venoms from 82 stinging ant species from nine subfamilies using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). We also conducted an in-depth investigation of eight venoms using reversed-phase high-performance liquid chromatography (RP-HPLC) separation coupled with offline MALDI-TOFMS. RESULTS Our results reveal that the peptide compositions of ant venom peptidomes from both poneroid and formicoid ant clades comprise hundreds of small peptides (<4 kDa), while large peptides (>4 kDa) are also present in the venom of formicoids. Chemical reduction revealed the presence of disulfide-linked peptides in most ant subfamilies, including peptides structured by one, two or three disulfide bonds as well as dimeric peptides reticulated by three disulfide bonds. CONCLUSIONS The biochemical complexity of ant venoms, associated with an enormous ecological and taxonomic diversity, suggests that stinging ant venoms constitute a promising source of bioactive molecules that could be exploited in the search for novel drug and biopesticide leads.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379, Kourou Cedex, France
| | - Jennifer M S Koh
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Samira R Aili
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Alain Dejean
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379, Kourou Cedex, France
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, Toulouse, France
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Jérôme Orivel
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379, Kourou Cedex, France
| | | |
Collapse
|
43
|
Aili SR, Touchard A, Escoubas P, Padula MP, Orivel J, Dejean A, Nicholson GM. Diversity of peptide toxins from stinging ant venoms. Toxicon 2014; 92:166-78. [PMID: 25448389 DOI: 10.1016/j.toxicon.2014.10.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/27/2014] [Indexed: 12/23/2022]
Abstract
Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents.
Collapse
Affiliation(s)
- Samira R Aili
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, NSW 2007, Australia
| | - Axel Touchard
- CNRS, UMR Écologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines - Villa 3, 06560 Valbonne, France
| | - Matthew P Padula
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, NSW 2007, Australia
| | - Jérôme Orivel
- CNRS, UMR Écologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Alain Dejean
- CNRS, UMR Écologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France; Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
44
|
Pucca MB, Amorim FG, Cerni FA, Bordon KDCF, Cardoso IA, Anjolette FAP, Arantes EC. Influence of post-starvation extraction time and prey-specific diet in Tityus serrulatus scorpion venom composition and hyaluronidase activity. Toxicon 2014; 90:326-36. [PMID: 25199494 DOI: 10.1016/j.toxicon.2014.08.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 01/24/2023]
Abstract
The role of diet in venom composition has been a topic of intense research interest. This work presents evidence that the variation in the venom composition from the scorpion Tityus serrulatus (Ts) is closely associated with post-starvation extraction time and prey-specific diet. The scorpions were fed with cockroach, cricket, peanut beetle or giant Tenebrio. The venoms demonstrated a pronounced difference in the total protein and toxins composition, which was evaluated by electrophoresis, reversed-phase chromatography, densitometry, hyaluronidase activity and N-terminal sequencing. Indeed, many toxins and peptides, such as Ts1, Ts2, Ts4, Ts5, Ts6, Ts15, Ts19 frag. II, hypotensins 1 and 3, PAPE peptide and peptide 9797 (first described in Ts venom), were all identified in different proportions in the analyzed Ts venoms. This study is pioneer on assessing the influence of the starvation time and the prey diet on hyaluronidase activity as well as to describe a modification of Tricine-gel-electrophoresis to evaluate this enzyme activity. Altogether, this study reveal a large contribution of the extraction time and diet on Ts venom variability as well as present a background to recommend the cockroach diet to obtain higher protein content and the cricket diet to obtain higher hyaluronidase specific activity.
Collapse
Affiliation(s)
- Manuela Berto Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Iara Aimê Cardoso
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Fernando Antonio Pino Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
45
|
Lima D, Torres A, Mello C, de Menezes R, Sampaio T, Canuto J, da Silva J, Freire V, Quinet Y, Havt A, Monteiro H, Nogueira N, Martins A. Antimicrobial effect of Dinoponera quadriceps
(Hymenoptera: Formicidae) venom against Staphylococcus aureus
strains. J Appl Microbiol 2014; 117:390-6. [DOI: 10.1111/jam.12548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/17/2014] [Accepted: 05/17/2014] [Indexed: 11/27/2022]
Affiliation(s)
- D.B. Lima
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - A.F.C. Torres
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - C.P. Mello
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - R.R.P.P.B. de Menezes
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - T.L. Sampaio
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - J.A. Canuto
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - J.J.A. da Silva
- Federal Rural University of the Semi-Arid; Natal Rio Grande do Norte Brazil
| | - V.N. Freire
- Department of Physics; Science Center; Federal University of Ceara; Fortaleza Ceara Brazil
| | - Y.P. Quinet
- Institute of Biomedical Sciences; State University of Ceara; Fortaleza Ceara Brazil
| | - A. Havt
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - H.S.A. Monteiro
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - N.A.P. Nogueira
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - A.M.C. Martins
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| |
Collapse
|
46
|
Touchard A, Labrière N, Roux O, Petitclerc F, Orivel J, Escoubas P, Koh JMS, Nicholson GM, Dejean A. Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes. Toxicon 2014; 88:67-76. [PMID: 24929139 DOI: 10.1016/j.toxicon.2014.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
We aimed to determine whether the nesting habits of ants have influenced their venom toxicity and composition. We focused on the genus Pseudomyrmex (Pseudomyrmecinae) comprising terrestrial and arboreal species, and, among the latter, plant-ants that are obligate inhabitants of myrmecophytes (i.e., plants sheltering ants in hollow structures). Contrary to our hypothesis, the venom of the ground-dwelling species, Pseudomyrmex termitarius, was as efficacious in paralyzing prey as the venoms of the arboreal and the plant-ant species, Pseudomyrmex penetrator and Pseudomyrmex gracilis. The lethal potency of P. termitarius venom was equipotent with that of P. gracilis whereas the venom of P. penetrator was less potent. The MALDI-TOF MS analysis of each HPLC fraction of the venoms showed that P. termitarius venom is composed of 87 linear peptides, while both P. gracilis and P. penetrator venoms (23 and 26 peptides, respectively) possess peptides with disulfide bonds. Furthermore, P. penetrator venom contains three hetero- and homodimeric peptides consisting of two short peptidic chains linked together by two interchain disulfide bonds. The large number of peptides in P. termitarius venom is likely related to the large diversity of potential prey plus the antibacterial peptides required for nesting in the ground. Whereas predation involves only the prey and predator, P. penetrator venom has evolved in an environment where trees, defoliating insects, browsing mammals and ants live in equilibrium, likely explaining the diversity of the peptide structures.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Nicolas Labrière
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Olivier Roux
- IRD, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2) Équipe BEES, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Frédéric Petitclerc
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Jérôme Orivel
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines-Villa 3, Valbonne 06560, France
| | - Jennifer M S Koh
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway NSW, 2007, Australia
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway NSW, 2007, Australia
| | - Alain Dejean
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France; Laboratoire Écologie Fonctionnelle et Environnement, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|