1
|
Reijnders E, van der Laarse A, Ruhaak LR, Cobbaert CM. Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling. Clin Proteomics 2024; 21:19. [PMID: 38429638 PMCID: PMC10908091 DOI: 10.1186/s12014-024-09465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.
Collapse
Affiliation(s)
- Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Gianazza E, Zoanni B, Mallia A, Brioschi M, Colombo GI, Banfi C. Proteomic studies on apoB-containing lipoprotein in cardiovascular research: A comprehensive review. MASS SPECTROMETRY REVIEWS 2023; 42:1397-1423. [PMID: 34747518 DOI: 10.1002/mas.21747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 06/07/2023]
Abstract
The complexity of cardiovascular diseases (CVDs), which remains the leading cause of death worldwide, makes the current clinical pathway for cardiovascular risk assessment unsatisfactory, as there remains a substantial unexplained residual risk. Simultaneous assessment of a large number of plasma proteins may be a promising tool to further refine risk assessment, and lipoprotein-associated proteins have the potential to fill this gap. Technical advances now allow for high-throughput proteomic analysis in a reproducible and cost-effective manner. Proteomics has great potential to identify and quantify hundreds of candidate marker proteins in a sample and allows the translation from isolated lipoproteins to whole plasma, thus providing an individual multiplexed proteomic fingerprint. This narrative review describes the pathophysiological roles of atherogenic apoB-containing lipoproteins and the recent advances in their mass spectrometry-based proteomic characterization and quantitation for better refinement of CVD risk assessment.
Collapse
Affiliation(s)
| | | | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | | | | | | |
Collapse
|
3
|
Yang S, Tian X, Chen Y, Shen L, Wang J. Isotope-dilution liquid chromatography-tandem mass spectrometry method for serum beta 2-microglobulin quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123487. [DOI: 10.1016/j.jchromb.2022.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
4
|
Coremans C, Delporte C, Cotton F, Van De Borne P, Boudjeltia KZ, Van Antwerpen P. Mass Spectrometry for the Monitoring of Lipoprotein Oxidations by Myeloperoxidase in Cardiovascular Diseases. Molecules 2021; 26:molecules26175264. [PMID: 34500696 PMCID: PMC8434463 DOI: 10.3390/molecules26175264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
Oxidative modifications of HDLs and LDLs by myeloperoxidase (MPO) are regularly mentioned in the context of atherosclerosis. The enzyme adsorbs on protein moieties and locally produces oxidizing agents to modify specific residues on apolipoproteins A-1 and B-100. Oxidation of lipoproteins by MPO (Mox) leads to dysfunctional Mox-HDLs associated with cholesterol-efflux deficiency, and Mox-LDLs that are no more recognized by the LDL receptor and become proinflammatory. Several modification sites on apoA-1 and B-100 that are specific to MPO activity are described in the literature, which seem relevant in patients with cardiovascular risk. The most appropriate analytical method to assess these modifications is based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). It enables the oxidized forms of apoA-1and apoB-100 to be quantified in serum, in parallel to a quantification of these apolipoproteins. Current standard methods to quantify apolipoproteins are based on immunoassays that are well standardized with good analytical performances despite the cost and the heterogeneity of the commercialized kits. Mass spectrometry can provide simultaneous measurements of quantity and quality of apolipoproteins, while being antibody-independent and directly detecting peptides carrying modifications for Mox-HDLs and Mox-LDLs. Therefore, mass spectrometry is a potential and reliable alternative for apolipoprotein quantitation.
Collapse
Affiliation(s)
- Catherine Coremans
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
- Correspondence: ; Tel.: +32-2-650-5331
| | - Cédric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Frédéric Cotton
- Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Department of Clinical Chemistry, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium;
| | - Phillipe Van De Borne
- Department of Cardiology Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU-Charleroi, ISPPC Hôpital Vésale, Université Libre de Bruxelles, 6110 Montigny-Le-Tilleul, Belgium;
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| |
Collapse
|
5
|
Detailed Method for Performing the ExSTA Approach in Quantitative Bottom-Up Plasma Proteomics. Methods Mol Biol 2021; 2228:353-384. [PMID: 33950503 DOI: 10.1007/978-1-0716-1024-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of stable isotope-labeled standards (SIS) is an analytically valid means of quantifying proteins in biological samples. The nature of the labeled standards and their point of insertion in a bottom-up proteomic workflow can vary, with quantification methods utilizing curves in analytically sound practices. A promising quantification strategy for low sample amounts is external standard addition (ExSTA). In ExSTA, multipoint calibration curves are generated in buffer using serially diluted natural (NAT) peptides and a fixed concentration of SIS peptides. Equal concentrations of SIS peptides are spiked into experimental sample digests, with all digests (control and experimental) subjected to solid-phase extraction prior to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Endogenous peptide concentrations are then determined using the regression equation of the standard curves. Given the benefits of ExSTA in large-scale analysis, a detailed protocol is provided herein for quantifying a multiplexed panel of 125 high-to-moderate abundance proteins in undepleted and non-enriched human plasma samples. The procedural details and recommendations for successfully executing all phases of this quantification approach are described. As the proteins have been putatively correlated with various noncommunicable diseases, quantifying these by ExSTA in large-scale studies should help rapidly and precisely assess their true biomarker efficacy.
Collapse
|
6
|
Smit NPM, Ruhaak LR, Romijn FPHTM, Pieterse MM, van der Burgt YEM, Cobbaert CM. The Time Has Come for Quantitative Protein Mass Spectrometry Tests That Target Unmet Clinical Needs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:636-647. [PMID: 33522792 PMCID: PMC7944566 DOI: 10.1021/jasms.0c00379] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Protein mass spectrometry (MS) is an enabling technology that is ideally suited for precision diagnostics. In contrast to immunoassays with indirect readouts, MS quantifications are multiplexed and include identification of proteoforms in a direct manner. Although widely used for routine measurements of drugs and metabolites, the number of clinical MS-based protein applications is limited. In this paper, we share our experience and aim to take away the concerns that have kept laboratory medicine from implementing quantitative protein MS. To ensure added value of new medical tests and guarantee accurate test results, five key elements of test evaluation have been established by a working group within the European Federation for Clinical Chemistry and Laboratory Medicine. Moreover, it is emphasized to identify clinical gaps in the contemporary clinical pathways before test development is started. We demonstrate that quantitative protein MS tests that provide an additional layer of clinical information have robust performance and meet long-term desirable analytical performance specifications as exemplified by our own experience. Yet, the adoption of quantitative protein MS tests into medical laboratories is seriously hampered due to its complexity, lack of robotization and high initial investment costs. Successful and widespread implementation in medical laboratories requires uptake and automation of this next generation protein technology by the In-Vitro Diagnostics industry. Also, training curricula of lab workers and lab specialists should include education on enabling technologies for transitioning to precision medicine by quantitative protein MS tests.
Collapse
Affiliation(s)
- Nico P. M. Smit
- Department of Clinical Chemistry and
Laboratory Medicine, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - L. Renee Ruhaak
- Department of Clinical Chemistry and
Laboratory Medicine, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Fred P. H. T. M. Romijn
- Department of Clinical Chemistry and
Laboratory Medicine, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Mervin M. Pieterse
- Department of Clinical Chemistry and
Laboratory Medicine, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yuri E. M. van der Burgt
- Department of Clinical Chemistry and
Laboratory Medicine, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and
Laboratory Medicine, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Marcovina SM, Clouet-Foraison N, Koschinsky ML, Lowenthal MS, Orquillas A, Boffa MB, Hoofnagle AN, Vaisar T. Development of an LC-MS/MS Proposed Candidate Reference Method for the Standardization of Analytical Methods to Measure Lipoprotein(a). Clin Chem 2021; 67:490-499. [PMID: 33517366 PMCID: PMC7935757 DOI: 10.1093/clinchem/hvaa324] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Use of lipoprotein(a) concentrations for identification of individuals at high risk of cardiovascular diseases is hampered by the size polymorphism of apolipoprotein(a), which strongly impacts immunochemical methods, resulting in discordant values. The availability of a reference method with accurate values expressed in SI units is essential for implementing a strategy for assay standardization. METHOD A targeted LC-MS/MS method for the quantification of apolipoprotein(a) was developed based on selected proteotypic peptides quantified by isotope dilution. To achieve accurate measurements, a reference material constituted of a human recombinant apolipoprotein(a) was used for calibration. Its concentration was assigned using an amino acid analysis reference method directly traceable to SI units through an unbroken traceability chain. Digestion time-course, repeatability, intermediate precision, parallelism, and comparability to the designated gold standard method for lipoprotein(a) quantification, a monoclonal antibody-based ELISA, were assessed. RESULTS A digestion protocol providing comparable kinetics of digestion was established, robust quantification peptides were selected, and their stability was ascertained. Method intermediate imprecision was below 10% and linearity was validated in the 20-400 nmol/L range. Parallelism of responses and equivalency between the recombinant and endogenous apo(a) were established. Deming regression analysis comparing the results obtained by the LC-MS/MS method and those obtained by the gold standard ELISA yielded y = 0.98*ELISA +3.18 (n = 64). CONCLUSIONS Our method for the absolute quantification of lipoprotein(a) in plasma has the required attributes to be proposed as a candidate reference method with the potential to be used for the standardization of lipoprotein(a) assays.
Collapse
Affiliation(s)
- Santica M Marcovina
- Division of Metabolism, Endocrinology, and Nutrition, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA, USA
| | - Noémie Clouet-Foraison
- Division of Metabolism, Endocrinology, and Nutrition, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA, USA.,Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Marlys L Koschinsky
- Department of Physiology & Pharmacology, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Mark S Lowenthal
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Allen Orquillas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Andrew N Hoofnagle
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Tomáš Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Neubert H, Shuford CM, Olah TV, Garofolo F, Schultz GA, Jones BR, Amaravadi L, Laterza OF, Xu K, Ackermann BL. Protein Biomarker Quantification by Immunoaffinity Liquid Chromatography–Tandem Mass Spectrometry: Current State and Future Vision. Clin Chem 2020; 66:282-301. [DOI: 10.1093/clinchem/hvz022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Abstract
Immunoaffinity–mass spectrometry (IA-MS) is an emerging analytical genre with several advantages for profiling and determination of protein biomarkers. Because IA-MS combines affinity capture, analogous to ligand binding assays (LBAs), with mass spectrometry (MS) detection, this platform is often described using the term hybrid methods. The purpose of this report is to provide an overview of the principles of IA-MS and to demonstrate, through application, the unique power and potential of this technology. By combining target immunoaffinity enrichment with the use of stable isotope-labeled internal standards and MS detection, IA-MS achieves high sensitivity while providing unparalleled specificity for the quantification of protein biomarkers in fluids and tissues. In recent years, significant uptake of IA-MS has occurred in the pharmaceutical industry, particularly in the early stages of clinical development, enabling biomarker measurement previously considered unattainable. By comparison, IA-MS adoption by CLIA laboratories has occurred more slowly. Current barriers to IA-MS use and opportunities for expanded adoption are discussed. The path forward involves identifying applications for which IA-MS is the best option compared with LBA or MS technologies alone. IA-MS will continue to benefit from advances in reagent generation, more sensitive and higher throughput MS technologies, and continued growth in use by the broader analytical community. Collectively, the pursuit of these opportunities will secure expanded long-term use of IA-MS for clinical applications.
Collapse
|
9
|
Renee Ruhaak L, van der Laarse A, Cobbaert CM. Apolipoprotein profiling as a personalized approach to the diagnosis and treatment of dyslipidaemia. Ann Clin Biochem 2019; 56:338-356. [PMID: 30889974 PMCID: PMC6595551 DOI: 10.1177/0004563219827620] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2018] [Indexed: 01/08/2023]
Abstract
An elevated low-density lipoprotein cholesterol concentration is a classical risk factor for cardiovascular disease. This has led to pharmacotherapy in patients with atherosclerotic heart disease or high heart disease risk with statins to reduce serum low-density lipoprotein cholesterol. Even in patients in whom the target levels of low-density lipoprotein cholesterol are reached, there remains a significant residual cardiovascular risk; this is due, in part, to a focus on low-density lipoprotein cholesterol alone and neglect of other important aspects of lipoprotein metabolism. A more refined lipoprotein analysis will provide additional information on the accumulation of very low-density lipoproteins, intermediate density lipoproteins, chylomicrons, chylomicron-remnants and Lp(a) concentrations. Instead of measuring the cholesterol and triglyceride content of the lipoproteins, measurement of their apolipoproteins (apos) is more informative. Apos are either specific for a particular lipoprotein or for a group of lipoproteins. In particular measurement of apos in atherogenic particles is more biologically meaningful than the measurement of the cholesterol concentration contained in these particles. Applying apo profiling will not only improve characterization of the lipoprotein abnormality, but will also improve definition of therapeutic targets. Apo profiling aligns with the concept of precision medicine by which an individual patient is not treated as 'average' patient by the average (dose of) therapy. This concept of precision medicine fits the unmet clinical need for stratified cardiovascular medicine. The requirements for clinical application of proteomics, including apo profiling, can now be met using robust mass spectrometry technology which offers desirable analytical performance and standardization.
Collapse
Affiliation(s)
- L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Delatour V, Clouet-Foraison N, Gaie-Levrel F, Marcovina SM, Hoofnagle AN, Kuklenyik Z, Caulfield MP, Otvos JD, Krauss RM, Kulkarni KR, Contois JH, Remaley AT, Vesper HW, Cobbaert CM, Gillery P. Comparability of Lipoprotein Particle Number Concentrations Across ES-DMA, NMR, LC-MS/MS, Immunonephelometry, and VAP: In Search of a Candidate Reference Measurement Procedure for apoB and non-HDL-P Standardization. Clin Chem 2018; 64:1485-1495. [PMID: 30087138 DOI: 10.1373/clinchem.2018.288746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite the usefulness of standard lipid parameters for cardiovascular disease risk assessment, undiagnosed residual risk remains high. Advanced lipoprotein testing (ALT) was developed to provide physicians with more predictive diagnostic tools. ALT methods separate and/or measure lipoproteins according to different parameters such as size, density, charge, or content, and equivalence of results across methods has not been demonstrated. METHODS Through a split-sample study, 25 clinical specimens (CSs) were assayed in 10 laboratories before and after freezing using the major ALT methods for non-HDL particles (non-HDL-P) or apolipoprotein B-100 (apoB-100) measurements with the intent to assess their comparability in the current state of the art. RESULTS The overall relative standard deviation (CV) of non-HDL-P and apoB-100 concentrations measured by electrospray differential mobility analysis, nuclear magnetic resonance, immunonephelometry, LC-MS/MS, and vertical autoprofile in the 25 frozen CSs was 14.1%. Within-method comparability was heterogeneous, and CV among 4 different LC-MS/MS methods was 11.4% for apoB-100. No significant effect of freezing and thawing was observed. CONCLUSIONS This study demonstrates that ALT methods do not yet provide equivalent results for the measurement of non-HDL-P and apoB-100. The better agreement between methods harmonized to the WHO/IFCC reference material suggests that standardizing ALT methods by use of a common commutable calibrator will improve cross-platform comparability. This study provides further evidence that LC-MS/MS is the most suitable candidate reference measurement procedure to standardize apoB-100 measurement, as it would provide results with SI traceability. The absence of freezing and thawing effect suggests that frozen serum pools could be used as secondary reference materials.
Collapse
Affiliation(s)
- Vincent Delatour
- Laboratoire National de Métrologie et d'Essais (LNE), Paris, France;
| | | | | | - Santica M Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Zsuzsanna Kuklenyik
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA
| | | | - James D Otvos
- Laboratory Corporation of America® Holdings, Morrisville, NC
| | | | | | | | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Hubert W Vesper
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Philippe Gillery
- University Hospital of Reims, Laboratory of Pediatric Biology and Research, Reims, France
| |
Collapse
|
11
|
Andjelković U, Josić D. Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Langlois MR, Chapman MJ, Cobbaert C, Mora S, Remaley AT, Ros E, Watts GF, Borén J, Baum H, Bruckert E, Catapano A, Descamps OS, von Eckardstein A, Kamstrup PR, Kolovou G, Kronenberg F, Langsted A, Pulkki K, Rifai N, Sypniewska G, Wiklund O, Nordestgaard BG. Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM. Clin Chem 2018; 64:1006-1033. [PMID: 29760220 DOI: 10.1373/clinchem.2018.287037] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/09/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND The European Atherosclerosis Society-European Federation of Clinical Chemistry and Laboratory Medicine Consensus Panel aims to provide recommendations to optimize atherogenic lipoprotein quantification for cardiovascular risk management. CONTENT We critically examined LDL cholesterol, non-HDL cholesterol, apolipoprotein B (apoB), and LDL particle number assays based on key criteria for medical application of biomarkers. (a) Analytical performance: Discordant LDL cholesterol quantification occurs when LDL cholesterol is measured or calculated with different assays, especially in patients with hypertriglyceridemia >175 mg/dL (2 mmol/L) and low LDL cholesterol concentrations <70 mg/dL (1.8 mmol/L). Increased lipoprotein(a) should be excluded in patients not achieving LDL cholesterol goals with treatment. Non-HDL cholesterol includes the atherogenic risk component of remnant cholesterol and can be calculated in a standard nonfasting lipid panel without additional expense. ApoB more accurately reflects LDL particle number. (b) Clinical performance: LDL cholesterol, non-HDL cholesterol, and apoB are comparable predictors of cardiovascular events in prospective population studies and clinical trials; however, discordance analysis of the markers improves risk prediction by adding remnant cholesterol (included in non-HDL cholesterol) and LDL particle number (with apoB) risk components to LDL cholesterol testing. (c) Clinical and cost-effectiveness: There is no consistent evidence yet that non-HDL cholesterol-, apoB-, or LDL particle-targeted treatment reduces the number of cardiovascular events and healthcare-related costs than treatment targeted to LDL cholesterol. SUMMARY Follow-up of pre- and on-treatment (measured or calculated) LDL cholesterol concentration in a patient should ideally be performed with the same documented test method. Non-HDL cholesterol (or apoB) should be the secondary treatment target in patients with mild to moderate hypertriglyceridemia, in whom LDL cholesterol measurement or calculation is less accurate and often less predictive of cardiovascular risk. Laboratories should report non-HDL cholesterol in all standard lipid panels.
Collapse
Affiliation(s)
- Michel R Langlois
- Department of Laboratory Medicine, AZ St-Jan, Brugge, and University of Ghent, Belgium;
| | - M John Chapman
- National Institute for Health and Medical Research (INSERM), and Endocrinology-Metabolism Service, Pitié-Salpetriere University Hospital, Paris, France
| | - Christa Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Samia Mora
- Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Emilio Ros
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - Jan Borén
- Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hannsjörg Baum
- Institute for Laboratory Medicine, Blutdepot und Krankenhaushygiene, Regionale Kliniken Holding RKH GmbH, Ludwigsburg, Germany
| | - Eric Bruckert
- Pitié-Salpetriere University Hospital, Paris, France
| | - Alberico Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | | | | | - Pia R Kamstrup
- Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Genovefa Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Florian Kronenberg
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Langsted
- Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kari Pulkki
- Department of Clinical Chemistry, University of Turku and Turku University Hospital, Turku, Finland
| | - Nader Rifai
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Grazyna Sypniewska
- Department of Laboratory Medicine, Collegium Medicum, NC University, Bydgoszcz, Poland
| | - Olov Wiklund
- Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Børge G Nordestgaard
- Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
13
|
Jansen RT, Cobbaert CM, Weykamp C, Thelen M. The quest for equivalence of test results: the pilgrimage of the Dutch Calibration 2.000 program for metrological traceability. ACTA ACUST UNITED AC 2018; 56:1673-1684. [DOI: 10.1515/cclm-2017-0796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/17/2017] [Indexed: 01/02/2023]
Abstract
Abstract
Calibration 2.000 was initiated 20 years ago for standardization and harmonization of medical tests. The program also intended to evaluate adequate implementation of the In Vitro Diagnostics (IVD) 98/79/EC directive, in order to ensure that medical tests are fit-for-clinical purpose. The Calibration 2.000 initiative led to ongoing verification of test standardization and harmonization in the Netherlands using commutable external quality assessment (EQA)-tools and a type 1 EQA-design, where feasible. National support was guaranteed by involving all laboratory professionals as well as laboratory technicians responsible for EQA and quality officers. A category 1 EQA-system for general chemistry analytes, harmonizers for specific analytes like hGH and IGF-1, and commutable materials for other EQA-sections have been developed and structurally introduced in the EQA-schemes. The type 1 EQA-design facilitates the dialogue between individual specialists in laboratory medicine and the IVD-industry to reduce lot-to-lot variation and to improve standardization. In such a way, Calibration 2.000 sheds light on the metrological traceability challenges that we are facing and helps the laboratory community to get the issues on the table and resolved. The need for commutable trueness verifiers and/or harmonizers for other medical tests is now seen as paramount. Much knowledge is present in the Netherlands and for general chemistry, humoral immunology and protein chemistry, a few endocrinology tests, and various therapeutic drug monitoring (TDM) tests, commutable materials are available. Also the multi sample evaluation scoring system (MUSE) and the category 1 EQA-design offer many possibilities for permanent education of laboratory professionals to further improve the between and within laboratory variation and the test equivalence.
Collapse
Affiliation(s)
- Rob T.P. Jansen
- SKML , Mercator 1, Toernooiveld 214 , 6525EC Nijmegen , The Netherlands
| | | | - Cas Weykamp
- Queen Beatrix Hospital , MCA Laboratory , Winterswijk , The Netherlands
| | - Marc Thelen
- Amphia Hospital, Clinical Chemistry and Haematology , Breda , The Netherlands
| |
Collapse
|
14
|
Zheng YZ, DeMarco ML. Manipulating trypsin digestion conditions to accelerate proteolysis and simplify digestion workflows in development of protein mass spectrometric assays for the clinical laboratory. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2017; 6:1-12. [PMID: 39193414 PMCID: PMC11322774 DOI: 10.1016/j.clinms.2017.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
For ease of measurement and accurate identification of proteins by mass spectrometry, protein targets are commonly cleaved into peptides. Protein digestion is a critical step in sample preparation, yielding peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity; however, it can yield highly variable digestion profiles and is dependent on several factors including digestion buffer, denaturant, trypsin quality selected, and composition/complexity of the sample matrix. Historically, trypsin digestion protocols have relied on lengthy digestion times-which are unsuitable for many clinical applications-to ensure effective proteolysis. Here, we performed an iterative and comprehensive evaluation of digestion conditions for five structurally diverse proteins in plasma and serum: apolipoprotein A-1, retinol-binding protein 4, transthyretin, complement component 9 and C-reactive protein. Conditions were monitored for improvements in signal intensity, reproducibility of digestion profile, and rate of release of proteolytic peptides. This approach yielded an optimized digestion protocol for detection of all five proteins in a single workflow requiring a brief 20 min digestion, without the use of chemical denaturants or reduction/alkylation steps, and only 1 μl of plasma. It is our hope that this data can accelerate the development phase of targeted mass spectrometric protein assays by identifying practical approaches to accelerate and simplify digestion protocols for clinical applications and assist with the selection of tryptic peptides for protein quantitation.
Collapse
Affiliation(s)
- Yu Zi Zheng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
15
|
van den Broek I, Sobhani K, Van Eyk JE. Advances in quantifying apolipoproteins using LC-MS/MS technology: implications for the clinic. Expert Rev Proteomics 2017; 14:869-880. [PMID: 28870113 DOI: 10.1080/14789450.2017.1374859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Apolipoproteins play a key role in pre-, pro-, and anti-atherosclerotic processes and have become important circulating biomarkers for the prediction of cardiovascular disease (CVD) risk. Whereas currently clinical immunoassays are not available for most apolipoproteins and lack the capacity for multiplexing, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allows simultaneous, highly-specific, and precise quantification of multiple apolipoproteins. Areas covered: We discuss LC-MS/MS methods for quantification of apolipoproteins reported in the literature and highlight key requirements for clinical use. Besides the advances in sample preparation and LC-MS/MS technologies, this overview also discusses advances in proteoform analysis and applications of dried blood/plasma collection. Expert commentary: Standardized quantification using LC-MS/MS technology has been demonstrated for apolipoprotein A-I and B. However, for implementation in clinical CVD risk assessment, LC-MS/MS must bring significant added clinical value in comparison to fast, standardized, and straightforward clinical (immuno)assays. Ongoing advances in accuracy and multiplexing capacity of LC-MS/MS, nonetheless, bear potential to enable standardized and interpretable personalized profiling of a patient's CVD risk by simultaneous quantification of multiple apolipoproteins and -variants. We, moreover, anticipate further personalization of CVD risk assessment by the potential of LC-MS/MS to enable simultaneous genotyping and remote monitoring using dried blood/plasma collection devices.
Collapse
Affiliation(s)
- Irene van den Broek
- a Cedars-Sinai Medical Center, The Advanced Clinical Biosystems Research Institute , The Heart Institute , Los Angeles , CA , USA
| | - Kimia Sobhani
- b Department of Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Jennifer E Van Eyk
- a Cedars-Sinai Medical Center, The Advanced Clinical Biosystems Research Institute , The Heart Institute , Los Angeles , CA , USA
| |
Collapse
|
16
|
Parks BA, Schieltz DM, Andrews ML, Gardner MS, Rees JC, Toth CA, Jones JI, McWilliams LG, Kuklenyik Z, Pirkle JL, Barr JR. High throughput quantification of apolipoproteins A-I and B-100 by isotope dilution MS targeting fast trypsin releasable peptides without reduction and alkylation. Proteomics Clin Appl 2017; 11:1600128. [PMID: 28296203 PMCID: PMC5637893 DOI: 10.1002/prca.201600128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Apolipoprotein A-I (ApoA-I) and apolipoprotein B-100 (ApoB-100) are amphipathic proteins that are strong predictors of cardiovascular disease risk. The traceable calibration of apolipoprotein assays is a persistent challenge, especially for ApoB-100, which cannot be solubilized in purified form. EXPERIMENTAL DESIGN A simultaneous quantitation method for ApoA-I and ApoB-100 was developed using tryptic digestion without predigestion reduction and alkylation, followed by LC separation coupled with isotope dilution MS analysis. The accuracy of the method was assured by selecting structurally exposed signature peptides, optimal choice of detergent, protein:enzyme ratio, and incubation time. Peptide calibrators were value assigned by isobaric tagging isotope dilution MS amino acid analysis. RESULTS The method reproducibility was validated in technical repeats of three serum samples, giving 2-3% intraday CVs (N = 5) and <7% interday CVs (N = 21). The repeated analysis of interlaboratory harmonization standards showed -1% difference for ApoA-I and -12% for ApoB-100 relative to the assigned value. The applicability of the method was demonstrated by repeated analysis of 24 patient samples with a wide range of total cholesterol and triglyceride levels. CONCLUSIONS AND CLINICAL RELEVANCE The method is applicable for simultaneous analysis of ApoA-I and ApoB-100 in patient samples, and for characterization of serum pool calibrators for other analytical platforms.
Collapse
Affiliation(s)
- Bryan A Parks
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - David M Schieltz
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Michael L Andrews
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Michael S Gardner
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Jon C Rees
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Christopher A Toth
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Jeffrey I Jones
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Lisa G McWilliams
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Zsuzsanna Kuklenyik
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - James L Pirkle
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - John R Barr
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| |
Collapse
|
17
|
Kuklenyik Z, Jones JI, Toth CA, Gardner MS, Pirkle JL, Barr JR. Optimization of the linear quantification range of an online trypsin digestion coupled liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform. INSTRUMENTATION SCIENCE & TECHNOLOGY 2017; 46:102-114. [PMID: 37180980 PMCID: PMC10174070 DOI: 10.1080/10739149.2017.1311912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tandem mass spectrometry (MS/MS)-based proteomic workflows with a bottom-up approach require enzymatic digestion of proteins to peptide analytes, usually by trypsin. Online coupling of trypsin digestion of proteins, using an immobilized enzyme reactor (IMER), with liquid chromatography (LC) and MS/MS is becoming a frequently used approach. However, finding IMER digestion conditions that allow quantitative analysis of multiple proteins with wide range of endogenous concentration requires optimization of multiple interactive parameters: digestion buffer flow rate, injection volume, sample dilution, and surfactant type/ concentration. In this report, we present a design of experiment approach for the optimization of an integrated IMER-LC-MS/MS platform. With bovine serum albumin as a model protein, the digestion efficacy and digestion rate were monitored based on LC-MS/MS peak area count versus protein concentration regression. The optimal parameters were determined through multivariate surface response modeling and consideration of diffusion controlled immobilized enzyme kinetics. The results may provide guidance to other users for the development of quantitative IMER-LC-MS/MS methods for other proteins.
Collapse
Affiliation(s)
- Zsuzsanna Kuklenyik
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jeffrey I Jones
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher A Toth
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael S Gardner
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James L Pirkle
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barr
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
18
|
van den Broek I, Fu Q, Kushon S, Kowalski MP, Millis K, Percy A, Holewinski RJ, Venkatraman V, Van Eyk JE. Application of volumetric absorptive microsampling for robust, high-throughput mass spectrometric quantification of circulating protein biomarkers. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2017; 4-5:25-33. [PMID: 39193127 PMCID: PMC11322776 DOI: 10.1016/j.clinms.2017.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023]
Abstract
Volumetric absorptive micro sampling (VAMS™) allows accurate sampling of 10 µL of blood from a minimally invasive finger prick and could enable remote personalized health monitoring. Moreover, VAMS overcomes effects from hematocrit and sample heterogeneity associated with dried blood spots (DBS). We describe the first application of VAMS with the Mitra® microsampling device for the quantification of protein biomarkers using an automated, high-throughput sample preparation method coupled with mass spectrometric (MS) detection. The analytical performance of the developed workflow was evaluated for 10 peptides from six clinically relevant proteins: apolipoproteins A-I, B, C-I, C-III, E, and human serum albumin (HSA). Extraction recovery from blood with three different levels of hematocrit varied between 100% and 111% for all proteins. Within-day and total assay reproducibility (i.e., 5 replicates on 5 days) ranged between 3.2-10.4% and 3.4-12.6%, respectively. In addition, after 22 weeks of storage of the Mitra microsampling devices at -80 °C, all peptide responses were within ±15% deviation from the initial response. Application to data-independent acquisition (DIA) MS further demonstrated the potential for broad applicability and the general robustness of the automated workflow by reproducible detection of 1661 peptides from 423 proteins (average 15.7%CV (n = 3) in peptide abundance), correlating to peptide abundances in corresponding plasma (R = 0.8383). In conclusion, we have developed an automated workflow for efficient extraction, digestion, and MS analysis of a variety of proteins in a fixed small volume of dried blood (i.e., 10 µL). This robust and high-throughput workflow will create manifold opportunities for the application of remote, personalized disease biomarker monitoring.
Collapse
Affiliation(s)
- Irene van den Broek
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Qin Fu
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Kevin Millis
- Cambridge Isotope Laboratories, Tewksbury, MA, USA
| | - Andrew Percy
- Cambridge Isotope Laboratories, Tewksbury, MA, USA
| | - Ronald J. Holewinski
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. RECENT FINDINGS Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. SUMMARY Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Collapse
Affiliation(s)
- Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Percy AJ, Michaud SA, Jardim A, Sinclair NJ, Zhang S, Mohammed Y, Palmer AL, Hardie DB, Yang J, LeBlanc AM, Borchers CH. Multiplexed MRM-based assays for the quantitation of proteins in mouse plasma and heart tissue. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/14/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew J. Percy
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Sarah A. Michaud
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Armando Jardim
- Institute of Parasitology; McGill University; Montreal QC Canada
| | - Nicholas J. Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Suping Zhang
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Yassene Mohammed
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
- Center for Proteomics and Metabolomics; Leiden University Medical Center; ZA Leiden Netherlands
| | - Andrea L. Palmer
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Darryl B. Hardie
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Juncong Yang
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Andre M. LeBlanc
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Christoph H. Borchers
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
- Department of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
21
|
Grebe SK, Singh RJ. Clinical peptide and protein quantification by mass spectrometry (MS). Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Toth CA, Kuklenyik Z, Jones JI, Parks BA, Gardner MS, Schieltz DM, Rees JC, Andrews ML, McWilliams LG, Pirkle JL, Barr JR. On-column trypsin digestion coupled with LC-MS/MS for quantification of apolipoproteins. J Proteomics 2016; 150:258-267. [PMID: 27667389 PMCID: PMC10071838 DOI: 10.1016/j.jprot.2016.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
Apolipoproteins measured in plasma or serum are potential biomarkers for assessing metabolic irregularities that are associated with the development of cardiovascular disease (CVD). LC-MS/MS allows quantitative measurement of multiple apolipoproteins in the same sample run. However, the accuracy and precision of the LC-MS/MS measurement depends on the reproducibility of the enzymatic protein digestion step. With the application of an immobilized enzyme reactor (IMER), the reproducibility of the trypsin digestion can be controlled with high precision via flow rate, column volume and temperature. In this report, we demonstrate the application of an integrated IMER-LC-MS/MS platform for the simultaneous quantitative analysis of eight apolipoproteins. Using a dilution series of a characterized serum pool as calibrator, the method was validated by repeated analysis of pooled sera and individual serum samples with a wide range of lipid profiles, all showing intra-assay CV<4.4% and inter-assay CV<8%. In addition, the method was compared with traditional homogeneous digestion coupled LC-MS/MS for the quantification of apoA-I and apoB-100. Applied in large scale human population studies, this method can serve the translation of a wider panel of apolipoprotein biomarkers from research to clinical application. SIGNIFICANCE Currently, the translation of apolipoprotein biomarkers to clinical application is impaired because of the high cost of large cohort studies using traditional single-analyte immunoassays. The application of on-line tryptic digestion coupled with LC-MS/MS analysis is an effective way to address this problem. In this work we demonstrate a high throughput, multiplexed, automated proteomics workflow for the simultaneous analysis of multiple proteins.
Collapse
Affiliation(s)
- Christopher A Toth
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - Zsuzsanna Kuklenyik
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States.
| | - Jeffrey I Jones
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - Bryan A Parks
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - Michael S Gardner
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - David M Schieltz
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - Jon C Rees
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - Michael L Andrews
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - Lisa G McWilliams
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - James L Pirkle
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| | - John R Barr
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA, United States
| |
Collapse
|
23
|
Yamada K, Watanabe A, Takeshita H, Matsumoto KI. A method for quantification of serum tenascin-X by nano-LC/MS/MS. Clin Chim Acta 2016; 459:94-100. [PMID: 27236034 DOI: 10.1016/j.cca.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Complete deficiency of an extracellular matrix tenascin-X (TNX) leads to a classical type of Ehlers-Danlos syndrome (EDS). TNX haploinsufficiency is a cause of hypermobility type of EDS. Human TNX is also present in a serum form (sTNX) with a molecular size of 140kDa. In this study, we established a method for quantification of sTNX using nano-liquid chromatography tandem mass spectrometry (LC/MS/MS) with selected/multiple reaction monitoring. METHODS Twelve abundant protein-depleted sera were reduced, alkylated, and digested with Lys-C and trypsin. Subsequently, the digests were fractionated by strong cation exchange chromatography. Optimal and validated transitions of precursor and product ions of the peptides from sTNX were developed on a triple quadrupole mass spectrometer. RESULTS Serum concentrations of sTNX of healthy individuals were quantified as an average of 144ng/ml. However, sTNX was not detected by this method in serum from a patient with a classical type of EDS in whom sTNX was not found by Western blot analysis. The limit of quantification (LOQ) of sTNX by nano-LC/MS/MS method was 2.8pg whereas the detection sensitivity of sTNX by Western blot analysis was 19pg. The nano-LC/MS/MS method is more sensitive than Western blot analysis. CONCLUSIONS The quantification method will be useful for diagnosis and risk stratification of EDS caused by TNX deficiency and haploinsufficiency.
Collapse
Affiliation(s)
- Kazuo Yamada
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Enya-cho, Izumo, Shimane 693-8501, Japan; Department of Legal Medicine, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Atsushi Watanabe
- Division of Clinical Genetics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Enya-cho, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
24
|
van den Broek I, Romijn FPHTM, Nouta J, van der Laarse A, Drijfhout JW, Smit NPM, van der Burgt YEM, Cobbaert CM. Automated Multiplex LC-MS/MS Assay for Quantifying Serum Apolipoproteins A-I, B, C-I, C-II, C-III, and E with Qualitative Apolipoprotein E Phenotyping. Clin Chem 2016; 62:188-97. [DOI: 10.1373/clinchem.2015.246702] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022]
Abstract
Abstract
BACKGROUND
Direct and calculated measures of lipoprotein fractions for cardiovascular risk assessment suffer from analytical inaccuracy in certain dyslipidemic and pathological states, most commonly hypertriglyceridemia. LC-MS/MS has proven suitable for multiplexed quantification and phenotyping of apolipoproteins. We developed and provisionally validated an automated assay for quantification of apolipoprotein (apo) A-I, B, C-I, C-II, C-III, and E and simultaneous qualitative assessment of apoE phenotypes.
METHODS
We used 5 value-assigned human serum pools for external calibration. Serum proteins were denatured, reduced, and alkylated according to standard mass spectrometry–based proteomics procedures. After trypsin digestion, peptides were analyzed by LC-MS/MS. For each peptide, we measured 2 transitions. We compared LC-MS/MS results to those obtained by an immunoturbidimetric assay or ELISA.
RESULTS
Intraassay CVs were 2.3%–5.5%, and total CVs were 2.5%–5.9%. The LC-MS/MS assay correlated (R = 0.975–0.995) with immunoturbidimetric assays with Conformité Européenne marking for apoA-I, apoB, apoC-II, apoC-III, and apoE in normotriglyceridemic (n = 54) and hypertriglyceridemic (n = 46) sera. Results were interchangeable for apoA-I ≤3.0 g/L (Deming slope 1.014) and for apoB-100 ≤1.8 g/L (Deming slope 1.016) and were traceable to higher-order standards.
CONCLUSIONS
The multiplex format provides an opportunity for new diagnostic and pathophysiologic insights into types of dyslipidemia and allows a more personalized approach for diagnosis and treatment of lipid abnormalities.
Collapse
Affiliation(s)
| | | | - Jan Nouta
- Department of Clinical Chemistry and Laboratory Medicine
| | | | | | - Nico P M Smit
- Department of Clinical Chemistry and Laboratory Medicine
| | - Yuri E M van der Burgt
- Department of Clinical Chemistry and Laboratory Medicine
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
25
|
Serum apolipoprotein A-1 quantification by LC-MS with a SILAC internal standard reveals reduced levels in smokers. Bioanalysis 2015; 7:2895-911. [PMID: 26394123 PMCID: PMC4737526 DOI: 10.4155/bio.15.195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Absolute quantification of protein biomarkers such as serum apolipoprotein A1 by both immunoassays and LC–MS can provide misleading results. Results: Recombinant ApoA-1 internal standard was prepared using stable isotope labeling by amino acids in cell culture with [13C615N2]-lysine and [13C915N1]-tyrosine in human cells. A stable isotope dilution LC–MS method for serum ApoA-1 was validated and levels analyzed for 50 nonsmokers and 50 smokers. Conclusion: The concentration of ApoA-1 in nonsmokers was 169.4 mg/dl with an 18.4% reduction to 138.2 mg/dl in smokers. The validated assay will have clinical utility for assessing effects of smoking cessation and therapeutic or dietary interventions in high-risk populations.
Collapse
|
26
|
Dissecting the proteome of lipoproteins: New biomarkers for cardiovascular diseases? TRANSLATIONAL PROTEOMICS 2015. [DOI: 10.1016/j.trprot.2014.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
27
|
van den Broek I, Nouta J, Razavi M, Yip R, Bladergroen MR, Romijn FPHTM, Smit NPM, Drews O, Paape R, Suckau D, Deelder AM, van der Burgt YEM, Pearson TW, Anderson NL, Cobbaert CM. Quantification of serum apolipoproteins A-I and B-100 in clinical samples using an automated SISCAPA-MALDI-TOF-MS workflow. Methods 2015; 81:74-85. [PMID: 25766926 DOI: 10.1016/j.ymeth.2015.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 01/09/2023] Open
Abstract
A fully automated workflow was developed and validated for simultaneous quantification of the cardiovascular disease risk markers apolipoproteins A-I (apoA-I) and B-100 (apoB-100) in clinical sera. By coupling of stable-isotope standards and capture by anti-peptide antibodies (SISCAPA) for enrichment of proteotypic peptides from serum digests to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS detection, the standardized platform enabled rapid, liquid chromatography-free quantification at a relatively high throughput of 96 samples in 12h. The average imprecision in normo- and triglyceridemic serum pools was 3.8% for apoA-I and 4.2% for apoB-100 (4 replicates over 5 days). If stored properly, the MALDI target containing enriched apoA-1 and apoB-100 peptides could be re-analyzed without any effect on bias or imprecision for at least 7 days after initial analysis. Validation of the workflow revealed excellent linearity for daily calibration with external, serum-based calibrators (R(2) of 0.984 for apoA-I and 0.976 for apoB-100 as average over five days), and absence of matrix effects or interference from triglycerides, protein content, hemolysates, or bilirubins. Quantification of apoA-I in 93 normo- and hypertriglyceridemic clinical sera showed good agreement with immunoturbidimetric analysis (slope = 1.01, R(2) = 0.95, mean bias = 4.0%). Measurement of apoB-100 in the same clinical sera using both methods, however, revealed several outliers in SISCAPA-MALDI-TOF-MS measurements, possibly as a result of the lower MALDI-TOF-MS signal intensity (slope = 1.09, R(2) = 0.91, mean bias = 2.0%). The combination of analytical performance, rapid cycle time and automation potential validate the SISCAPA-MALDI-TOF-MS platform as a valuable approach for standardized and high-throughput quantification of apoA-I and apoB-100 in large sample cohorts.
Collapse
Affiliation(s)
- Irene van den Broek
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Jan Nouta
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Morteza Razavi
- SISCAPA Assay Technologies Inc., Box 53309, Washington, DC 20009, USA
| | - Richard Yip
- SISCAPA Assay Technologies Inc., Box 53309, Washington, DC 20009, USA
| | - Marco R Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Fred P H T M Romijn
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Nico P M Smit
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Oliver Drews
- Bruker Daltonics GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Rainer Paape
- Bruker Daltonics GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Detlev Suckau
- Bruker Daltonics GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - André M Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yuri E M van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Terry W Pearson
- SISCAPA Assay Technologies Inc., Box 53309, Washington, DC 20009, USA
| | - N Leigh Anderson
- SISCAPA Assay Technologies Inc., Box 53309, Washington, DC 20009, USA
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
28
|
van den Broek I, Romijn FPHTM, Smit NPM, van der Laarse A, Drijfhout JW, van der Burgt YEM, Cobbaert CM. Quantifying protein measurands by peptide measurements: where do errors arise? J Proteome Res 2015; 14:928-42. [PMID: 25494833 DOI: 10.1021/pr5011179] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clinically actionable quantification of protein biomarkers by mass spectrometry (MS) requires analytical performance in concordance with quality specifications for diagnostic tests. Laboratory-developed tests should, therefore, be validated in accordance with EN ISO 15189:2012 guidelines for medical laboratories to demonstrate competence and traceability along the entire workflow, including the selected standardization strategy and the phases before, during, and after proteolysis. In this study, bias and imprecision of a previously developed MS method for quantification of serum apolipoproteins A-I (Apo A-I) and B (Apo B) were thoroughly validated according to Clinical and Laboratory Standards Institute (CLSI) guidelines EP15-A2 and EP09-A3, using 100 patient sera and either stable-isotope labeled (SIL) peptides or SIL-Apo A-I as internal standard. The systematic overview of error components assigned sample preparation before the first 4 h of proteolysis as major source (∼85%) of within-sample imprecision without external calibration. No improvement in imprecision was observed with the use of SIL-Apo A-I instead of SIL-peptides. On the contrary, when the use of SIL-Apo A-I was combined with external calibration, imprecision improved significantly (from ∼9% to ∼6%) as a result of the normalization for matrix effects on linearity. A between-sample validation of bias in 100 patient sera further supported the presence of matrix effects on digestion completeness and additionally demonstrated specimen-specific biases associated with modified peptide sequences or alterations in protease activity. In conclusion, the presented overview of bias and imprecision components contributes to a better understanding of the sources of errors in MS-based protein quantification and provides valuable recommendations to assess and control analytical quality in concordance with the requirements for clinical use.
Collapse
Affiliation(s)
- Irene van den Broek
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC) , Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Dittrich J, Becker S, Hecht M, Ceglarek U. Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry. Proteomics Clin Appl 2014; 9:5-16. [PMID: 25418444 DOI: 10.1002/prca.201400121] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/29/2014] [Accepted: 11/18/2014] [Indexed: 11/07/2022]
Abstract
The simultaneous quantification of protein concentrations via proteotypic peptides in human blood by liquid chromatography coupled to quadrupole MS/MS is an important field of bioanalytical research with a high potential for routine diagnostic applications. This review summarizes currently available sample preparation procedures and trends for absolute protein quantification in blood using LC-MS/MS. It discusses approaches of transferring established qualitative protocols to a quantitative analysis regarding their reliability and reproducibility. Techniques used to enhance method sensitivity such as the depletion of high-abundant proteins or the immunoaffinity enrichment of proteins and peptides are described. Furthermore, workflows for (i) protein denaturation, (ii) disulfide bridge reduction and (iii) thiol alkylation as well as (iv) enzymatic digestion for absolute protein quantification are presented. The main focus is on the tryptic digestion as a bottleneck of protein quantification via proteotypic peptides. Conclusively, requirements for a high-throughput application are discussed.
Collapse
Affiliation(s)
- Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|