1
|
Canela-Pérez I, Azuara-Liceaga E, Cuéllar P, Saucedo-Cárdenas O, Valdés J. Multiple types of nuclear localization signals in Entamoeba histolytica. Biochem Biophys Rep 2024; 39:101770. [PMID: 39055170 PMCID: PMC11269297 DOI: 10.1016/j.bbrep.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Entamoeba histolytica is a protozoan parasite that belongs to the Amoebozoa supergroup whose study related to the nucleocytoplasmic transport of proteins through the nucleus is poorly studied. In this work, we have performed in silico predictions of the potential nuclear localization signals (NLS) corresponding to the proteome of 8201 proteins from Entamoeba histolytica annotated in the AmoebaDB database. We have found the presence of monopartite nuclear localization signals (MNLSs), bipartite nuclear localization signals (BNLSs), and non-canonical monopartite NLSs with lengths exceeding 20 amino acid residues. Additionally, we detected a new type of NLS consisting of multiple juxtaposed bipartite NLSs (JNLSs) that have not been described in any eukaryotic organism. Also, we have generated consensus sequences for the nuclear import of proteins with the NLSs obtained. Docking experiments between EhImportin α and an MNLS, BNLS, and JNLS outlined the interacting residues between the Importin and cargo proteins, emphasizing their putative roles in nuclear import. By transfecting HA-tagged protein constructs, we assessed the nuclear localization of MNLS (U1A and U2AF1), JMNLS (U2AF2), and non-canonical NLS (N-terminus of Pol ll) in vivo. Our data provide the basis for understanding the nuclear transport process in E. histolytica.
Collapse
Affiliation(s)
- Israel Canela-Pérez
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508 colonia San Pedro Zacatenco, GAM, CDMX, 07360, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, 03100, Mexico
| | - Patricia Cuéllar
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, 03100, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 67700, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508 colonia San Pedro Zacatenco, GAM, CDMX, 07360, Mexico
| |
Collapse
|
2
|
Comparative genomics and interactomics of polyadenylation factors for the prediction of new parasite targets: Entamoeba histolytica as a working model. Biosci Rep 2023; 43:232462. [PMID: 36651565 PMCID: PMC9912109 DOI: 10.1042/bsr20221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Protein-protein interactions (PPI) play a key role in predicting the function of a target protein and drug ability to affect an entire biological system. Prediction of PPI networks greatly contributes to determine a target protein and signal pathways related to its function. Polyadenylation of mRNA 3'-end is essential for gene expression regulation and several polyadenylation factors have been shown as valuable targets for controlling protozoan parasites that affect human health. Here, by using a computational strategy based on sequence-based prediction approaches, phylogenetic analyses, and computational prediction of PPI networks, we compared interactomes of polyadenylation factors in relevant protozoan parasites and the human host, to identify key proteins and define potential targets for pathogen control. Then, we used Entamoeba histolytica as a working model to validate our computational results. RT-qPCR assays confirmed the coordinated modulation of connected proteins in the PPI network and evidenced that silencing of the bottleneck protein EhCFIm25 affects the expression of interacting proteins. In addition, molecular dynamics simulations and docking approaches allowed to characterize the relationships between EhCFIm25 and Ehnopp34, two connected bottleneck proteins. Interestingly, the experimental identification of EhCFIm25 interactome confirmed the close relationships among proteins involved in gene expression regulation and evidenced new links with moonlight proteins in E. histolytica, suggesting a connection between RNA biology and metabolism as described in other organisms. Altogether, our results strengthened the relevance of comparative genomics and interactomics of polyadenylation factors for the prediction of new targets for the control of these human pathogens.
Collapse
|
3
|
de Obeso Fernández Del Valle A, Gómez-Montalvo J, Maciver SK. Acanthamoeba castellanii exhibits intron retention during encystment. Parasitol Res 2022; 121:2615-2622. [PMID: 35776211 DOI: 10.1007/s00436-022-07578-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Intron retention (IR) refers to the mechanism of alternative splicing in which an intron is not excised from the mature transcript. IR in the cosmopolitan free-living amoeba Acanthamoeba castellanii has not been studied. We performed an analysis of RNA sequencing data during encystment to identify genes that presented differentially retained introns during this process. We show that IR increases during cyst formation, indicating a potential mechanism of gene regulation that could help downregulate metabolism. We identify 69 introns from 67 genes that are differentially retained comparing the trophozoite stage and encystment after 24 and 48 h. These genes include several hypothetical proteins. We show different patterns of IR during encystment taking as examples a lipase, a peroxin-3 protein, an Fbox domain containing protein, a proteasome subunit, a polynucleotide adenylyltransferase, and a tetratricopeptide domain containing protein. A better understanding of IR in Acanthamoeba, and even other protists, could help elucidate changes in life cycle and combat disease such as Acanthamoeba keratitis in which the cyst is key for its persistence.
Collapse
Affiliation(s)
- Alvaro de Obeso Fernández Del Valle
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico.
| | - Jesús Gómez-Montalvo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| |
Collapse
|
4
|
Galán-Vásquez E, Gómez-García MDC, Pérez-Rueda E. A landscape of gene regulation in the parasitic amoebozoa Entamoeba spp. PLoS One 2022; 17:e0271640. [PMID: 35913975 PMCID: PMC9342746 DOI: 10.1371/journal.pone.0271640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Entamoeba are amoeboid extracellular parasites that represent an important group of organisms for which the regulatory networks must be examined to better understand how genes and functional processes are interrelated. In this work, we inferred the gene regulatory networks (GRNs) in four Entamoeba species, E. histolytica, E. dispar, E. nuttalli, and E. invadens, and the GRN topological properties and the corresponding biological functions were evaluated. From these analyses, we determined that transcription factors (TFs) of E. histolytica, E. dispar, and E. nuttalli are associated mainly with the LIM family, while the TFs in E. invadens are associated with the RRM_1 family. In addition, we identified that EHI_044890 regulates 121 genes in E. histolytica, EDI_297980 regulates 284 genes in E. dispar, ENU1_120230 regulates 195 genes in E. nuttalli, and EIN_249270 regulates 257 genes in E. invadens. Finally, we identified that three types of processes, Macromolecule metabolic process, Cellular macromolecule metabolic process, and Cellular nitrogen compound metabolic process, are the main biological processes for each network. The results described in this work can be used as a basis for the study of gene regulation in these organisms.
Collapse
Affiliation(s)
- Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- * E-mail: (EG-V); (EP-R)
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
- * E-mail: (EG-V); (EP-R)
| |
Collapse
|
5
|
González-Blanco G, García-Rivera G, Talmás-Rohana P, Orozco E, Galindo-Rosales JM, Vélez C, Salucedo-Cárdenas O, Azuara-Liceaga E, Rodríguez-Rodríguez MA, Nozaki T, Valdés J. An Unusual U2AF2 Inhibits Splicing and Attenuates the Virulence of the Human Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:888428. [PMID: 35782149 PMCID: PMC9247205 DOI: 10.3389/fcimb.2022.888428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
E. histolytica is the etiological agent of intestinal amebiasis and liver abscesses, which still poses public health threat globally. Metronidazole is the drug of choice against amebiasis. However, metronidazole-resistant amoebic clinical isolates and strains have been reported recently, challenging the efforts for amebiasis eradication. In search of alternative treatments, E. histolytica transcriptomes have shown the association of genes involved in RNA metabolism with the virulence of the parasite. Among the upregulated genes in amoebic liver abscesses are the splicing factors EhU2AF2 and a paralog of EhSF3B1. For this reason and because EhU2AF2 contains unusual KH-QUA2 (84KQ) motifs in its lengthened C-terminus domain, here we investigated how the role of EhU2AF2 in pre-mRNA processing impacts the virulence of the parasite. We found that 84KQ is involved in splicing inhibition/intron retention of several virulence and non-virulence-related genes. The 84KQ domain interacts with the same domain of the constitutive splicing factor SF1 (SF1KQ), both in solution and when SF1KQ is bound to branchpoint signal RNA probes. The 84KQ–SF1KQ interaction prevents splicing complex E to A transition, thus inhibiting splicing. Surprisingly, the deletion of the 84KQ domain in EhU2AF2 amoeba transformants increased splicing and enhanced the in vitro and in vivo virulence phenotypes. We conclude that the interaction of the 84KQ and SF1KQ domains, probably involving additional factors, tunes down Entamoeba virulence by favoring intron retention.
Collapse
Affiliation(s)
- Gretter González-Blanco
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Patricia Talmás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Ester Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - José Manuel Galindo-Rosales
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Odila Salucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| | - Mario Alberto Rodríguez-Rodríguez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
- *Correspondence: Jesús Valdés,
| |
Collapse
|
6
|
Promoter-Bound Full-Length Intronic Circular RNAs-RNA Polymerase II Complexes Regulate Gene Expression in the Human Parasite Entamoeba histolytica. Noncoding RNA 2022; 8:ncrna8010012. [PMID: 35202086 PMCID: PMC8876499 DOI: 10.3390/ncrna8010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitous eukaryotic non-coding circular RNAs are involved in numerous co- and post-transcriptional regulatory mechanisms. Recently, we reported full-length intronic circular RNAs (flicRNAs) in Entamoeba histolytica, with 3′ss–5′ss ligation points and 5′ss GU-rich elements essential for their biogenesis and their suggested role in transcription regulation. Here, we explored how flicRNAs impact gene expression regulation. Using CLIP assays, followed by qRT-PCR, we identified that the RabX13 control flicRNA and virulence-associated flicRNAs were bound to the HA-tagged RNA Pol II C-terminus domain in E. histolytica transformants. The U2 snRNA was also present in such complexes, indicating that they belonged to transcription initiation/elongation complexes. Correspondingly, inhibition of the second step of splicing using boric acid reduced flicRNA formation and modified the expression of their parental genes and non-related genes. flicRNAs were also recovered from chromatin immunoprecipitation eluates, indicating that the flicRNA-Pol II complex was formed in the promoter of their cognate genes. Finally, two flicRNAs were found to be cytosolic, whose functions remain to be uncovered. Here, we provide novel evidence of the role of flicRNAs in gene expression regulation in cis, apparently in a widespread fashion, as an element bound to the RNA polymerase II transcription initiation complex, in E. histolytica.
Collapse
|
7
|
Marchat LA, Hernández-de la Cruz ON, Ramírez-Moreno E, Silva-Cázares MB, López-Camarillo C. Proteomics approaches to understand cell biology and virulence of Entamoeba histolytica protozoan parasite. J Proteomics 2020; 226:103897. [PMID: 32652218 DOI: 10.1016/j.jprot.2020.103897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
Entamoeba histolytica is the primitive eukaryotic parasite responsible of human amoebiasis, a disease characterized by bloody intestinal diarrhea and invasive extraintestinal illness. The knowledge of the complete genome sequence of virulent E. histolytica and related non-pathogenic species allowed the development of novel genome-wide methodological approaches including protein expression profiling and cellular proteomics in the so called post-genomic era. Proteomics studies have greatly increased our understanding of the cell biology of this ancient parasite. This review summarizes the current works concerning proteomics studies on cell biology, life cycle, virulence and pathogenesis, novel therapies, and protein expression regulation mechanisms in E. histolytica parasite. Also, we discuss the use of proteomics data for the development of novel therapies, the identification of potential disease biomarkers and differential diagnosis between species. SIGNIFICANCE: Entamoeba histolytica is the unicellular protozoan parasite responsible of human amoebiasis, a serious disease with worldwide distribution characterized by bloody intestinal diarrhea and invasive extraintestinal illness including peritonitis and liver, pulmonary and brain abscesses. The post-genomic era allowed the development of proteomic studies including protein expression profiling and cellular proteomics. These proteomics studies have greatly increased our understanding on cell biology, life cycle (cyst-trophozoite conversion), virulence, pathogenesis, novel therapies, and protein expression regulation mechanisms in E. histolytica. Importantly, proteomics has revealed the identity of proteins related to novel therapies, and the identification of potential disease biomarkers and proteins with use in diagnosis between species. Hopefully in the coming years, and through the use of more sophisticated omics tools, including deep proteomics, a more complete set of proteins involved in the aforementioned cellular processes can be obtained to understand the biology of this ancient eukaryote.
Collapse
Affiliation(s)
- Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, ENMH-Instituto Politécnico Nacional, CDMX, México.
| | | | - Esther Ramírez-Moreno
- Programa en Biomedicina Molecular y Red de Biotecnología, ENMH-Instituto Politécnico Nacional, CDMX, México
| | - Macrina B Silva-Cázares
- Doctorado Institucional en Ingeniería y Ciencias de Materiales, Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, México.
| |
Collapse
|
8
|
Mendoza-Figueroa MS, Alfonso-Maqueira EE, Vélez C, Azuara-Liceaga EI, Zárate S, Villegas-Sepúlveda N, Saucedo-Cárdenas O, Valdés J. Postsplicing-Derived Full-Length Intron Circles in the Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:255. [PMID: 30123775 PMCID: PMC6085484 DOI: 10.3389/fcimb.2018.00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Noncoding circular RNAs are widespread in the tree of life. Particularly, intron-containing circular RNAs which apparently upregulate their parental gene expression. Entamoeba histolytica, the causative agent of dysentery and liver abscesses in humans, codes for several noncoding RNAs, including circular ribosomal RNAs, but no intron containing circular RNAs have been described to date. Divergent RT-PCR and diverse molecular approaches, allowed us to detect bona fide full-length intronic circular RNA (flicRNA) molecules. Self-splicing reactions, RNA polymerase II inhibition with Actinomycin D, and second step of splicing-inhibition with boric acid showed that the production of flicRX13 (one of the flicRNAs found in this work, and our test model) depends on mRNA synthesis and pre-mRNA processing instead of self-splicing. To explore the cues and factors involved in flicRX13 biogenesis in vivo, splicing assays were carried out in amoeba transformants where splicing factors and Dbr1 (intron lariat debranching enzyme 1) were silenced or overexpressed, or where Rabx13 wild-type and mutant 5'ss (splice site) and branch site minigene constructs were overexpressed. Whereas SF1 (splicing factor 1) is not involved, the U2 auxiliary splicing factor, Dbr1, and the GU-rich 5'ss are involved in postsplicing flicRX13 biogenesis, probably by Dbr1 stalling, in a similar fashion to the formation of ciRNAs (circular intronic RNAs), but with distinctive 5'-3'ss ligation points. Different from the reported functions of ciRNAs, the 5'ss GU-rich element of flicRX13 possibly interacts with transcription machinery to silence its own gene in cis. Furthermore, introns of E. histolytica virulence-related genes are also processed as flicRNAs.
Collapse
Affiliation(s)
- María S Mendoza-Figueroa
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eddy E Alfonso-Maqueira
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elisa I Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Selene Zárate
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Nicolás Villegas-Sepúlveda
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico.,División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Torres-Cifuentes DM, Galindo-Rosales JM, Saucedo-Cárdenas O, Valdés J. The Entamoeba histolytica Syf1 Homolog Is Involved in the Splicing of AG-Dependent and AG-Independent Transcripts. Front Cell Infect Microbiol 2018; 8:229. [PMID: 30038900 PMCID: PMC6046404 DOI: 10.3389/fcimb.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 02/04/2023] Open
Abstract
Syf1 is a tetratricopeptide repeat (TPR) protein implicated in transcription elongation, spliceosome conformation, mRNA nuclear-cytoplasmic export and transcription-coupled DNA repair. Recently, we identified the spliceosomal components of the human parasite Entamoeba histolytica, among them is EhSyf. Molecular predictions confirmed that EhSyf contains 15 type 1 TPR tandem α-antiparallel array motifs. Amoeba transformants carrying plasmids overexpressing HA-tagged or EhSyf silencing plasmids were established to monitor the impact of EhSyf on the splicing of several test Entamoeba transcripts. EhSyf Entamoeba transformants efficiently silenced or overexpressed the proteins in the nucleus. The overexpression or absence of EhSyf notably enhanced or blocked splicing of transcripts irrespective of the strength of their 3′ splice site. Finally, the absence of EhSyf negatively affected the transcription of an intron-less transcript. Altogether our data suggest that EhSyf is a bona fide Syf1 ortholog involved in transcription and splicing.
Collapse
Affiliation(s)
- Diana M Torres-Cifuentes
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José M Galindo-Rosales
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico.,División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Jesús Valdés
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
10
|
Valdés-Flores J, López-Rosas I, López-Camarillo C, Ramírez-Moreno E, Ospina-Villa JD, Marchat LA. Life and Death of mRNA Molecules in Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:199. [PMID: 29971219 PMCID: PMC6018208 DOI: 10.3389/fcimb.2018.00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023] Open
Abstract
In eukaryotic cells, the life cycle of mRNA molecules is modulated in response to environmental signals and cell-cell communication in order to support cellular homeostasis. Capping, splicing and polyadenylation in the nucleus lead to the formation of transcripts that are suitable for translation in cytoplasm, until mRNA decay occurs in P-bodies. Although pre-mRNA processing and degradation mechanisms have usually been studied separately, they occur simultaneously and in a coordinated manner through protein-protein interactions, maintaining the integrity of gene expression. In the past few years, the availability of the genome sequence of Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, coupled to the development of the so-called “omics” technologies provided new opportunities for the study of mRNA processing and turnover in this pathogen. Here, we review the current knowledge about the molecular basis for splicing, 3′ end formation and mRNA degradation in amoeba, which suggest the conservation of events related to mRNA life throughout evolution. We also present the functional characterization of some key proteins and describe some interactions that indicate the relevance of cooperative regulatory events for gene expression in this human parasite.
Collapse
Affiliation(s)
- Jesús Valdés-Flores
- Departamento de Bioquímica, CINVESTAV, Ciudad de Mexico, Mexico City, Mexico
| | - Itzel López-Rosas
- CONACyT Research Fellow - Colegio de Postgraduados Campus Campeche, Campeche, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México Ciudad de Mexico, Mexico City, Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Juan D Ospina-Villa
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Laurence A Marchat
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| |
Collapse
|
11
|
Targeting the polyadenylation factor EhCFIm25 with RNA aptamers controls survival in Entamoeba histolytica. Sci Rep 2018; 8:5720. [PMID: 29632392 PMCID: PMC5890266 DOI: 10.1038/s41598-018-23997-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 03/23/2018] [Indexed: 12/26/2022] Open
Abstract
Messenger RNA 3'-end polyadenylation is an important regulator of gene expression in eukaryotic cells. In our search for new ways of treating parasitic infectious diseases, we looked at whether or not alterations in polyadenylation might control the survival of Entamoeba histolytica (the agent of amoebiasis in humans). We used molecular biology and computational tools to characterize the mRNA cleavage factor EhCFIm25, which is essential for polyadenylation in E. histolytica. By using a strategy based on the systematic evolution of ligands by exponential enrichment, we identified single-stranded RNA aptamers that target EhCFIm25. The results of RNA-protein binding assays showed that EhCFIm25 binds to the GUUG motif in vitro, which differs from the UGUA motif bound by the homologous human protein. Accordingly, docking experiments and molecular dynamic simulations confirmed that interaction with GUUG stabilizes EhCFIm25. Incubating E. histolytica trophozoites with selected aptamers inhibited parasite proliferation and rapidly led to cell death. Overall, our data indicate that targeting EhCFIm25 is an effective way of limiting the growth of E. histolytica in vitro. The present study is the first to have highlighted the potential value of RNA aptamers for controlling this human pathogen.
Collapse
|
12
|
Cázares-Apátiga J, Medina-Gómez C, Chávez-Munguía B, Calixto-Gálvez M, Orozco E, Vázquez-Calzada C, Martínez-Higuera A, Rodríguez MA. The Tudor Staphylococcal Nuclease Protein of Entamoeba histolytica Participates in Transcription Regulation and Stress Response. Front Cell Infect Microbiol 2017; 7:52. [PMID: 28293543 PMCID: PMC5328994 DOI: 10.3389/fcimb.2017.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
Entamoeba histolytica is the protozoa parasite responsible of human amoebiasis, disease that causes from 40,000 to 100,000 deaths annually worldwide. However, few are known about the expression regulation of molecules involved in its pathogenicity. Transcription of some virulence-related genes is positively controlled by the cis-regulatory element named URE1. Previously we identified the transcription factor that binds to URE1, which displayed a nuclear and cytoplasmic localization. This protein belongs to the Tudor Staphyococcal nuclease (TSN) family, which in other systems participates in virtually all pathways of gene expression, suggesting that this amoebic transcription factor (EhTSN; former EhURE1BP) could also play multiple functions in E. histolytica. The aim of this study was to identify the possible cellular events where EhTSN is involved. Here, we found that EhTSN in nucleus is located in euchromatin and close to, but not into, heterochromatin. We also showed the association of EhTSN with proteins involved in transcription and that the knockdown of EhTSN provokes a diminishing in the mRNA level of the EhRabB gene, which in its promoter region contains the URE1 motif, confirming that EhTSN participates in transcription regulation. In cytoplasm, this protein was found linked to the membrane of small vesicles and to plasma membrane. Through pull-down assays and mass spectrometry we identity thirty two candidate proteins to interact with EhTSN. These proteins participate in transcription, metabolism, signaling, and stress response, among other cellular processes. Interaction of EhTSN with some candidate proteins involved in metabolism, and signaling was validated by co-immunoprecipitation or co-localization. Finally we showed the co-localization of EhTSN and HSP70 in putative stress granules during heat shock and that the knockdown of EhTSN increases the cell death during heat shock treatment, reinforcing the hypothesis that EhTSN has a role during stress response. All data support the proposal that EhTSN is a multifunctional protein of E. histolytica.
Collapse
Affiliation(s)
- Javier Cázares-Apátiga
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Carlos Vázquez-Calzada
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Aarón Martínez-Higuera
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| |
Collapse
|
13
|
Luna-Nácar M, Navarrete-Perea J, Moguel B, Bobes RJ, Laclette JP, Carrero JC. Proteomic Study of Entamoeba histolytica Trophozoites, Cysts, and Cyst-Like Structures. PLoS One 2016; 11:e0156018. [PMID: 27228164 PMCID: PMC4882050 DOI: 10.1371/journal.pone.0156018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/09/2016] [Indexed: 11/23/2022] Open
Abstract
The cyst stage of Entamoeba histolytica is a promising therapeutic target against human amoebiasis. Our research team previously reported the production in vitro of Cyst-Like Structures (CLS) sharing structural features with cysts, including rounded shape, size reduction, multinucleation, and the formation of a chitin wall coupled to the overexpression of glucosamine 6-phosphate isomerase, the rate-limiting enzyme of the chitin synthesis pathway. A proteomic study of E. histolytica trophozoites, cysts, and in vitro-produced CLS is reported herein to determine the nature of CLS, widen our knowledge on the cyst stage, and identify possible proteins and pathways involved in the encystment process. Total protein extracts were obtained from E. histolytica trophozoites, CLS, and partially purified cysts recovered from the feces of amoebic human patients; extracts were trypsin-digested and analyzed by LC-MS/MS. In total, 1029 proteins were identified in trophozoites, 550 in CLS, and 411 in cysts, with 539, 299, and 84 proteins unique to each sample, respectively, and only 74 proteins shared by all three stages. About 70% of CLS proteins were shared with trophozoites, even though differences were observed in the relative protein abundance. While trophozoites showed a greater abundance of proteins associated to a metabolically active cell, CLS showed higher expression of proteins related to proteolysis, redox homeostasis, and stress response. In addition, the expression of genes encoding for the cyst wall proteins Jessie and Jacob was detected by RT-PCR and the Jacob protein identified by Western blotting and immunofluorescence in CLS. However, the proteomic profile of cysts as determined by LC-MS/MS was very dissimilar to that of trophozoites and CLS, with almost 40% of hypothetical proteins. Our global results suggest that CLS are more alike to trophozoites than to cysts, and they could be generated as a rapid survival response of trophozoites to a stressful condition, which allows the parasite to survive temporarily inside a chitin-like resistant cover containing Jacob protein. Our findings lead us to suggest that encystment and CLS formation could be distinct stress responses. In addition, we show that cysts express a high number of genes with unknown function, including four new, highly antigenic, possibly membrane-located proteins that could be targets of therapeutic and diagnostic usefulness.
Collapse
Affiliation(s)
- Milka Luna-Nácar
- Department of Immunology, Instituto de Investigaciones Biomédicas, Tercer Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - José Navarrete-Perea
- Department of Immunology, Instituto de Investigaciones Biomédicas, Tercer Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Bárbara Moguel
- Department of Immunology, Instituto de Investigaciones Biomédicas, Tercer Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Raúl J. Bobes
- Department of Immunology, Instituto de Investigaciones Biomédicas, Tercer Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Juan P. Laclette
- Department of Immunology, Instituto de Investigaciones Biomédicas, Tercer Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Julio C. Carrero
- Department of Immunology, Instituto de Investigaciones Biomédicas, Tercer Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, 04510, México D.F., México
- * E-mail:
| |
Collapse
|
14
|
Lozano-Amado D, Herrera-Solorio AM, Valdés J, Alemán-Lazarini L, Almaraz-Barrera MDJ, Luna-Rivera E, Vargas M, Hernández-Rivas R. Identification of repressive and active epigenetic marks and nuclear bodies in Entamoeba histolytica. Parasit Vectors 2016; 9:19. [PMID: 26767976 PMCID: PMC4712492 DOI: 10.1186/s13071-016-1298-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/06/2016] [Indexed: 12/04/2022] Open
Abstract
Background In human hosts, Entamoeba histolytica cysts can develop into trophozoites, suggesting that the life cycle of this parasite are regulated by changes in gene expression. To date, some evidence has suggested that epigenetic mechanisms such as DNA methylation and histone modification are involved in the regulation of gene expression in Entamoeba. Some post–translational modifications (PTMs) at the N-terminus of E. histolytica’s histones have been reported experimentally, including tri-methylation in the lysine 4 of histone H3 (H3K4me3) and dimethylation in the lysine 27 of histone H3 (H3K27me2), dimethylation of arginine 3 (H4R3me2) and the indirect acetylation of histone H4 in the N-terminal region. However, it is not known which residues of histone H4 are subject to acetylation and/or methylation or where in the nucleus these epigenetic marks are located. Methods Histones from trophozoites of E. histolytica were obtained and analyzed by LC-MS/MS. WB assays were performed using antibodies against epigenetic marks (acetylated lysines and methylated arginines). Immunofluorescence assays (IFA) were carried out to determine the distribution of PTMs and the localization of DNA methylation as a heterochromatin marker. Nuclear bodies such as the nucleolus were identified by using antibodies against fibrillarin and nucleolin and speckles by using anti-PRP6 antibody. Results Some new PTMs in histone H4 of E. histolytica, such as the acetylation of lysines 5, 8, 12 and 16 and the monomethylation of arginine 3, were identified by WB. IFA demonstrated that some marks are associated with transcriptional activity (such as acetylation and/or methylation) and that these marks are distributed throughout the E. histolytica nucleus. Staining with antibodies against anti-pan-acetylated lysine H4 histone and 5-methyl cytosine showed that the activation and transcriptional repression marks converge. Additionally, two nuclear bodies, the nucleolus and speckles, were identified in this parasite. Conclusions This study provides the first evidence that the nucleus of E. histolytica is not compartmentalized and contains two nuclear bodies, the nucleolus and speckles, the latter of which was not identified previously. The challenge is now to understand how these epigenetic marks and nuclear bodies work together to regulate gene expression in E. histolytica. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1298-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Lozano-Amado
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Av. Instituto Politécnico Nacional # 2508, Apartado postal 14-740,, 07360, D. F. Mexico, México.
| | - Abril Marcela Herrera-Solorio
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Av. Instituto Politécnico Nacional # 2508, Apartado postal 14-740,, 07360, D. F. Mexico, México.
| | - Jesús Valdés
- Biochemistry Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Av. Instituto Politécnico Nacional # 2508, Apartado postal 14-740,, 07360, D. F. Mexico, México.
| | - Leticia Alemán-Lazarini
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Av. Instituto Politécnico Nacional # 2508, Apartado postal 14-740,, 07360, D. F. Mexico, México.
| | - Ma de Jesús Almaraz-Barrera
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Av. Instituto Politécnico Nacional # 2508, Apartado postal 14-740,, 07360, D. F. Mexico, México.
| | - Eva Luna-Rivera
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Av. Instituto Politécnico Nacional # 2508, Apartado postal 14-740,, 07360, D. F. Mexico, México.
| | - Miguel Vargas
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Av. Instituto Politécnico Nacional # 2508, Apartado postal 14-740,, 07360, D. F. Mexico, México.
| | - Rosaura Hernández-Rivas
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Av. Instituto Politécnico Nacional # 2508, Apartado postal 14-740,, 07360, D. F. Mexico, México.
| |
Collapse
|
15
|
Marchat LA, Arzola-Rodríguez SI, Hernandez-de la Cruz O, Lopez-Rosas I, Lopez-Camarillo C. DEAD/DExH-Box RNA Helicases in Selected Human Parasites. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:583-95. [PMID: 26537038 PMCID: PMC4635832 DOI: 10.3347/kjp.2015.53.5.583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 11/23/2022]
Abstract
DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.
Collapse
Affiliation(s)
- Laurence A Marchat
- Institutional Program of Molecular Biomedicine, Biotechnology Program, National School of Medicine and Homeopathy of the National Polytechnic Institute, Mexico City, CP 07320, Mexico
| | | | | | - Itzel Lopez-Rosas
- Institutional Program of Molecular Biomedicine, Biotechnology Program, National School of Medicine and Homeopathy of the National Polytechnic Institute, Mexico City, CP 07320, Mexico
| | - Cesar Lopez-Camarillo
- Genomics Sciences Program, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| |
Collapse
|