1
|
Olczak T, Śmiga M, Antonyuk SV, Smalley JW. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution. Microbiol Mol Biol Rev 2024; 88:e0013123. [PMID: 38305743 PMCID: PMC10966948 DOI: 10.1128/mmbr.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
SUMMARY Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Gorasia DG, Veith PD, Reynolds EC. Protein interactome mapping of Porphyromonas gingivalis provides insights into the formation of the PorQ-Z complex of the type IX secretion system. Mol Oral Microbiol 2023; 38:34-40. [PMID: 35862235 PMCID: PMC10947112 DOI: 10.1111/omi.12383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis is an anaerobic Gram-negative human oral pathogen highly associated with the more severe forms of periodontal disease. Porphyromonas gingivalis utilises the type IX secretion system (T9SS) to transport ∼30 cargo proteins, including multiple virulence factors, to the cell surface. The T9SS is a multiprotein system consisting of at least 20 proteins, and recently, we characterised the protein interactome of these components. Similar to the T9SS, almost all biological processes are mediated through protein-protein interactions (PPIs). Therefore, mapping PPIs is important to understand the biological functions of many proteins in P. gingivalis. Herein, we provide native migration profiles of over 1000 P. gingivalis proteins. Using the T9SS, we demonstrate that our dataset is a useful resource for identifying novel protein interactions. Using this dataset and further analysis of T9SS P. gingivalis mutants, we discover new mechanistic insights into the formation of the PorQ-Z complex of the T9SS. This dataset is a valuable resource for studies of P. gingivalis.
Collapse
Affiliation(s)
- Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleAustralia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleAustralia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleAustralia
| |
Collapse
|
3
|
Dorgan B, Liu Y, Wang S, Aduse-Opoku J, Whittaker SBM, Roberts MAJ, Lorenz CD, Curtis MA, Garnett JA. Structural Model of a Porphyromonas gingivalis type IX Secretion System Shuttle Complex. J Mol Biol 2022; 434:167871. [PMID: 36404438 DOI: 10.1016/j.jmb.2022.167871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Porphyromonas gingivalis is a gram-negative oral anaerobic pathogen and is one of the key causative agents of periodontitis. P. gingivalis utilises a range of virulence factors, including the cysteine protease RgpB, to drive pathogenesis and these are exported and attached to the cell surface via the type IX secretion system (T9SS). All cargo proteins possess a conserved C-terminal signal domain (CTD) which is recognised by the T9SS, and the outer membrane β-barrel protein PorV (PG0027/LptO) can interact with cargo proteins as they are exported to the bacterial surface. Using a combination of solution nuclear magnetic resonance (NMR) spectroscopy, biochemical analyses, machine-learning-based modelling and molecular dynamics (MD) simulations, we present a structural model of a PorV:RgpB-CTD complex from P. gingivalis. This is the first structural insight into CTD recognition by the T9SS and shows how the conserved motifs in the CTD are the primary sites that mediate binding. In PorV, interactions with extracellular surface loops are important for binding the CTD, and together these appear to cradle and lock RgpB-CTD in place. This work provides insight into cargo recognition by PorV but may also have important implications for understanding other aspects of type-IX dependent secretion.
Collapse
Affiliation(s)
- Ben Dorgan
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Yichao Liu
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Sunjun Wang
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Joseph Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Sara B-M Whittaker
- Institute of Cancer & Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark A J Roberts
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Christian D Lorenz
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
4
|
Nowakowska Z, Madej M, Grad S, Wang T, Hackett M, Miller DP, Lamont RJ, Potempa J. Phosphorylation of major Porphyromonas gingivalis virulence factors is crucial for their processing and secretion. Mol Oral Microbiol 2021; 36:316-326. [PMID: 34569151 PMCID: PMC10148667 DOI: 10.1111/omi.12354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
The main etiological agent of periodontitis is the anaerobic bacterium Porphyromonas gingivalis. Virulence of this pathogen is controlled by various mechanisms and executed by major virulence factors including the gingipain proteases, peptidylarginine deiminase (PPAD), and RagB, an outer membrane macromolecular transport component. Although the structures and functions of these proteins are well characterized, little is known about their posttranslational maturation. Here, we determined the phosphoproteome of P. gingivalis in which phosphorylated tyrosine residues constitute over 80% of all phosphoresidues. Multiple phosphotyrosines were found in gingipains, PPAD, and RagB. Although mutation of phosphorylated residues in PPAD and RagB had no effect on secretion or activity, site-directed mutagenesis showed that phosphorylation in hemagglutinin/adhesin domains of RgpA and Kgp, and in the catalytic domain of RgpB, had a strong influence on secretion, processing, and enzymatic activity. Moreover, preventing phosphorylation of one gingipain influenced the others, suggesting multiple phosphorylation-dependent pathways of gingipain maturation in P. gingivalis. Various candidate kinases including Ptk1 BY kinase and ubiquitous bacterial kinase 1 (UbK1) may be involved, but their contribution to gingipain processing and activation remains to be confirmed.
Collapse
Affiliation(s)
- Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Grad
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tiansong Wang
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Murray Hackett
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Daniel P. Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
5
|
Potempa J, Madej M, Scott DA. The RagA and RagB proteins of Porphyromonas gingivalis. Mol Oral Microbiol 2021; 36:225-232. [PMID: 34032024 DOI: 10.1111/omi.12345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
RagA and RagB proteins are major components of the outer membrane of the oral pathogen Porphyromonas gingivalis and, while recently suggested to represent a novel peptide uptake system, their full function is still under investigation. Herein, we (a) discuss the evidence that the rag locus contributes to P. gingivalis virulence; (b) provide insight to Rag protein potential biological function in macromolecular transport and other aspects of bacterial physiology; (c) address the host response to Rag proteins which are immunodominant and immunomodulatory; and (d) review the potential of Rag-focused therapeutic strategies for the control of periodontal diseases.
Collapse
Affiliation(s)
- Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA.,Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - Mariusz Madej
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Complementation in trans of Porphyromonas gingivalis Lipopolysaccharide Biosynthetic Mutants Demonstrates Lipopolysaccharide Exchange. J Bacteriol 2021; 203:JB.00631-20. [PMID: 33685973 DOI: 10.1128/jb.00631-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis, a bacterial pathogen contributing to human periodontitis, exports and anchors cargo proteins to its surface, enabling the production of black pigmentation using a type IX secretion system (T9SS) and conjugation to anionic lipopolysaccharide (A-LPS). To determine whether T9SS components need to be assembled in situ for correct secretion and A-LPS modification of cargo proteins, combinations of nonpigmented mutants lacking A-LPS or a T9SS component were mixed to investigate in trans complementation. Reacquisition of pigmentation occurred only between an A-LPS mutant and a T9SS mutant, which coincided with A-LPS modification of cargo proteins detected by Western blotting and coimmunoprecipitation/quantitative mass spectrometry. Complementation also occurred using an A-LPS mutant mixed with outer membrane vesicles (OMVs) or purified A-LPS. Fluorescence experiments demonstrated that OMVs can fuse with and transfer lipid to P. gingivalis, leading to the conclusion that complementation of T9SS function occurred through A-LPS transfer between cells. None of the two-strain crosses involving only the five T9SS OM component mutants produced black pigmentation, implying that the OM proteins cannot be transferred in a manner that restores function and surface pigmentation, and hence, a more ordered temporal in situ assembly of T9SS components may be required. Our results show that LPS can be transferred between cells or between cells and OMVs to complement deficiencies in LPS biosynthesis and hemin-related pigmentation to reveal a potentially new mechanism by which the oral microbial community is modulated to produce clinical consequences in the human host.IMPORTANCE Porphyromonas gingivalis is a keystone pathogen contributing to periodontitis in humans, leading to tooth loss. The oral microbiota is essential in this pathogenic process and changes from predominantly Gram-positive (health) to predominantly Gram-negative (disease) species. P. gingivalis uses its type IX secretion system (T9SS) to secrete and conjugate virulence proteins to anionic lipopolysaccharide (A-LPS). This study investigated whether components of this secretion system could be complemented and found that it was possible for A-LPS biosynthetic mutants to be complemented in trans both by strains that had the A-LPS on the cell surface and by exogenous sources of A-LPS. This is the first known example of LPS exchange in a human bacterial pathogen which causes disease through complex microbiota-host interactions.
Collapse
|
7
|
Lunar Silva I, Cascales E. Molecular Strategies Underlying Porphyromonas gingivalis Virulence. J Mol Biol 2021; 433:166836. [PMID: 33539891 DOI: 10.1016/j.jmb.2021.166836] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is considered the keystone of periodontitis diseases, a set of inflammatory conditions that affects the tissues surrounding the teeth. In the recent years, the major virulence factors exploited by P. gingivalis have been identified and characterized, including a cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue invasion. These effectors use the Sec pathway to cross the inner membrane and are then recruited and transported across the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most secreted effectors are attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat at the cell surface. P. gingivalis produces additional virulence factors to evade host immune responses, such as capsular polysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it is proposed that this broad repertoire of virulence factors enable P. gingivalis to be involved in diverse human diseases such as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular disorders. Here, we review the major virulence determinants of P. gingivalis and discuss future directions to better understand their mechanisms of action.
Collapse
Affiliation(s)
- Ignacio Lunar Silva
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier CS7071, 13009 Marseille Cedex 20, France.
| | - Eric Cascales
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier CS7071, 13009 Marseille Cedex 20, France.
| |
Collapse
|
8
|
Veith PD, Gorasia DG, Reynolds EC. Towards defining the outer membrane proteome of Porphyromonas gingivalis. Mol Oral Microbiol 2020; 36:25-36. [PMID: 33124778 DOI: 10.1111/omi.12320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/18/2023]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic pathogen found in subgingival plaque associated with progressive periodontitis. Proteins associated with the outer membrane (OM) of Gram-negative pathogens are particularly important for understanding virulence and for developing vaccines. The aim of this study was to establish a reliable list of outer membrane associated proteins (Omps) for this organism. Starting with a list of 99 experimentally determined Omps, several bioinformatics tools were used to predict a further 52 proteins, leading to a predicted OM proteome of 151 proteins. The tools used included databases of protein families, prediction of OM β-barrels and structural homology. The list includes 33 T9SS cargo proteins, 43 lipoproteins and 66 OM β-barrel proteins with some overlap between categories. The proteins are discussed both in these structural categories as well as their various functions in OM biogenesis, nutrient acquisition, protein secretion, adhesion and efflux. Proteins that were previously shown to be part of large complexes are highlighted and cross reference is provided to a previous major study of protein localization in P. gingivalis. Finally, proteins were also scored according to their level of conservation within the Bacteroidales taxon. Low scores were shown to correlate with virulence factors and may be predictive of novel virulence factors.
Collapse
Affiliation(s)
- Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Dhana G Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Miller DP, Scott DA. Inherently and Conditionally Essential Protein Catabolism Genes of Porphyromonas gingivalis. Trends Microbiol 2020; 29:54-64. [PMID: 33071035 DOI: 10.1016/j.tim.2020.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Proteases are critical virulence determinants of Porphyromonas gingivalis, an emerging Alzheimer's disease, cancer, and arthritis pathogen and established agent of periodontitis. Transposon sequencing has been employed to define the core essential genome of this bacterium and genes conditionally essential in multiple environments - abscess formation; epithelial colonization; and cigarette smoke toxin exposure; as well as to elucidate genes required for iron acquisition and a functional type 9 secretion system. Validated and predicted protein catabolism genes identified include a combination of established virulence factors and a larger set of seemingly more mundane proteolytic genes. The functions and relevance of genes that share essentiality in multiple disease-relevant conditions are examined. These common stress-related genes may represent particularly attractive therapeutic targets for the control of P. gingivalis infections.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
10
|
The Type IX Secretion System Is Required for Virulence of the Fish Pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 2020; 86:AEM.00799-20. [PMID: 32532872 DOI: 10.1128/aem.00799-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
Flavobacterium psychrophilum causes bacterial cold-water disease in wild and aquaculture-reared fish and is a major problem for salmonid aquaculture. The mechanisms responsible for cold-water disease are not known. It was recently demonstrated that the related fish pathogen, Flavobacterium columnare, requires a functional type IX protein secretion system (T9SS) to cause disease. T9SSs secrete cell surface adhesins, gliding motility proteins, peptidases, and other enzymes, any of which may be virulence factors. The F. psychrophilum genome has genes predicted to encode components of a T9SS. Here, we used a SacB-mediated gene deletion technique recently adapted for use in the Bacteroidetes to delete a core F. psychrophilum T9SS gene, gldN The ΔgldN mutant cells were deficient for secretion of many proteins in comparison to wild-type cells. Complementation of the mutant with wild-type gldN on a plasmid restored secretion. Compared to wild-type and complemented strains, the ΔgldN mutant was deficient in adhesion, gliding motility, and extracellular proteolytic and hemolytic activities. The ΔgldN mutant exhibited reduced virulence in rainbow trout and complementation restored virulence, suggesting that the T9SS plays an important role in the disease.IMPORTANCE Bacterial cold-water disease, caused by F. psychrophilum, is a major problem for salmonid aquaculture. Little is known regarding the virulence factors involved in this disease, and control measures are inadequate. A targeted gene deletion method was adapted to F. psychrophilum and used to demonstrate the importance of the T9SS in virulence. Proteins secreted by this system are likely virulence factors and targets for the development of control measures.
Collapse
|
11
|
Gingimaps: Protein Localization in the Oral Pathogen Porphyromonas gingivalis. Microbiol Mol Biol Rev 2020; 84:84/1/e00032-19. [PMID: 31896547 DOI: 10.1128/mmbr.00032-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porphyromonas gingivalis is an oral pathogen involved in the widespread disease periodontitis. In recent years, however, this bacterium has been implicated in the etiology of another common disorder, the autoimmune disease rheumatoid arthritis. Periodontitis and rheumatoid arthritis were known to correlate for decades, but only recently a possible molecular connection underlying this association has been unveiled. P. gingivalis possesses an enzyme that citrullinates certain host proteins and, potentially, elicits autoimmune antibodies against such citrullinated proteins. These autoantibodies are highly specific for rheumatoid arthritis and have been purported both as a symptom and a potential cause of the disease. The citrullinating enzyme and other major virulence factors of P. gingivalis, including some that were implicated in the etiology of rheumatoid arthritis, are targeted to the host tissue as secreted or outer-membrane-bound proteins. These targeting events play pivotal roles in the interactions between the pathogen and its human host. Accordingly, the overall protein sorting and secretion events in P. gingivalis are of prime relevance for understanding its full disease-causing potential and for developing preventive and therapeutic approaches. The aim of this review is therefore to offer a comprehensive overview of the subcellular and extracellular localization of all proteins in three reference strains and four clinical isolates of P. gingivalis, as well as the mechanisms employed to reach these destinations.
Collapse
|
12
|
Veith PD, Glew MD, Gorasia DG, Chen D, O’Brien-Simpson NM, Reynolds EC. Localization of Outer Membrane Proteins in Treponema denticola by Quantitative Proteome Analyses of Outer Membrane Vesicles and Cellular Fractions. J Proteome Res 2019; 18:1567-1581. [DOI: 10.1021/acs.jproteome.8b00860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil M. O’Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Abstract
ABSTRACT
Members of the phylum
Bacteroidetes
have many unique features, including gliding motility and the type IX protein secretion system (T9SS).
Bacteroidetes
gliding and T9SSs are common in, but apparently confined to, this phylum. Most, but not all, members of the phylum secrete proteins using the T9SS, and most also exhibit gliding motility. T9SSs secrete cell surface components of the gliding motility machinery and also secrete many extracellular or cell surface enzymes, adhesins, and virulence factors. The components of the T9SS are novel and are unrelated to those of other bacterial secretion systems. Proteins secreted by the T9SS rely on the Sec system to cross the cytoplasmic membrane, and they use the T9SS for delivery across the outer membrane. Secreted proteins typically have conserved C-terminal domains that target them to the T9SS. Some of the T9SS components were initially identified as proteins required for gliding motility. Gliding does not involve flagella or pili and instead relies on the rapid movement of motility adhesins, such as SprB, along the cell surface by the gliding motor. Contact of the adhesins with the substratum provides the traction that results in cell movement. SprB and other motility adhesins are delivered to the cell surface by the T9SS. Gliding and the T9SS appear to be intertwined, and components of the T9SS that span the cytoplasmic membrane may energize both gliding and protein secretion. The functions of the individual proteins in each process are the subject of ongoing investigations.
Collapse
|
14
|
Veith PD, Luong C, Tan KH, Dashper SG, Reynolds EC. Outer Membrane Vesicle Proteome of Porphyromonas gingivalis Is Differentially Modulated Relative to the Outer Membrane in Response to Heme Availability. J Proteome Res 2018; 17:2377-2389. [PMID: 29766714 DOI: 10.1021/acs.jproteome.8b00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porphyromonas gingivalis is an anaerobic, Gram-negative oral pathogen associated with chronic periodontitis. P. gingivalis has an obligate requirement for heme, which it obtains from the host. Heme availability has been linked to disease initiation and progression. In this study we used continuous culture of the bacterium to determine the effect of heme limitation and excess on the P. gingivalis proteome. Four biological replicates of whole cell lysate (WCL) and outer membrane vesicle (OMV) samples were digested with trypsin and analyzed by tandem mass spectrometry and MaxQuant label-free quantification. In total, 1211 proteins were quantified, with 108 and 49 proteins significantly changing in abundance more than 1.5-fold ( p < 0.05) in the WCLs and OMVs, respectively. The proteins most upregulated in response to heme limitation were those involved in binding and transporting heme, whereas the four proteins most upregulated under the heme-excess condition constitute a putative heme efflux system. In general, the protein abundance ratios obtained for OMVs and WCLs agreed, indicating that changes to the OM protein composition are passed onto OMVs; however, 16 proteins were preferentially packaged into OMVs under one condition more than the other. In particular, moonlighting cytoplasmic proteins were preferentially associated with OMVs under heme excess.
Collapse
Affiliation(s)
- Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| | - Caroline Luong
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| | - Kheng H Tan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| | - Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| |
Collapse
|
15
|
Jinmei Z, Lei Z, Yafei W. [Research progress on the type Ⅸ secretion system of Porphyromonas gingivalis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:538-542. [PMID: 29188653 DOI: 10.7518/hxkq.2017.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, the study found that Porphyromonas gingivalis type Ⅸ secretion system (T9SS) is a novel protein secretion system, also known as Por secretion system (PorSS). Unlike the eight protein secretion systems found in the past, the system is a polyprotein complex found only in Bacteroides. The secreted proteins have both N- and C-terminus, where the former includes Sec-dependent type Ⅰ signals peptide, and the latter contains conserved domains (C-terminal conserved domain, CTD). Porphyromonas gingivalis T9SS includes proteins such as intima, outer membrane, cytoplasm, and cell cycle, including at least 34 proteins containing CTD. Porphyromonas gingivalis T9SS is involved in regulating associated virulence factors including gingivin, fimbriae, lipopolysaccharide, HBP35, CPG70 protein and peptidyl-arginine deiminase. These CTD-containing virulence proteins are localized by T9SS and then released to the extracellular domain, thereby destroying periodontal tissue. Therefore, this review summarizes the research progress on the T9SS of Porphyromonas gingivalis.
Collapse
Affiliation(s)
- Zhang Jinmei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhao Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wu Yafei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Glew MD, Veith PD, Chen D, Gorasia DG, Peng B, Reynolds EC. PorV is an Outer Membrane Shuttle Protein for the Type IX Secretion System. Sci Rep 2017; 7:8790. [PMID: 28821836 PMCID: PMC5562754 DOI: 10.1038/s41598-017-09412-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/24/2017] [Indexed: 01/20/2023] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with chronic periodontitis. Major virulence factors named gingipains (cysteine proteinases, RgpA, RgpB and Kgp) are secreted via the Type IX Secretion System (T9SS). These, together with approximately 30 other proteins, are secreted to the cell surface and anchored to the outer membrane by covalent modification to anionic lipopolysaccharide (A-LPS) via the novel Gram negative sortase, PorU. PorU is localised on the cell surface and cleaves the C-terminal domain signal (CTD) of T9SS substrates and conjugates their new C-termini to A-LPS. A 440 kDa-attachment complex was identified in the wild-type (WT) comprising of PorU:PorV:PorQ:PorZ. In mutant strains, sub-complexes comprising PorU:PorV or PorQ:PorZ were also identified at smaller native sizes suggesting that PorU and PorZ are anchored to the cell surface via interaction with the PorV and PorQ outer membrane proteins, respectively. Analysis of porU mutants and a CTD cleavage mutant revealed accumulation of immature T9SS substrates in a PorV-bound form. Quantitative label-free proteomics of WT whole cell lysates estimated that the proportion of secretion channels:attachment complexes:free PorV:T9SS substrates was 1:6:110:2000 supporting a role for PorV as a shuttle protein delivering secreted proteins to the attachment complex for CTD signal cleavage and A-LPS modification.
Collapse
Affiliation(s)
- Michelle D Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dhana G Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Ben Peng
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
17
|
Veith PD, Glew MD, Gorasia DG, Reynolds EC. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol Microbiol 2017; 106:35-53. [DOI: 10.1111/mmi.13752] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| |
Collapse
|
18
|
Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol 2017. [PMID: 28603700 DOI: 10.3389/fcimb.2017.00215.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is constantly growing. The actual structure of the translocon, situated in the OM of bacteria, remains the least explored area; however, new technical approaches and increasing scientific attention have resulted in a growing body of data. Therefore, we present a compact up-to-date review of this topic.
Collapse
Affiliation(s)
- Anna M Lasica
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
19
|
Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol 2017; 7:215. [PMID: 28603700 PMCID: PMC5445135 DOI: 10.3389/fcimb.2017.00215] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is constantly growing. The actual structure of the translocon, situated in the OM of bacteria, remains the least explored area; however, new technical approaches and increasing scientific attention have resulted in a growing body of data. Therefore, we present a compact up-to-date review of this topic.
Collapse
Affiliation(s)
- Anna M Lasica
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
20
|
Dashper SG, Mitchell HL, Seers CA, Gladman SL, Seemann T, Bulach DM, Chandry PS, Cross KJ, Cleal SM, Reynolds EC. Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors. Front Microbiol 2017; 8:48. [PMID: 28184216 PMCID: PMC5266723 DOI: 10.3389/fmicb.2017.00048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (KgpcatI and KgpcatII) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.
Collapse
Affiliation(s)
- Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne VIC, Australia
| | - Helen L Mitchell
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne VIC, Australia
| | - Christine A Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne VIC, Australia
| | - Simon L Gladman
- Victorian Life Sciences Computation Initiative Carlton, VIC, Australia
| | - Torsten Seemann
- Victorian Life Sciences Computation Initiative Carlton, VIC, Australia
| | - Dieter M Bulach
- Victorian Life Sciences Computation Initiative Carlton, VIC, Australia
| | | | - Keith J Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne VIC, Australia
| | - Steven M Cleal
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne VIC, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne VIC, Australia
| |
Collapse
|
21
|
Vincent MS, Canestrari MJ, Leone P, Stathopulos J, Ize B, Zoued A, Cambillau C, Kellenberger C, Roussel A, Cascales E. Characterization of the Porphyromonas gingivalis Type IX Secretion Trans-envelope PorKLMNP Core Complex. J Biol Chem 2017; 292:3252-3261. [PMID: 28057754 DOI: 10.1074/jbc.m116.765081] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Indexed: 02/03/2023] Open
Abstract
The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts.
Collapse
Affiliation(s)
- Maxence S Vincent
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Mickaël J Canestrari
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Julien Stathopulos
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Bérengère Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Abdelrahim Zoued
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
22
|
Goulas T, Garcia-Ferrer I, Hutcherson JA, Potempa BA, Potempa J, Scott DA, Gomis-Rüth FX. Structure of RagB, a major immunodominant outer-membrane surface receptor antigen of Porphyromonas gingivalis. Mol Oral Microbiol 2016; 31:472-485. [PMID: 26441291 PMCID: PMC4823178 DOI: 10.1111/omi.12140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
Porphyromonas gingivalis is the main causative agent of periodontitis. It deregulates the inflammatory and innate host immune responses through virulence factors, which include the immunodominant outer-membrane surface receptor antigens A (PgRagA) and B (PgRagB), co-transcribed from the rag pathogenicity island. The former is predicted to be a Ton-dependent porin-type translocator but the targets of this translocation and the molecular function of PgRagB are unknown. Phenomenologically, PgRagB has been linked with epithelial cell invasion and virulence according to murine models. It also acts as a Toll-like receptor agonist and promotes multiple mediators of inflammation. Hence, PgRagB is a candidate for the development of a periodontitis vaccine, which would be facilitated by the knowledge of its atomic structure. Here, we crystallized and solved the structure of 54-kDa PgRagB, which revealed a single domain centered on a curved helical scaffold. It consists of four tetratrico peptide repeats (TPR1-4), each arranged as two helices connected by a linker, plus two extra downstream capping helices. The concave surface bears four large intertwined irregular inserts (A-D), which contribute to an overall compact moiety. Overall, PgRagB shows substantial structural similarity with Bacteroides thetaiotaomicron SusD and Tannerella forsythia NanU, which are, respectively, engaged in binding and uptake of malto-oligosaccharide/starch and sialic acid. This suggests a similar sugar-binding function for PgRagB for uptake by the cognate PgRagA translocator, and, consistently, three potential monosaccharide-binding sites were tentatively assigned on the molecular surface.
Collapse
Affiliation(s)
- T Goulas
- Proteolysis Laboratory, Department of Structural Biology ('María de Maeztu' Unit of Excellence), Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain
| | - I Garcia-Ferrer
- Proteolysis Laboratory, Department of Structural Biology ('María de Maeztu' Unit of Excellence), Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain
| | - J A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - B A Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - J Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
- Małopolska Center of Biotechnology and Department Laboratory of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - D A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville School of Dentistry, Louisville, KY, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology ('María de Maeztu' Unit of Excellence), Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain.
| |
Collapse
|
23
|
PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System. PLoS One 2016; 11:e0164313. [PMID: 27711252 PMCID: PMC5053529 DOI: 10.1371/journal.pone.0164313] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/22/2016] [Indexed: 01/10/2023] Open
Abstract
Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS.
Collapse
|
24
|
Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System. PLoS Pathog 2016; 12:e1005820. [PMID: 27509186 PMCID: PMC4980022 DOI: 10.1371/journal.ppat.1005820] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 01/19/2023] Open
Abstract
The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.
Collapse
|
25
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 2016; 7:53. [PMID: 26903954 PMCID: PMC4746253 DOI: 10.3389/fmicb.2016.00053] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Sunway Campus Subang Jaya, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Nakayama K. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility. J Periodontal Res 2014; 50:1-8. [PMID: 25546073 PMCID: PMC4674972 DOI: 10.1111/jre.12255] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria.
Collapse
Affiliation(s)
- K Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|