1
|
Xu J, Zhu Y, Niu P, Liu Y, Li D, Jiang L, Shi D. Establishment and application of population pharmacokinetics model of vancomycin in infants with meningitis. Pediatr Neonatol 2022; 63:57-65. [PMID: 34544677 DOI: 10.1016/j.pedneo.2021.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To establish a population pharmacokinetics (PPK) model of vancomycin (VCM) for dose individualization in Chinese infants with meningitis. METHODS We collected the data of 82 children with meningitis in hospital from July 2014 to June 2016. The initial vancomycin dosage regimen for children was 10 or 15 mg/kg for q12 h, q8 h or q6 h. Serum concentrations were determined by Viva-E Analyzer before and after the fifth administration. The PPK model was developed by nonlinear mixed-effect model software, assessed by the bootstrap method and then tested in 20 infant patients. RESULTS The VCM clearance (CL) was increased by body weight (WT) and decreased by blood urea nitrogen (BUN). Pharmacokinetic parameters of VCM were not influenced by co-administered drugs. The trough concentrations of VCM were accurately predicted by the PPK model, with the prediction errors less than 32%. CONCLUSION A new individual strategy for VCM regimens was proposed and validated by the PPK model.
Collapse
Affiliation(s)
- Jianwen Xu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China; Department of Pharmacy, Affiliated First Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Ying Liu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Danyun Li
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Li Jiang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Daohua Shi
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
2
|
Saettone V, Biasato I, Radice E, Schiavone A, Bergero D, Meineri G. State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals (Basel) 2020; 10:ani10122199. [PMID: 33255356 PMCID: PMC7759783 DOI: 10.3390/ani10122199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Antibiotic resistance represents a worldwide recognized issue affecting both human and veterinary medicine, with a particular focus being directed towards monogastric animals destined for human consumption. This scenario is the result of frequent utilization of the antibiotics either for therapeutic purposes (humans and animals) or as growth promoters (farmed animals). Therefore, the search for nutritional alternatives has progressively been the object of significant efforts by the scientific community. So far, probiotics, prebiotics and postbiotics are considered the most promising products, as they are capable of preventing or treating gastrointestinal diseases as well as restoring a eubiosis condition after antibiotic-induced dysbiosis development. This review provides an updated state-of-the-art of these nutritional alternatives in both humans and monogastric animals. Abstract In recent years, the indiscriminate use of antibiotics has been perpetrated across human medicine, animals destined for zootechnical productions and companion animals. Apart from increasing the resistance rate of numerous microorganisms and generating multi-drug resistance (MDR), the nonrational administration of antibiotics causes sudden changes in the structure of the intestinal microbiota such as dysbiotic phenomena that can have a great clinical significance for both humans and animals. The aim of this review is to describe the state-of-the-art of alternative therapies to the use of antibiotics and their effectiveness in humans and monogastric animals (poultry, pigs, fish, rabbits, dogs and cats). In particular, those molecules (probiotics, prebiotics and postbiotics) which have a direct function on the gastrointestinal health are herein critically analysed in the prevention or treatment of gastrointestinal diseases or dysbiosis induced by the consumption of antibiotics.
Collapse
Affiliation(s)
- Vittorio Saettone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy
- Correspondence:
| | - Elisabetta Radice
- Department of Surgical Sciences, Medical School, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy;
| | - Achille Schiavone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Domenico Bergero
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| |
Collapse
|
3
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Valliammai A, Sethupathy S, Ananthi S, Priya A, Selvaraj A, Nivetha V, Aravindraja C, Mahalingam S, Pandian SK. Proteomic profiling unveils citral modulating expression of IsaA, CodY and SaeS to inhibit biofilm and virulence in methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 2020; 158:S0141-8130(20)33095-6. [PMID: 32360467 DOI: 10.1016/j.ijbiomac.2020.04.231] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 12/17/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the dangerous human pathogens and it is categorized as a high priority multi-drug resistant bacterium by WHO. Biofilm forming ability of MRSA is responsible for persistent infections and also difficult to eradicate using antibiotic therapy as biofilm is much more resistant to antibiotics. Thus, targeting biofilm and virulence has become an alternative approach to attenuate the pathogenicity of bacterium without affecting the growth. Hence, the present study was aimed at evaluation of antibiofilm potential of citral against MRSA and to decode the possible mode of action. Citral inhibited biofilm formation by MRSA without affecting growth at 100 μg/mL. Microscopic analyses evidenced that citral greatly hampered the surface adherence of MRSA. Effect of citral on cellular proteome of MRSA was studied using two-dimensional gel electrophoresis (2DGE) and differentially regulated proteins were identified using nano LC-MS/MS and MALDI-TOF/TOF analysis. Gene ontology and STRING analysis revealed that citral differentially regulated the proteins involved in pleotropic transcriptional repression (CodY), cell wall homeostasis (IsaA), regulation of exotoxin secretion (SaeS), cell adhesion, hemolysis, capsular polysaccharide biosynthesis and pathogenesis. Gene expression analysis and in vitro assays further validated the alteration in synthesis of slime, hemolysin, lipase, staphyloxanthin and oxidant susceptibility. Thus, the present study unveiled the multiple protein targeted antibiofilm potential of citral and portrays citral as a promising therapeutic agent to combat biofilm mediated MRSA infections with less possibility of resistance development.
Collapse
Affiliation(s)
- Alaguvel Valliammai
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Sivasamy Sethupathy
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Sivagnanam Ananthi
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India; Department of Preventive Oncology Research, Cancer Institute (WIA), Adyar, Chennai 600 036, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Venkatesan Nivetha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Chairmandurai Aravindraja
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India; Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | | |
Collapse
|
5
|
Kim MH, Kim SY, Son JH, Kim SI, Lee H, Kim S, Shin M, Lee JC. Production of Membrane Vesicles by Enterococcus faecium Cultured With or Without Subinhibitory Concentrations of Antibiotics and Their Pathological Effects on Epithelial Cells. Front Cell Infect Microbiol 2019; 9:295. [PMID: 31475120 PMCID: PMC6702262 DOI: 10.3389/fcimb.2019.00295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022] Open
Abstract
Enterococcus faecium is a clinically important pathogen associated with opportunistic infection and multi-drug resistance. E. faecium has been shown to produce membrane vesicles (MVs), but MV production by E. faecium under antibiotic stress conditions and the pathogenic traits thereof have yet to be determined. This study investigated the production of MVs in E. faecium ATCC 700221 cultured with sub-minimum inhibitory concentrations (MICs) of vancomycin or linezolid and determined their pathologic effects on colon epithelial Caco-2 cells. E. faecium ATCC 700221 cultured with 1/2 MIC of vancomycin or linezolid produced 3.0 and 1.5 times more MV proteins than bacteria cultured without antibiotics, respectively. Totals of 438, 461, and 513 proteins were identified in MVs from E. faecium cultured in brain heart infusion broth (MVs/BHI), BHI broth with 1/2 MIC of vancomycin (MVs/VAN), or BHI broth with 1/2 MIC of linezolid (MVs/LIN), respectively. Intact MVs/BHI induced cytotoxicity and the expression of pro-inflammatory cytokine and chemokine genes in Caco-2 cells in a dose-dependent manner, but proteinase K-treated MVs significantly suppressed these pro-inflammatory responses. MVs/LIN were more cytotoxic toward Caco-2 cells than MVs/BHI and MVs/VAN, whereas MVs/VAN stimulated more pro-inflammatory cytokine gene expression in Caco-2 cells than MVs/BHI and MVs/LIN. Overall results indicated that antibiotics modulate the biogenesis and proteomes of MVs in E. faecium at subinhibitory concentrations. MVs produced by E. faecium cultured under antibiotic stress conditions induce strong host cell responses that may contribute to the pathogenesis E. faecium.
Collapse
Affiliation(s)
- Mi Hyun Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Se Yeon Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Joo Hee Son
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung Il Kim
- Drug and Disease Target Team, Korea Basic Science Institute, Ochang, South Korea.,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, South Korea
| | - Hayoung Lee
- Drug and Disease Target Team, Korea Basic Science Institute, Ochang, South Korea.,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, South Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019; 19:e1800435. [DOI: 10.1002/pmic.201800435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Sara Saleh
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - An Staes
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - Stijn Deborggraeve
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| |
Collapse
|
7
|
Analysis of Caenorhabditis elegans phosphoproteome reveals the involvement of a molecular chaperone, HSP-90 protein during Salmonella enterica Serovar Typhi infection. Int J Biol Macromol 2019; 137:620-646. [PMID: 31252012 DOI: 10.1016/j.ijbiomac.2019.06.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/01/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Being a primary and prerequisite Post Translational Modification (PTM), protein phosphorylation mediates the defense mechanisms that presides host defense against a pathogen attack. Hence, the current study was intended to uncover the role of regulatory proteins and their PTMs with special attention to phosphorylation during pathogen attack, using C. elegans as a host and S. Typhi as an interacting pathogen. The study was initiated with the identification of differential regulation of the crucial immune regulatory kinases such as PMK-1, JNK-1 and SGK-1 through immunoblotting analysis, which revealed up-regulation of kinases during 48 h of S. Typhi infection. Subsequent the phosphoproteome profiling of S. Typhi infected C. elegans, using TiO2 Column Chromatography followed by MALDI-ToF-ToF-MS, uncovered the regulated phosphoprotein players resulting in the identification of 166 and 54 proteins from gel-free and gel-based analysis, respectively. HSP-90 was found to be a central player from the interactome analyses and its role during pathogenic defense was validated using immunoblotting. Furthermore, the protein disorders of the identified phosphoproteins have been extensively analysed in silico. This study suggests that S. Typhi interferes with the homeostasis of chaperone molecules by kinetically interfering with the phosphorylation of the downstream pathway players of MAPK and JNK.
Collapse
|
8
|
Verspecht T, Rodriguez Herrero E, Khodaparast L, Khodaparast L, Boon N, Bernaerts K, Quirynen M, Teughels W. Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro. Sci Rep 2019; 9:8326. [PMID: 31171824 PMCID: PMC6554408 DOI: 10.1038/s41598-019-44822-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
There is evidence that pathogenic bacteria can adapt to antiseptics upon repeated exposure. More alarming is the concomitant increase in antibiotic resistance that has been described for some pathogens. Unfortunately, effects of adaptation and cross-adaptation are hardly known for oral pathogens, which are very frequently exposed to antiseptics. Therefore, this study aimed to determine the in vitro increase in minimum inhibitory concentrations (MICs) in oral pathogens after repeated exposure to chlorhexidine or cetylpyridinium chloride, to examine if (cross-)adaptation to antiseptics/antibiotics occurs, if (cross-)adaptation is reversible and what the potential underlying mechanisms are. When the pathogens were exposed to antiseptics, their MICs significantly increased. This increase was in general at least partially conserved after regrowth without antiseptics. Some of the adapted species also showed cross-adaptation, as shown by increased MICs of antibiotics and the other antiseptic. In most antiseptic-adapted bacteria, cell-surface hydrophobicity was increased and mass-spectrometry analysis revealed changes in expression of proteins involved in a wide range of functional domains. These in vitro data shows the adaptation and cross-adaptation of oral pathogens to antiseptics and antibiotics. This was related to changes in cell surface hydrophobicity and in expression of proteins involved in membrane transport, virulence, oxidative stress protection and metabolism.
Collapse
Affiliation(s)
- Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Esteban Rodriguez Herrero
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, 3000, Leuven, Belgium
| | - Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, 3000, Leuven, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, 9000, Gent, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), 3001, Leuven, Belgium
| | - Marc Quirynen
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, 3000, Leuven, Belgium.,Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, 3000, Leuven, Belgium. .,Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Lépesová K, Olejníková P, Mackuľak T, Tichý J, Birošová L. Annual changes in the occurrence of antibiotic-resistant coliform bacteria and enterococci in municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18470-18483. [PMID: 31049859 DOI: 10.1007/s11356-019-05240-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Wastewater contains subinhibitory concentrations of different micropollutants such as antibiotics that create selective pressure on bacteria. This phenomenon is also caused by insufficient wastewater treatment technology leading to the development and spread of antibiotic-resistant bacteria and resistance genes into the environment. Therefore, this work focused on monitoring of antibiotic-resistant coliform bacteria and enterococci in influent and effluent wastewaters taken from the second biggest wastewater treatment plant (Petržalka) in the capital of Slovakia during 1 year. Antibiotic-resistant strains were isolated, identified, and characterized in terms of susceptibility and biofilm production. All of 27 antibiotic-resistant isolates were identified mainly as Morganella morganii, Citrobacter spp., and E. coli. Multidrug-resistance was detected in 58% of isolated strains. All tested isolates could form biofilm; two strains were very strong producers, and 74% formed biofilm by strong intensity. The flow rate of the influent wastewater had a more significant impact on the number of studied bacteria than the temperature. Graphical abstract.
Collapse
Affiliation(s)
- Kristína Lépesová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Jozef Tichý
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Lucia Birošová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
10
|
Igrejas G, Correia S, Silva V, Hébraud M, Caniça M, Torres C, Gomes C, Nogueira F, Poeta P. Planning a One Health Case Study to Evaluate Methicillin Resistant Staphylococcus aureus and Its Economic Burden in Portugal. Front Microbiol 2018; 9:2964. [PMID: 30581421 PMCID: PMC6292916 DOI: 10.3389/fmicb.2018.02964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important multidrug-resistant nosocomial pathogens worldwide with infections leading to high rates of morbidity and mortality, a significant burden to human and veterinary clinical practices. The ability of S. aureus colonies to form biofilms on biotic and abiotic surfaces contributes further to its high antimicrobial resistance (AMR) rates and persistence in both host and non-host environments, adding a major ecological dimension to the problem. While there is a lot of information on MRSA prevalence in humans, data about MRSA in animal populations is scarce, incomplete and dispersed. This project is an attempt to evaluate the current epidemiological status of MRSA in Portugal by making a single case study from a One Health perspective. We aim to determine the prevalence of MRSA in anthropogenic sources liable to contaminate different animal habitats. The results obtained will be compiled with existing data on antibiotic resistant staphylococci from Portugal in a user-friendly database, to generate a geographically detailed epidemiological output for surveillance of AMR in MRSA. To achieve this, we will first characterize AMR and genetic lineages of MRSA circulating in northern Portugal in hospital wastewaters, farms near hospitals, farm animals that contact with humans, and wild animals. This will indicate the extent of the AMR problem in the context of local and regional human-animal-environment interactions. MRSA strains will then be tested for their ability to form biofilms. The proteomes of the strains will be compared to better elucidate their AMR mechanisms. Proteomics data will be integrated with the genomic and transcriptomic data obtained. The vast amount of information expected from this omics approach will improve our understanding of AMR in MRSA biofilms, and help us identify new vaccine candidates and biomarkers for early diagnosis and innovative therapeutic strategies to tackle MRSA biofilm-associated infections and potentially other AMR superbugs.
Collapse
Affiliation(s)
- Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Susana Correia
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Vanessa Silva
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Michel Hébraud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR0454 MEDiS, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France.,Institut National de la Recherche Agronomique, Plate-Forme d'Exploration du Métabolisme Composante Protéomique, UR0370 QuaPA, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain.,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Catarina Gomes
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Nogueira
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
11
|
Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Sci Rep 2017; 7:16328. [PMID: 29180790 PMCID: PMC5703977 DOI: 10.1038/s41598-017-16507-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022] Open
Abstract
Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.
Collapse
|
12
|
Yang XY, Xu JY, Wei QX, Sun X, He QY. Comparative Proteomics of Streptococcus pneumoniae Response to Vancomycin Treatment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:531-539. [PMID: 28934029 DOI: 10.1089/omi.2017.0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Streptococcus pneumoniae is a gram-positive pathogen that causes otitis media, pneumonia, meningitis, and other serious diseases. Vancomycin is one of the most important drugs currently used for the treatment of gram-positive bacterial infections, representing, importantly, the last line of defense against bacteria that have developed resistance to other antibiotics. While primary efforts of most investigations focused on the antibacterial mechanism of vancomycin, few studies have been performed to assess the tolerance mechanism of bacteria to vancomycin. In this work, whole cellular proteins were extracted from S. pneumoniae D39 with or without vancomycin treatment. Subsequently, differentially expressed proteins (DEPs) were identified with two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry (MS)/MS. In total, 27 proteins were upregulated and four proteins were downregulated in vancomycin-treated S. pneumoniae. Gene ontology analysis indicated that these DEPs were mainly involved in the nucleic acid, protein, and carbohydrate biosynthetic processes. Verification experiments with real-time quantitative polymerase chain reaction showed that the gene expression profiles were consistent with proteomic data. These new observations may serve as a valuable resource for future investigations of vancomycin tolerance mechanisms of S. pneumoniae.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- 1 The First Affiliated Hospital of Jinan University , Guangzhou, China .,2 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Jing-Yu Xu
- 2 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Qiu-Xia Wei
- 2 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Xuesong Sun
- 2 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Qing-Yu He
- 2 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou, China
| |
Collapse
|
13
|
Martinez OF, Agbale CM, Nomiyama F, Franco OL. Deciphering bioactive peptides and their action mechanisms through proteomics. Expert Rev Proteomics 2016; 13:1007-1016. [PMID: 27650042 DOI: 10.1080/14789450.2016.1238305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bioactive peptides such as antimicrobial peptides (AMPs), ribosomally synthesized and post translationally modified peptides (RiPPs) and the non-ribosomal peptides (NRPs) have emerged with promising applications in medicine, agriculture and industry. However, their development has been limited by several difficulties making it necessary to search for novel discovery methods. In this context, proteomics has been considered a reliable tool. Areas covered: This review highlights recent developments in proteomic tools that facilitate the discovery of AMPs, RiPPs and NRPs as well as the elucidation of action mechanisms of AMPs and resistance mechanisms of pathogens to them. Expert commentary: Proteomic approaches have emerged as useful tools for the study of bioactive peptides, especially mass spectrometry-based peptidomics profiling, a promising strategy for AMP discovery. Furthermore, the rapidly expanding fields of genome mining and genome sequencing techniques, as well as mass spectrometry, have revolutionized the discovery of novel RiPPs and NRPs from complex biological samples.
Collapse
Affiliation(s)
- Osmel Fleitas Martinez
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Caleb Mawuli Agbale
- c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil.,d Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Fernanda Nomiyama
- b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Octávio Luiz Franco
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil.,c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil
| |
Collapse
|
14
|
Sethupathy S, Prasath KG, Ananthi S, Mahalingam S, Balan SY, Pandian SK. Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. J Proteomics 2016; 145:112-126. [DOI: 10.1016/j.jprot.2016.04.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 01/01/2023]
|
15
|
Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl 2016; 10:964-981. [PMID: 27312049 DOI: 10.1002/prca.201600041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022]
Abstract
Developing elaborate techniques for clinical applications can be a complicated process. Whole-cell MALDI-TOF MS revolutionized reliable microorganism identification in clinical microbiology laboratories and is now replacing phenotypic microbial identification. This technique is a generic, accurate, rapid, and cost-effective growth-based method. Antibiotic resistance keeps emerging in environmental and clinical microorganisms, leading to clinical therapeutic challenges, especially for Gram-negative bacteria. Antimicrobial susceptibility testing is used to reliably predict antimicrobial success in treating infection, but it is inherently limited by the need to isolate and grow cultures, delaying the application of appropriate therapies. Antibiotic resistance prediction by growth-independent methods is expected to reduce the turnaround time. Recently, the potential of next-generation sequencing and microarrays in predicting microbial resistance has been demonstrated, and this review evaluates the potential of MS in this field. First, technological advances are described, and the possibility of predicting antibiotic resistance by MS is then illustrated for three prototypical human pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clearly, MS methods can identify antimicrobial resistance mediated by horizontal gene transfers or by mutations that affect the quantity of a gene product, whereas antimicrobial resistance mediated by target mutations remains difficult to detect.
Collapse
Affiliation(s)
- Yannick Charretier
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals
| |
Collapse
|
16
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
17
|
Park AJ, Krieger JR, Khursigara CM. Survival proteomes: the emerging proteotype of antimicrobial resistance. FEMS Microbiol Rev 2016; 40:323-42. [PMID: 26790948 DOI: 10.1093/femsre/fuv051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is one of the greatest challenges in modern medicine. Infectious diseases that have historically been eliminated with routine antibiotic therapy are now re-emerging as life threatening illnesses. A better understanding of the specific mechanisms that contribute to resistance are required to optimize the treatment of infectious microorganisms and limit the survival of recalcitrant populations. This challenging area of research is made more problematic by the observation that multiple, overlapping, and/or compensatory resistance mechanism are often present within a single bacterial species. High-resolution proteomics has emerged as an effective tool to study antimicrobial resistance as it allows for the quantitative investigation of multiple systems concurrently. Furthermore, the ability to examine extracellular mechanisms of resistance and important post-translational modifications make this research tool well suited for the challenge. This review discusses how proteomics has contributed to the understanding of antimicrobial resistance and focuses on advances afforded by the more recent development of technologies that produce quantitative high-resolution proteomic information. We discuss current strategies for studying resistance, including comparative analysis of resistant and susceptible strains and protein-based responses to antimicrobial challenge. Lastly, we suggest specific experimental approaches aimed at advancing our understanding of protein-based resistance mechanisms and maximizing therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
18
|
Lee CR, Lee JH, Park KS, Jeong BC, Lee SH. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol 2015; 6:828. [PMID: 26322035 PMCID: PMC4531251 DOI: 10.3389/fmicb.2015.00828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
19
|
da Costa JP, Carvalhais V, Ferreira R, Amado F, Vilanova M, Cerca N, Vitorino R. Proteome signatures—how are they obtained and what do they teach us? Appl Microbiol Biotechnol 2015. [PMID: 26205520 DOI: 10.1007/s00253-015-6795-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Lin X, Lin L, Yao Z, Li W, Sun L, Zhang D, Luo J, Lin W. An integrated quantitative and targeted proteomics reveals fitness mechanisms of Aeromonas hydrophila under oxytetracycline stress. J Proteome Res 2015; 14:1515-25. [PMID: 25621997 DOI: 10.1021/pr501188g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To date, above ten thousand tons of antibiotics are used in aquaculture each year that lead to the deterioration of natural resources. However, knowledge is limited on the molecular biological behavior of common aquatic pathogens against antibiotics stress. In this study, proteomics profiles of Aeromonas hydrophila, which were exposed to different levels of oxytetracycline (OXY) stress, were displayed and compared using iTRAQ labeling and SWATH-MS based LC-MS/MS methods. A total 1383 proteins were identified by SWATH-MS method, and 2779 proteins were identified from iTRAQ labeling samples. There are 152 up-regulated and 52 down-regulated proteins overlapped in 5 μg/mL OXY stress and both 83 up- and down-regulated proteins overlapped in 10 μg/mL OXY stress in both methods, respectively. Results show that many protein synthesis and translation related proteins increased, while energy generation related proteins decreased in OXY stress. The varieties of selected proteins involved in both pathways were further validated by sMRM(HR), q-PCR, and enzyme activity assay. Furthermore, the concentrations of NAD+ and NADH were measured to verify the characteristic of energy generation process in OXY stress and OXY resistance strain. We demonstrate that the down-regulation of energy generation related metabolic pathways and up-regulation of translation may play an important role in antibiotics fitness or resistance of aquatic pathogens.
Collapse
Affiliation(s)
- Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, PR China
| | | | | | | | | | | | | | | |
Collapse
|