1
|
Tang J, Hu Z, Zhang J, Daroch M. Genome-scale identification and comparative analysis of transcription factors in thermophilic cyanobacteria. BMC Genomics 2024; 25:44. [PMID: 38195395 PMCID: PMC10775510 DOI: 10.1186/s12864-024-09969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The transcription factors (TFs) in thermophilic cyanobacteria might represent a uniquely evolved gene repertoire in light of the strong selective pressure caused by hostile habitats. Understanding the molecular composition of the TF genes in thermophilic cyanobacteria will facilitate further studies regarding verifying their exact biochemical functions and genetic engineering. However, limited information is available on the TFs of thermophilic cyanobacteria. Herein, a thorough investigation and comparative analysis were performed to gain insights into the molecular composition of the TFs in 22 thermophilic cyanobacteria. RESULTS The results suggested a fascinating diversity of the TFs among these thermophiles. The abundance and type of TF genes were diversified in these genomes. The identified TFs are speculated to play various roles in biological regulations. Further comparative and evolutionary genomic analyses revealed that HGT may be associated with the genomic plasticity of TF genes in Thermostichus and Thermosynechococcus strains. Comparative analyses also indicated different pattern of TF composition between thermophiles and corresponding mesophilic reference cyanobacteria. Moreover, the identified unique TFs of thermophiles are putatively involved in various biological regulations, mainly as responses to ambient changes, may facilitating the thermophiles to survive in hot springs. CONCLUSION The findings herein shed light on the TFs of thermophilic cyanobacteria and fundamental knowledge for further research regarding thermophilic cyanobacteria with a broad potential for transcription regulations in responses to environmental fluctuations.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zhe Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Jing Zhang
- Food Safety Detection Key Laboratory of Sichuan, Technical Center of Chengdu Customs, Chengdu, 610041, China.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Madsen MA, Semerdzhiev S, Twigg JD, Moss C, Bavington CD, Amtmann A. Environmental modulation of exopolysaccharide production in the cyanobacterium Synechocystis 6803. Appl Microbiol Biotechnol 2023; 107:6121-6134. [PMID: 37552253 PMCID: PMC10485101 DOI: 10.1007/s00253-023-12697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Microorganisms produce extracellular polymeric substances (EPS, also known as exopolysaccharides) of diverse composition and structure. The biochemical and biophysical properties of these biopolymers enable a wide range of industrial applications. EPS from cyanobacteria are particularly versatile as they incorporate a larger number and variety of building blocks and adopt more complex structures than EPS from other organisms. However, the genetic makeup and regulation of EPS biosynthetic pathways in cyanobacteria are poorly understood. Here, we measured the effect of changing culture media on titre and composition of EPS released by Synechocystis sp. PCC 6803, and we integrated this information with transcriptomic data. Across all conditions, daily EPS productivity of individual cells was highest in the early growth phase, but the total amount of EPS obtained from the cultures was highest in the later growth phases due to accumulation. Lowering the magnesium concentration in the media enhanced per-cell productivity but the produced EPS had a lower total sugar content. Levels of individual monosaccharides correlated with specific culture media components, e.g. xylose with sulfur, glucose and N-acetyl-galactosamine with NaCl. Comparison with RNA sequencing data suggests a Wzy-dependent biosynthetic pathway and a protective role for xylose-rich EPS. This multi-level analysis offers a handle to link individual genes to the dynamic modulation of a complex biopolymer. KEY POINTS: • Synechocystis exopolysaccharide amount and composition depends on culture condition • Production rate and sugar content can be modulated by Mg and S respectively • Wzy-dependent biosynthetic pathway and protective role proposed for xylose-rich EPS.
Collapse
Affiliation(s)
- Mary Ann Madsen
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Stefan Semerdzhiev
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Jordan D Twigg
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Claire Moss
- GlycoMar Ltd, Malin House, European Marine Science Park, Oban, Scotland, PA37 1SZ, UK
| | - Charles D Bavington
- GlycoMar Ltd, Malin House, European Marine Science Park, Oban, Scotland, PA37 1SZ, UK
| | - Anna Amtmann
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
3
|
Qi X, Fu K, Yue M, Shou N, Yuan X, Chen X, He C, Yang Y, Shi Z. Kynurenic acid mediates bacteria-algae consortium in resisting environmental cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130397. [PMID: 36403444 DOI: 10.1016/j.jhazmat.2022.130397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd2+) is a toxic heavy metal in the environment, posing severe damage to animal health and drinking water safety. The bacteria-algae consortium remediates environmental Cd2+ pollution by secreting chelating reagents, but the molecular mechanisms remain elusive. Here, we showed that Cellulosimicrobium sp. SH8 isolated from a Cd2+-polluted lake could interact with Synechocystis sp. PCC6803, a model species of cyanobacteria, in strengthening Cd2+ toxicity resistance, while SH8 or PCC6803 alone barely immobilized Cd2+. In addition, the SH8-PCC6803 consortium, but not SH8 alone, could grow in a carbon-free medium, suggesting that autotrophic PCC6803 enabled the growth of heterotrophic SH8. Totally, 12 metabolites were significantly changed when SH8 was added to PCC6803 culture in the presence of Cd2+ (PCC6803/Cd2+). Among them, kynurenic acid was the only metabolite that precipitated Cd2+. Remarkably, adding kynurenic acid increased the growth of PCC6803/Cd2+ by 14.1 times. Consistently, the expressions of kynA, kynB, and kynT genes, known to be essential for kynurenic acid synthesis, were considerably increased when SH8 was added to PCC6803/Cd2+. Collectively, kynurenic acid secreted by SH8 mitigates Cd2+ toxicity for algae, and algae provide organic carbon for the growth of SH8, unveiling a critical link that mediates beneficial bacteria-algae interaction to resist Cd2+.
Collapse
Affiliation(s)
- Xiaoli Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Mingyuan Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Chunyu He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
The atypical thioredoxin 'Alr2205', a newly identified partner of the typical 2-Cys-Peroxiredoxin, safeguards the cyanobacterium Anabaena from oxidative stress. Biochem J 2023; 480:87-104. [PMID: 36594794 DOI: 10.1042/bcj20220524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Thioredoxins (Trxs) are ubiquitous proteins that play vital roles in several physiological processes. Alr2205, a thioredoxin-like protein from Anabaena PCC 7120, was found to be evolutionarily closer to the Trx-domain of the NADPH-Thioredoxin Reductase C than the other thioredoxins. The Alr2205 protein showed disulfide reductase activity despite the presence a non-canonical active site motif 'CPSC'. Alr2205 not only physically interacted with, but also acted as a physiological reductant of Alr4641 (the typical 2-Cys-Peroxiredoxin from Anabaena), supporting its peroxidase function. Structurally, Alr2205 was a monomeric protein that formed an intramolecular disulfide bond between the two active site cysteines (Cys-38 and Cys-41). However, the Alr2205C41S protein, wherein the resolving cysteine was mutated to serine, was capable of forming intermolecular disulfide bond and exist as a dimer when treated with H2O2. Overproduction of Alr2205 in E. coli protected cells from heavy metals, but not oxidative stress. To delve into its physiological role, Alr2205/Alr2205C41S was overexpressed in Anabaena, and the ability of the corresponding strains (An2205+ or An2205C41S+) to withstand environmental stresses was assessed. An2205+ showed higher resistance to H2O2 than An2205C41S+, indicating that the disulfide reductase function of this protein was critical to protect cells from this peroxide. Although, An2205+ did not show increased capability to withstand cadmium stress, An2205C41S+ was more susceptible to this heavy metal. This is the first study that provides a vital understanding into the function of atypical thioredoxins in countering the toxic effects of heavy metals/H2O2 in prokaryotes.
Collapse
|
5
|
Chakdar H, Thapa S, Srivastava A, Shukla P. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127609. [PMID: 34772552 DOI: 10.1016/j.jhazmat.2021.127609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) pose a global ecological threat due to their toxic effects on aquatic and terrestrial life. Effective remediation of HMs from the environment can help to restore soil's fertility and ecological vigor, one of the key Sustainable Development Goals (SDG) set by the United Nations. The cyanobacteria have emerged as a potential option for bioremediation of HMs due to their unique adaptations and robust metabolic machineries. Generally, cyanobacteria deploy multifarious mechanisms such as biosorption, bioaccumulation, activation of metal transporters, biotransformation and induction of detoxifying enzymes to sequester and minimize the toxic effects of heavy metals. Therefore, understanding the physiological responses and regulation of adaptation mechanisms at molecular level is necessary to unravel the candidate genes and proteins which can be manipulated to improve the bioremediation efficiency of cyanobacteria. Chaperons, cellular metabolites (extracellular polymers, biosurfactants), transcriptional regulators, metal transporters, phytochelatins and metallothioneins are some of the potential targets for strain engineering. In the present review, we have discussed the potential of cyanobacteria for HM bioremediation and provided a deeper insight into their genomic and proteomic regulation of various tolerance mechanisms. These approaches might pave new possibilities of implementing genetic engineering strategies for improving bioremediation efficiency with a future perspective.
Collapse
Affiliation(s)
- Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Shobit Thapa
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, ID 47907-2048, United States
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
6
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
7
|
Cui J, Xie Y, Sun T, Chen L, Zhang W. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144111. [PMID: 33352345 DOI: 10.1016/j.scitotenv.2020.144111] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution caused by heavy metals has received worldwide attentions due to their ubiquity, poor degradability and easy bioaccumulation in host cells. As one potential solution, photosynthetic cyanobacteria have been considered as promising remediation chassis and widely applied in various bioremediation processes of heavy-metals. Meanwhile, deciphering resistant mechanisms and constructing tolerant chassis towards heavy metals could greatly contribute to the successful application of the cyanobacteria-based bioremediation in the future. In this review, first we summarized recent application of cyanobacteria in heavy metals bioremediation using either live or dead cells. Second, resistant mechanisms and strategies for enhancing cyanobacterial bioremediation of heavy metals were discussed. Finally, potential challenges and perspectives for improving bioremediation of heavy metals by cyanobacteria were presented.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
8
|
Cepoi L, Zinicovscaia I, Rudi L, Chiriac T, Miscu V, Djur S, Strelkova L, Grozdov D. Spirulina platensis as renewable accumulator for heavy metals accumulation from multi-element synthetic effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31793-31811. [PMID: 32504425 DOI: 10.1007/s11356-020-09447-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Metal accumulation by Spirulina platensis from synthetic effluents with the following chemical composition: Cr/Fe, Cr/Fe/Ni, Cr/Fe/Ni/Zn, and Cr/Fe/Ni/Zn/Cu during repeated cultivation cycle was investigated. Metal ions in different concentrations were added to the culture medium at the exponential and stationary phases of biomass growth and their uptake by biomass was traced using neutron activation analysis. The effect of metal ions on biomass and main biochemical components (proteins, carbohydrates, lipids, phycobilins, and β-carotene) was monitored. S. platensis keeps high metal accumulation capacity during 2-3 cultivation cycles, while the metal ions were added in the stationary phase of its growth. By adding metals in the exponential phase of growth in the following concentrations: 10 mg/L of chromium (VI), 5 mg/L of iron, 2 mg/L of zinc, nickel, and copper, Spirulina platensis acted as renewable accumulator only in Cr/Fe system. It maintained the accumulation capacity during three cultivation cycles when exposed to lower concentrations of metal ions. Its ability to accumulate metal ions during several cultivation cycles was ensured by the maintenance of the optimal level of proteins and lipid in biomass.
Collapse
Affiliation(s)
- Liliana Cepoi
- The Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028, Chisinau, Moldova
- State University "Dmitrie Cantemir", 3/2 Academiei Str, 2028, Chisinau, Moldova
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str, 1419890, Dubna, Russia.
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, Bucharest -, Magurele, Romania.
- The Institute of Chemistry, 3 Academiei Str., 2028, Chisinau, Moldova.
| | - Ludmila Rudi
- The Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028, Chisinau, Moldova
| | - Tatiana Chiriac
- The Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028, Chisinau, Moldova
| | - Vera Miscu
- The Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028, Chisinau, Moldova
| | - Svetlana Djur
- The Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028, Chisinau, Moldova
| | - Ludmila Strelkova
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str, 1419890, Dubna, Russia
| | - Dmitrii Grozdov
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str, 1419890, Dubna, Russia
| |
Collapse
|
9
|
Shi M, Chen L, Zhang W. Regulatory Diversity and Functional Analysis of Two-Component Systems in Cyanobacterium Synechocystis sp. PCC 6803 by GC-MS Based Metabolomics. Front Microbiol 2020; 11:403. [PMID: 32256471 PMCID: PMC7090099 DOI: 10.3389/fmicb.2020.00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
Two-component signal transduction systems are still poorly functionally characterized in the model cyanobacterium Synechocystis sp. PCC 6803. To address the issue, a GC-MS based comparative metabolomic analysis was conducted on a library of 44 knockout mutants for the response regulators (RRs) in Synechocystis. The metabolomic profiling analysis showed that 7 RRs mutants, namely Δslr1909, Δsll1291, Δslr6040, Δsll1330, Δslr2024, Δslr1584, and Δslr1693, were significantly different at metabolomic level, although their growth patterns are similar to the wild type under the normal autotrophic growth condition, suggesting regulatory diversity of RRs at metabolite level in Synechocystis. Additionally, a detailed metabolomic analysis coupled with RT-PCR verification led to useful clues for possible function of these 7 RRs, which were found involved in regulation of multiple aspects of cellular metabolisms in Synechocystis. Moreover, an integrative metabolomic and evolutionary analysis of all RR showed that four groups of RR genes clustered together in both metabolomic and evolutionary trees, suggesting of possible functional conservation of these RRs during the evolutionary process. Meanwhile, six groups of RRs with close evolutionary origin were found with different metabolomic profiles, suggesting possible functional changes during evolution. In contrast, more than 10 groups of RR genes with different clustering patterns in the evolutionary tree were found clustered together in metabolomics-based tree, suggesting possible functional convergences during the evolution. This study provided a metabolomic view of RR function, and the most needed functional clues for further characterization of these regulatory proteins in Synechocystis.
Collapse
Affiliation(s)
- Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Xu C, Sun T, Li S, Chen L, Zhang W. Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:205. [PMID: 30061927 PMCID: PMC6058365 DOI: 10.1186/s13068-018-1205-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cadmium has been a significant threat to environment and human health due to its high toxicity and wide application in fossil-fuel burning and battery industry. Cyanobacteria are one of the most dominant prokaryotes, and the previous studies suggested that they could be valuable in removing Cd2+ from waste water. However, currently, the tolerance to cadmium is very low in cyanobacteria. To further engineer cyanobacteria for the environmental application, it is thus necessary to determine the mechanism that they respond to high concentration of cadmium. RESULTS In this study, a robust strain of Synechocystis PCC 6803 (named ALE-9.0) tolerant to CdSO4 with a concentration up to 9.0 µM was successfully isolated via adaptive laboratory evolution over 802-day continuous passages under cadmium stress. Whole-genome re-sequencing was then performed and nine mutations were identified for the evolved strain compared to the wild-type strain. Among these mutations, a large fragment deletion in slr0454 encoding a cation or drug efflux system protein was found to contribute directly to the resistance to Cd2+ stress. In addition, five other mutations were also demonstrated related to the improved Cd2+ tolerance in ALE-9.0. Moreover, the evolved ALE-9.0 strain was found to obtain cross tolerance to some other heavy metals like zinc and cobalt as well as higher resistance to high light. CONCLUSIONS The work here identified six genes and their mutations related to Cd2+ tolerance in Synechocystis PCC 6803, and demonstrated the feasibility of adaptive laboratory evolution in tolerance modifications. This work also provided valuable information regarding the cadmium tolerance mechanism in Synechocystis PCC 6803, and useful insights for cyanobacterial robustness and tolerance engineering.
Collapse
Affiliation(s)
- Chunxiao Xu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
11
|
Pei G, Niu X, Zhou Y, Chen L, Zhang W. Crosstalk of two-component signal transduction systems in regulating central carbohydrate and energy metabolism during autotrophic and photomixotrophic growth of Synechocystis sp. PCC 6803. Integr Biol (Camb) 2018; 9:485-496. [PMID: 28485419 DOI: 10.1039/c7ib00049a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unicellular model cyanobacterium Synechocystis sp. PCC 6803 has received considerable attention as a sustainable energy resource because of its photosynthetic machinery. However, two-component signal transduction systems (TCSTSs) in regulating central carbohydrate and energy metabolism of cyanobacteria are still poorly understood due to their diversity and functional complication. In this study, by comparing the growth of knockout mutants of 44 response regulators (RRs) of TCSTSs in Synechocystis, several RR mutants demonstrating differential growth patterns were identified under auto- or photomixotrophic conditions. However, in spite of no growth difference observed for the remaining RR mutants, liquid chromatography-mass spectrometry based metabolomic profile analysis showed that a widespread crosstalk of TCSTSs in regulating central carbohydrate and energy metabolism of Synechocystis was identified, while most of them showed diverse patterns during different trophic types or growth stages. Furthermore, an integrative analysis between evolutionary relationships and metabolomic profiles revealed some pairs of paralogous RRs with highly functional convergence, suggesting the possible conserved functions of Synechocystis TCSTSs during evolution. This study laid an important basis for understanding the function of TCSTSs in photosynthetic cyanobacteria.
Collapse
Affiliation(s)
- Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Sun T, Xu L, Wu L, Song Z, Chen L, Zhang W. Identification of a New Target slr0946 of the Response Regulator Sll0649 Involving Cadmium Tolerance in Synechocystis sp. PCC 6803. Front Microbiol 2017; 8:1582. [PMID: 28861077 PMCID: PMC5559466 DOI: 10.3389/fmicb.2017.01582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/04/2017] [Indexed: 11/13/2022] Open
Abstract
Survival of photosynthetic cyanobacteria is challenged by environmental contaminations like heavy metals. Among them, deciphering the regulatory mechanisms for cadmium (Cd) in cyanobacteria would facilitate the construction of Cd-resistant strains. In this study, the DNA-Affinity-Purified-chromatin immunoprecipitation assay was employed to identify the direct targets of Sll0649, which was a Cd2+-related response regulator identified in our previous work in model cyanobacteria Synechocystis sp. PCC 6803. As a result, the promoter region of slr0946 encoding the arsenate reductase was enriched fourfolds by quantitative real time PCR analysis. Further, deletion of slr0946 led to a sensitive phenotype to Cd2+ stress compared with the wild type (WT) and the sensitive phenotype of Δslr0946 could be rescued by complementation assay via introducing slr0946 back into Δslr0946. Finally, individually overexpression of slr0946 as well as two Cd2+-related genes identified priviously (i.e., sll1598 and slr0798) in WT could significantly improve the tolerance of Synechocystis sp. PCC 6803 to Cd2+. This study provided a better understanding of the tolerance mechanism to Cd2+ in cyanobacteria and also feasible strategies for tolerance modifications to heavy metals in the future.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of ChinaTianjin, China.,Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Le Xu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of ChinaTianjin, China.,Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lina Wu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of ChinaTianjin, China.,Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Zhongdi Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of ChinaTianjin, China.,Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of ChinaTianjin, China.,Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of ChinaTianjin, China.,Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China.,Center for Biosafety Research and Strategy, Tianjin UniversityTianjin, China
| |
Collapse
|
13
|
Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. THE NEW PHYTOLOGIST 2017; 215:937-951. [PMID: 28675536 DOI: 10.1111/nph.14670] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Contents 937 I. 937 II. 938 III. 939 IV. 943 V. 947 VI. 948 948 References 949 SUMMARY: The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO , to a red form, OCPR . Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO ; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1 O2 ) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1 O2 quenching.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
14
|
Sun T, Chen L, Zhang W. Quantitative Proteomics Reveals Potential Crosstalk between a Small RNA CoaR and a Two-Component Regulator Slr1037 in Synechocystis sp. PCC6803. J Proteome Res 2017; 16:2954-2963. [PMID: 28677390 DOI: 10.1021/acs.jproteome.7b00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacterial small RNAs (sRNAs) and two-component systems (TCSs) were two vital regulatory mechanisms employed by microorganisms to respond to environmental changes and stresses. As a promising "autotrophic cell factory", photosynthetic cyanobacteria have attracted a lot of attention these years. Although most studies focused on studying the roles of sRNAs or TCS regulators in stress response in photosynthetic cyanobacteria, limited work has elucidated their potential crosstalk. Our previous work has identified a negative sRNA regulator CoaR and a positive response regulator Slr1037 both related to 1-butanol stress regulation in Synechocystis sp. PCC6803. In this work, the potential crosstalk between CoaR and Slr1307 (i.e., the coregulated genes mediated by CoaR and Slr1037) was identified and validated through quantitative proteomics and quantitative real-time PCR (qRT-PCR), respectively. The results showed that the sensitive phenotype to 1-butanol of Δslr1037 could be rescued by suppressing coaR in Δslr1037, probably due to the fact that some target genes of Slr1037 could be reactivated by repression of CoaR. Twenty-eight coregulated proteins mediated by CoaR and Slr1037 were found through quantitative proteomics, and 10 of the annotated proteins were validated via qRT-PCR. This study proved the existence of crosstalk between sRNAs and response regulators and provided new insights into the coregulation of biofuel resistance in cyanobacteria.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China.,Center for Biosafety Research and Strategy, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Shi M, Zhang X, Pei G, Chen L, Zhang W. Functional Diversity of Transcriptional Regulators in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2017; 8:280. [PMID: 28270809 PMCID: PMC5318462 DOI: 10.3389/fmicb.2017.00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/09/2017] [Indexed: 11/16/2022] Open
Abstract
Functions of transcriptional regulators (TRs) are still poorly understood in the model cyanobacterium Synechocystis sp. PCC 6803. To address the issue, we constructed knockout mutants for 32 putative TR-encoding genes of Synechocystis, and comparatively analyzed their phenotypes under autotrophic growth condition and metabolic profiles using liquid chromatography-mass spectrometry-based metabolomics. The results showed that only four mutants of TR genes, sll1872 (lytR), slr0741 (phoU), slr0395 (ntcB), and slr1871 (pirR), showed differential growth patterns in BG11 medium when compared with the wild type; however, in spite of no growth difference observed for the remaining TR mutants, metabolomic profiling showed that they were different at the metabolite level, suggesting significant functional diversity of TRs in Synechocystis. In addition, an integrative metabolomic and gene families’ analysis of all TR mutants led to the identification of five pairs of TR genes that each shared close relationship in both gene families and metabolomic clustering trees, suggesting possible conserved functions of these TRs during evolution. Moreover, more than a dozen pairs of TR genes with different origin and evolution were found with similar metabolomic profiles, suggesting a possible functional convergence of the TRs during genome evolution. Finally, a protein–protein network analysis was performed to predict regulatory targets of TRs, allowing inference of possible regulatory gene targets for 4 out of five pairs of TRs. This study provided new insights into the regulatory functions and evolution of TR genes in Synechocystis.
Collapse
Affiliation(s)
- Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China; Center for Biosafety Research and Strategy, Tianjin UniversityTianjin, China
| |
Collapse
|
16
|
Checchetto V, Segalla A, Sato Y, Bergantino E, Szabo I, Uozumi N. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress. PLANT & CELL PHYSIOLOGY 2016; 57:862-877. [PMID: 26880819 DOI: 10.1093/pcp/pcw032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The unicellular photosynthetic cyanobacterium, able to survive in varying environments, is the only prokaryote that directly converts solar energy and CO2 into organic material and is thus relevant for primary production in many ecosystems. To maintain the intracellular and intrathylakoid ion homeostasis upon different environmental challenges, the concentration of potassium as a major intracellular cation has to be optimized by various K(+)uptake-mediated transport systems. We reveal here the specific and concerted physiological function of three K(+)transporters of the plasma and thylakoid membranes, namely of SynK (K(+)channel), KtrB (Ktr/Trk/HKT) and KdpA (Kdp) in Synechocystis sp. strain PCC 6803, under specific stress conditions. The behavior of the wild type, single, double and triple mutants was compared, revealing that only Synk contributes to heavy metal-induced stress, while only Ktr/Kdp is involved in osmotic and salt stress adaptation. With regards to pH shifts in the external medium, the Kdp/Ktr uptake systems play an important role in the adaptation to acidic pH. Ktr, by affecting the CO2 concentration mechanism via its action on the bicarbonate transporter SbtA, might also be responsible for the observed effects concerning high-light stress and calcification. In the case of illumination with high-intensity light, a synergistic action of Kdr/Ktp and SynK is required in order to avoid oxidative stress and ensure cell viability. In summary, this study dissects, using growth tests, measurement of photosynthetic activity and analysis of ultrastructure, the physiological role of three K(+)transporters in adaptation of the cyanobacteria to various environmental changes.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Padova 35121, Italy Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Anna Segalla
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Yuki Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| |
Collapse
|
17
|
Wang Y, Chen L, Zhang W. Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:209. [PMID: 27757169 PMCID: PMC5053081 DOI: 10.1186/s13068-016-0627-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/27/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND 3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. In our previous study, the biosynthetic pathway of 3-HP was constructed and optimized in cyanobacterium Synechocystis sp. PCC 6803, which led to 3-HP production directly from CO2 at a level of 837.18 mg L-1 (348.8 mg/g dry cell weight). As the production and accumulation of 3-HP in cells affect cellular metabolism, a better understanding of cellular responses to 3-HP synthesized internally in Synechocystis will be important for further increasing 3-HP productivity in cyanobacterial chassis. RESULTS Using a engineered 3-HP-producing SM strain, in this study, the cellular responses to 3-HP internally produced were first determined using a quantitative iTRAQ-LC-MS/MS proteomics approach and a LC-MS-based targeted metabolomics. A total of 2264 unique proteins were identified, which represented about 63 % of all predicted protein in Synechocystis in the proteomic analysis; meanwhile intracellular abundance of 24 key metabolites was determined by a comparative metabolomic analysis of the 3-HP-producing strain SM and wild type. Among all identified proteins, 204 proteins were found up-regulated and 123 proteins were found down-regulated, respectively. The proteins related to oxidative phosphorylation, photosynthesis, ribosome, central carbon metabolism, two-component systems and ABC-type transporters were up-regulated, along with the abundance of 14 metabolites related to central metabolism. The results suggested that the supply of ATP and NADPH was increased significantly, and the precursor malonyl-CoA and acetyl-CoA may also be supplemented when 3-HP was produced at a high level in Synechocystis. Confirmation of proteomic and metabolomic results with RT-qPCR and gene-overexpression strains of selected genes was also conducted, and the overexpression of three transporter genes putatively involved in cobalt/nickel, manganese and phosphate transporting (i.e., sll0385, sll1598 and sll0679) could lead to an increased 3-HP production in Synechocystis. CONCLUSIONS The integrative analysis of up-regulated proteome and metabolome data showed that to ensure the high-efficient production of 3-HP and the normal growth of Synechocystis, multiple aspects of cells metabolism including energy, reducing power supply, central carbon metabolism, the stress responses and protein synthesis were enhanced in Synechocystis. The study provides an important basis for further engineering cyanobacteria for high 3-HP production.
Collapse
Affiliation(s)
- Yunpeng Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| |
Collapse
|
18
|
Gao L, Wang J, Ge H, Fang L, Zhang Y, Huang X, Wang Y. Toward the complete proteome of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 126:203-219. [PMID: 25862646 DOI: 10.1007/s11120-015-0140-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the photosynthetic model organism Synechocystis sp. PCC 6803 has been extensively analyzed in the last 15 years for the purpose of identifying proteins specifically expressed in subcellular compartments or differentially expressed in different environmental or internal conditions. This review summarizes the progress achieved so far with the emphasis on the impact of different techniques, both in sample preparation and protein identification, on the increasing coverage of proteome identification. In addition, this review evaluates the current completeness of proteome identification, and provides insights on the potential factors that could affect the complete identification of the Synechocystis proteome.
Collapse
Affiliation(s)
- Liyan Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Jinlong Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Haitao Ge
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Longfa Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China.
| |
Collapse
|
19
|
Gao L, Pei G, Chen L, Zhang W. A global network-based protocol for functional inference of hypothetical proteins in Synechocystis sp. PCC 6803. J Microbiol Methods 2015; 116:44-52. [DOI: 10.1016/j.mimet.2015.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
|
20
|
Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J Proteomics 2015; 120:75-94. [DOI: 10.1016/j.jprot.2015.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/13/2015] [Accepted: 03/07/2015] [Indexed: 11/16/2022]
|
21
|
Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. Appl Microbiol Biotechnol 2015; 99:1845-57. [DOI: 10.1007/s00253-015-6374-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
22
|
Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances. Int J Mol Sci 2014; 16:871-86. [PMID: 25561236 PMCID: PMC4307280 DOI: 10.3390/ijms16010871] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/24/2014] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk.
Collapse
|
23
|
Chen L, Wu L, Zhu Y, Song Z, Wang J, Zhang W. An orphan two-component response regulator Slr1588 involves salt tolerance by directly regulating synthesis of compatible solutes in photosynthetic Synechocystis sp. PCC 6803. ACTA ACUST UNITED AC 2014; 10:1765-74. [DOI: 10.1039/c4mb00095a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the characterization of a novel orphan response regulator Slr1588 directly involved in the synthesis and transport of compatible solutes against salt stress.
Collapse
Affiliation(s)
- Lei Chen
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Lina Wu
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Ye Zhu
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Zhongdi Song
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| |
Collapse
|