1
|
Wang J, Han Y, Sam FE, Wang Q, Zhang B, Ma T, Li J, Feng L, Jiang Y. Application of benzothiadiazole to Cabernet Gernischt grapes (Vitis vinifera L.) for quality improvement: Effects on aroma metabolism precursors and related genes expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108537. [PMID: 38513517 DOI: 10.1016/j.plaphy.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Pre-harvest spraying of benzothiadiazole (BTH) can improve the winemaking properties of grapes, especially their aroma compounds and phenolics. Limited research has explored the molecular mechanisms by which BTH influences the accumulation of grape aroma precursors during early grape development. This study investigated the effects and putative molecular mechanisms of applying 0.37 mM BTH through whole-plant spraying on the accumulation of aroma metabolism precursors and gene expression in Cabernet Gernischt grapes during ripening. The results showed that BTH treatment increased the levels of fructose, alanine, aspartate, threonine, myristic acid, myristoleic acid, palmitic acid, β-cryptoxanthin, norisoprenoids and methoxypyrazines. Contrarily, it decreased the levels of glucose, sucrose, phenylalanine, tyrosine, leucine, valine, glycine, arginine, histidine, total unsaturated fatty acids (particularly linoleic acid), zeaxanthin, lutein, and organic acids. Additionally, BTH upregulated the expression of genes associated with the production and degradation of amino acids, fatty acids, and carotenoids while decreasing the expression of genes involved in the synthesis and degradation of soluble sugars and organic acids. Ten different metabolites, including fumaric acid, were identified as potential biological markers for distinguishing BTH-treated grapes from control grapes. The study demonstrates that BTH treatment had a substantial impact on the concentration and developmental patterns of aroma metabolism precursors. Furthermore, it altered the winemaking characteristics of Cabernet Gernischt grapes by modulating genes associated with the production and breakdown of metabolites.
Collapse
Affiliation(s)
- Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Faisal Eudes Sam
- College of Enology, Northwest A&F University, Xianyang, 712100, China
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tengzhen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Wang J, Han Y, Chen C, Sam FE, Guan R, Wang K, Zhang Y, Zhao M, Chen C, Liu X, Jiang Y. Influence of Benzothiadiazole on the Accumulation and Metabolism of C6 Compounds in Cabernet Gernischt Grapes ( Vitis vinifera L.). Foods 2023; 12:3710. [PMID: 37835363 PMCID: PMC10572586 DOI: 10.3390/foods12193710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Pre-harvest application of elicitors improves grape quality, specifically the phenolic compounds and color characteristics. Limited research has been conducted on the impact of elicitors on the C6 compounds found in grapes. This is due to lack of comprehensive studies examining the combined effects of bound aroma compounds, enzyme activity, and substrate availability. This study aimed to assess the impact of benzothiadiazole (BTH) on the physicochemical properties and C6 compounds of Cabernet Gernischt grapes during ripening. Compared with the control group (CK), BTH treatment significantly increased the 100-berry weight, skin/berry ratio, pH, total phenolic content, and total flavonoid content in ripe grapes. Additionally, BTH treatment led to significant reductions in reducing sugar, total soluble solids, titratable acidity, linoleic acid, linolenic acid, and free C6 aldehydes. Furthermore, BTH treatment significantly decreased the contents of free C6 alcohols and increased the levels of free and bound C6 esters. BTH treatment also increased the activities of lipoxygenase, alcohol dehydrogenase, and alcohol acetyltransferase enzymes, while it decreased the activity of hydroperoxide lyase enzyme. The application of BTH resulted in changes to the physicochemical properties and levels of C6 compounds in Cabernet Gernischt grapes by up-regulating enzyme activity and down-regulating precursors.
Collapse
Affiliation(s)
- Jianfeng Wang
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Yuqi Han
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Chunxia Chen
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Faisal Eudes Sam
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Ruwen Guan
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Kai Wang
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Yu Zhang
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Man Zhao
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Changxia Chen
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Xuan Liu
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| | - Yumei Jiang
- Gansu Key Laboratory of Viticulture and Enology, Gansu Wine Industry Technology R&D Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.W.)
| |
Collapse
|
3
|
Cocetta G, Cavenago B, Bulgari R, Spinardi A. Benzothiadiazole enhances ascorbate recycling and polyphenols accumulation in blueberry in a cultivar-dependent manner. FRONTIERS IN PLANT SCIENCE 2022; 13:1032133. [PMID: 36570922 PMCID: PMC9780449 DOI: 10.3389/fpls.2022.1032133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Benzothiadiazole (BTH) is a functional analogue of salicylic acid able to induce systemic acquired resistance in many horticultural crops. The aim of the work was to investigate how BTH may affect i) fruit quality, ii) ascorbic acid (AsA) oxidation and recycling metabolism and iii) phenolic compounds accumulation, during development and ripening of berries from the two selected cultivars. Blueberry (Vaccinium corymbosum L.) plants (cv 'Brigitta' and 'Duke') were treated with 0.118 mM BTH every two weeks during ripening, then all fruits of each plant were harvested and divided in four developmental stages. Results indicated that BTH had no marked effects on fruit quality parameters. During the first developmental stage, BTH negatively affected dry matter in both cv, while soluble solids and AsA content were affected in 'Duke'. In fully ripe berries, BTH reduced dry matter in 'Duke' and enhanced soluble solids content in 'Brigitta', while diminishing titratable acidity. AsA content was positively affected by BTH in 'Duke', but not in 'Brigitta'. The effect of BTH on the enzymes involved in AsA recycling was recorded in berries at the third (fruit more than half pigmented) and fourth developmental stages. After treatment, in both cv ascorbate peroxidase (APX) activity increased in fully ripe berries, while monodehydroascorbate reductase (MDHAR) activity was stimulated at the third ripening stage. Conversely, the activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were enhanced only in 'Brigitta' and in 'Duke', respectively. BTH stimulated total polyphenols, flavonoid and anthocyanin accumulation in 'Brigitta' and in 'Duke' at the third and fourth ripening stages. In fully ripe berries, BTH enhanced the accumulation of delphinidins, cyanidins, petunidins and peonidins in 'Brigitta', while in 'Duke' it increased all classes of anthocyanidins, including malvidin. On the contrary, the relative proportion of the individual anthocyanins was only slightly affected by BTH treatment, mainly regarding delphinidin and malvidin at the third and fourth stage of ripening of 'Duke' and 'Brigitta', respectively. These results show that preharvest BTH application can positively impact on fruit bioactive compounds levels, affecting AsA recycling and content and increasing polyphenols accumulation in fruit, but partly depending on cv and ripening stage.
Collapse
Affiliation(s)
- Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Milano, Italy
| | - Beatrice Cavenago
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Milano, Italy
| | - Roberta Bulgari
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Milano, Italy
- Department of Agricultural, Forest, and Food Sciences (DISAFA), Vegetable Crops and Medicinal and Aromatic Plants VEGMAP, University of Torino, Torino, Italy
| | - Anna Spinardi
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
The Cell Wall Regeneration of Tobacco Protoplasts Based on Microfluidic System. Processes (Basel) 2022. [DOI: 10.3390/pr10122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The cell wall, serving as the exoskeleton of plants, is naturally a barrier to resist external stresses. Protoplasts can be obtained by dissolving the cell walls of plant cells without damaging the cell membrane, and are widely used in the rapid propagation, transgenic breeding, and somatic hybridization of plants. However, to regenerate the cell wall is a precondition for cell division. Therefore, to study the culture condition and influencing factors during the cell wall regeneration of protoplasts is vital. Traditionally, culture medium is used to cultivate protoplasts, but it has some disadvantages. Herein, a microfluidic system with crossed channels was constructed to isolate and cultivate the protoplasts of tobacco. Then, the cell wall regeneration of the tobacco protoplasts was also studied based on this microfluidic system. It was found that, compared with the control, benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) could accelerate the regeneration of the cell wall, while Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) could inhibit the regeneration of the cell wall within 24 h. To conclude, this study demonstrated that a crossed microfluidic chip could be an effective tool to study cell wall regeneration or other behavior of plant cells in situ with high resolution. In addition, this study revealed the rate of cell wall regeneration under BTH and Pst DC3000 treatment.
Collapse
|
5
|
Li X, Tian Z, Chai Y, Yang H, Zhang M, Yang C, Xu R, Zhu F, Zeng Y, Deng X, Wang P, Cheng Y. Cytological and proteomic evidence reveals the involvement of mitochondria in hypoxia-induced quality degradation in postharvest citrus fruit. Food Chem 2022; 375:131833. [PMID: 34974349 DOI: 10.1016/j.foodchem.2021.131833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Hypoxia frequently occurs in postharvest logistics, which greatly influences fruit storability. Here, we for the first time studied the dynamic variations of mitochondrial morphology in living citrus fruit cells, and revealed that waxing treatment-induced hypoxia strongly triggered mitochondrial fission and fragmentation. Correspondingly, hypoxia caused a decline in mitochondrial membrane potential and mobility. Besides, impairment of energetic and redox status was also found in waxed fruit. The proteomic changes of mitochondria after waxing treatment were also characterized. Using weighted gene co-expression network analysis (WGCNA), we identified 167 key hypoxia-responsive proteins, which were mainly involved in fatty acid, amino acid and organic acid metabolism. Metabolite analysis verified that waxing treatment promoted the accumulation of several hypoxic metabolites, such as ethanol, acetaldehyde, succinic acid and γ-aminobutyric acid (GABA). Taken together, our findings provide new insights into the cytological and proteomic responses of mitochondria to hypoxia during fruit storage.
Collapse
Affiliation(s)
- Xin Li
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhen Tian
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingfang Chai
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hongbin Yang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingfei Zhang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ce Yang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Rangwei Xu
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Feng Zhu
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunliu Zeng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiuxin Deng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pengwei Wang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunjiang Cheng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
6
|
Jiang H, Li X, Ma L, Ren Y, Bi Y, Prusky D. Transcriptome sequencing and differential expression analysis of natural and BTH-treated wound healing in potato tubers (Solanum tuberosum L.). BMC Genomics 2022; 23:263. [PMID: 35382736 PMCID: PMC8981635 DOI: 10.1186/s12864-022-08480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Background Wound healing is a representative phenomenon of potato tubers subjected to mechanical injuries. Our previous results found that benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) promoted the wound healing of potato tubers. However, the molecular mechanism related to inducible wound healing remains unknown. Results Transcriptomic evaluation of healing tissues from potato tubers at three stages, namely, 0 d (nonhealing), 5 d (wounded tubers healed for 5 d) and 5 d (BTH-treated tubers healed for 5 d) using RNA-Seq and differentially expressed genes (DEGs) analysis showed that more than 515 million high-quality reads were generated and a total of 7665 DEGs were enriched, and 16 of these DEGs were selected by qRT-PCR analysis to further confirm the RNA sequencing data. Gene ontology (GO) enrichment analysis indicated that the most highly DEGs were involved in metabolic and cellular processes, and KEGG enrichment analysis indicated that a large number of DEGs were associated with plant hormones, starch and sugar metabolism, fatty acid metabolism, phenylpropanoid biosynthesis and terpenoid skeleton biosynthesis. Furthermore, a few candidate transcription factors, including MYB, NAC and WRKY, and genes related to Ca2+-mediated signal transduction were also found to be differentially expressed during wound healing. Most of these enriched DEGs were upregulated after BTH treatment. Conclusion This comparative expression profile provided useful resources for studies of the molecular mechanism via these promising candidates involved in natural or elicitor-induced wound healing in potato tubers. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08480-1.
Collapse
Affiliation(s)
- Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xue Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yingyue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.,Department of Postharvest Science, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
| |
Collapse
|
7
|
Dong B, Tang H, Zhu D, Yao Q, Han H, He K, Ding X. Benzothiazole Treatment Regulates the Reactive Oxygen Species Metabolism and Phenylpropanoid Pathway of Rosa roxburghii Fruit to Delay Senescence During Low Temperature Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:753261. [PMID: 34759944 PMCID: PMC8573082 DOI: 10.3389/fpls.2021.753261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Rosa roxburghii fruit were used as research objects to study the effects of different concentrations of benzothiazole (BTH) treatment on quality parameters, reactive oxygen species (ROS) metabolism, and the phenylpropanoid pathway during storage at 4°C for 14days. Results showed that BTH effectively delayed senescence with lower decay incidence, weight loss, and lipid peroxidation level and maintained the quality with higher contents of total soluble solid (TSS) content, titratable acidity (TA) in R. roxburghii fruit. Moreover, BTH increased hydrogen peroxide (H2O2) content, superoxide anion (O2 •-) production rate, and the activities and expression of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione (GSH) reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and peroxidase (POD), and the contents of GSH and ascorbic acid (AsA), but reduced the oxidized GSH (GSSG) content. In addition, the activities and gene expression of phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) and the concentrations of flavonoids, total phenols, and lignin were significantly elevated by BTH. These findings imply that BTH can delay senescence and maintain the quality of R. roxburghii fruit by modulating ROS metabolism and the phenylpropanoid pathway under low-temperature conditions.
Collapse
Affiliation(s)
- Boyu Dong
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Hongmin Tang
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Dequan Zhu
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Qiuping Yao
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Hongqiang Han
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Kequn He
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Xiaochun Ding
- State Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Hassan MAA, El-Saadony MT, Mostafa NG, El-Tahan AM, Mesiha PK, El-Saadony FMA, Hassan AM, El-Shehawi AM, Ashry NM. The use of previous crops as sustainable and eco-friendly management to fight Fusarium oxysporum in sesame plants. Saudi J Biol Sci 2021; 28:5849-5859. [PMID: 34588900 PMCID: PMC8459150 DOI: 10.1016/j.sjbs.2021.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022] Open
Abstract
Sesame (Sesamum indicum L.), the “Queen of oil seeds” is being infected with pathogens, i.e., fungi, bacteria, virus and nematodes. Fusarium oxysporum sp. sesami (Zap.), is one of the fiercest pathogens causing severe economic losses on sesame. This work aimed to evaluate the impact of the cultivation of some preceding crops and seed inoculation with antagonistic predominant rhizospheric bacteria and actinomycetes on the incidence and development of Fusarium damping-off and wilt disease. Results showed that the lowest pre and/or post-emergence damping-off and wilt of sesame were recorded after onion and garlic, followed by wheat compared to clover in both the 2019 and 2020 seasons. In vitro, soil extracts from plots where onion and garlic have been cultivated slightly decreased the conidia germination and mycelium radial growth of F. oxysporum. The numbers of sesame rhizospheric F. oxysporum and fungi were lower after the cultivation of onion and garlic than those after wheat and clover. However, the numbers of actinomycetes and bacteria were higher in the onion, garlic, and clover rhizosphere than wheat. Among all isolated bacteria and actinomycetes associated with sesame roots cultivated after preceding plants, the Tricoderma viride and Bacillus subtilis (isolate No.3) profoundly reduce F. oxysporum mycelial growth in vitro. When sesame seeds were inoculated with Tricoderma viride, Bacillus subtilis, Streptomyces rochei and Pseudomonas fluorescens, the disease incidence of damping-off and wilt significantly decreased in the greenhouse and field trials conducted in both tested growing seasons, also had highly significant on plant health and growth parameters. Therefore, the current study suggested that using the preceding onion and garlic plants could be used for eco-friendly reduction of damping-off and wilt disease of sesame.
Collapse
Affiliation(s)
- Mokhles A A Hassan
- Agricultural Botany Department (Microbiology), Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Nadeen G Mostafa
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Philemon K Mesiha
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Fathy M A El-Saadony
- Agricultural Botany Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Aziza M Hassan
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noha M Ashry
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Toukh 13736, Egypt
| |
Collapse
|
9
|
Zhang L, Wu CL, Yang P, Wang YC, Zhang LL, Yang XY. Chilling injury mechanism of hardy kiwifruit (Actinidia arguta) was revealed by proteome of label-free techniques. J Food Biochem 2021; 45:e13897. [PMID: 34390016 DOI: 10.1111/jfbc.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Refrigeration is an important method to extend shelf life of hardy kiwifruit. However, the inappropriate storage temperature can lead to chilling injury in the fruit. We found that firmness, total soluble solids, and total polyphenolic content of the fruit exposed to 0℃ environment were apparently lower, and titratable acidity content, browning rate, weight loss rate, electrolyte leakage, proline content, and malondialdehyde content were higher obviously than 4℃. A total of 244 differentially expressed proteins were found result from differential temperatures, among which 113 were up-regulated and 131 were down-regulated. Subcellular localization results presented that the differentially expressed proteins which were affected by low temperature were located in cytoplasmic, chloroplast, nuclear, mitochondrial, plasma membrane, and extracellular. Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed proteins were mainly participated in synthesis of citrate cycle, oxidative phosphorylation, fatty acid biosynthesis, and starch and sucrose metabolism. Protein-protein interaction results revealed that central proteins interaction points respectively are 30S ribosomal proteins, 30S ribosomal protein S7, chloroplastic, cell division cycle 5-like protein, 50S ribosomal protein, ribosomal protein, ribosomal protein L6 protein, and SRP54 subunit protein. The quality deviations of all identified peptides were mainly distributed within 10 ppm, and MS2 has an ideal andromeda score, with more than 87.82% peptide scores above 60 points, and the median peptide score of 99.28 points. Therefore, the results of this study provide important information for new gene revelation and gene interaction relationship in hardy kiwifruit of chilling injury. PRACTICAL APPLICATIONS: Inhibition of cold damage in hardy kiwifruit under low temperature is very important work for the development of its storage industry. However, many qualities of fruit will deteriorate after long-term cold storage and those biological activities of the fruits are regulated by proteins. It is, therefore, of great significance to reveal the key proteins caused cold damage in hardy kiwifruit. Moreover, the study results could provide a scientific information for the quality improvement and genetic modification of hardy kiwifruit.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Food Engineering, School of Food Engineering, Jilin Agriculture and Technology University, Jilin, PR China
| | - Chun-Ling Wu
- Department of Food Science, Forest College, Bei Hua University, Jilin, PR China
| | - Ping Yang
- Department of Food Engineering, School of Food Engineering, Jilin Agriculture and Technology University, Jilin, PR China
| | - Ying-Chen Wang
- Department of Food Engineering, School of Food Engineering, Jilin Agriculture and Technology University, Jilin, PR China
| | - Lu-Lu Zhang
- Department of Food Science, Forest College, Bei Hua University, Jilin, PR China
| | - Xi-Yue Yang
- Department of Food Engineering, School of Food Engineering, Jilin Agriculture and Technology University, Jilin, PR China
| |
Collapse
|
10
|
Huang X, Hou Z. Label-free quantitative proteomics analysis of jujube ( Ziziphus jujuba Mill.) during different growth stages. RSC Adv 2021; 11:22106-22119. [PMID: 35480818 PMCID: PMC9034241 DOI: 10.1039/d1ra02989d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Chinese jujube (Zizyphus jujuba Mill.), a member of the Rhamnaceae family with favorable nutritional and flavor quality, exhibited characteristic climacteric changes during its fruit growth stage. Therefore, fruit samples were harvested at four developmental stages on days 55 (young fruits), 76 (white-mature fruits), 96 (half-red fruits), and 116 (full-red fruits) after flowering (DAF). This study then investigated those four growth stage changes of the jujube proteome using label-free quantification proteomics. The results identified 4762 proteins in the samples, of which 3757 proteins were quantified. Compared with former stages, the stages examined were designated as "76 vs. 55 DAF" group, "96 vs. 76 DAF" group, and "116 vs. 96 DAF" group. Gene Ontology (GO) and KEGG annotation and enrichment analysis of the differentially expressed proteins (DEPs) showed that 76 vs. 55 DAF group pathways represented amino sugar, nucleotide sugar, ascorbate, and aldarate metabolic pathways. These pathways were associated with cell division and resistance. In the study, the jujube fruit puffing slowed down and attained a stable growth stage in the 76 vs. 55 DAF group. However, fatty acid biosynthesis and phenylalanine metabolism was mainly enriched in the 96 vs. 76 DAF group. Fatty acids are precursors of aromatic substances and fat-soluble pigments in fruit. The upregulation of differential proteins at this stage indicates that aromatic compounds were synthesized in large quantities at this stage and that fruit would enter the ripening stage. During the ripening stage, 55 DEPs were identified to be involved in photosynthesis and flavonoid biosynthesis in the 116 vs. 96 DAF group. Also, the fruit entered the mature stage, which showed that flavonoids were produced in large quantities. Furthermore, the color of jujube turned red, and photosynthesis was significantly reduced. Hence, a link was established between protein profiles and growth phenotypes, which will help improve our understanding of jujube fruit growth at the proteomic level.
Collapse
Affiliation(s)
- Xiaoli Huang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) No. 3501 Daxue Road, Changqing District Ji'nan Shandong Province 250353 P. R. China +86 531 89631191 +86 188 66151356
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) No. 3501 Daxue Road, Changqing District Ji'nan Shandong Province 250353 P. R. China +86 531 89631191 +86 188 66151356
| |
Collapse
|
11
|
Huan C, Xu Q, Shuling S, Dong J, Zheng X. Effect of benzothiadiazole treatment on quality and anthocyanin biosynthesis in plum fruit during storage at ambient temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3176-3185. [PMID: 33211342 DOI: 10.1002/jsfa.10946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Plums tend to experience a reduction in fruit quality due to ripening and they deteriorate quickly during storage at room temperature. Benzothiadiazole (BTH) is a plant elicitor capable of inducing disease resistance in many crops. In this study, the effect of BTH treatment on fruit ripening, fruit quality, and anthocyanin biosynthesis in 'Taoxingli' plum was investigated. RESULTS The results showed that BTH treatment could accelerate fruit ripening without affecting the incidence of fruit decay or the shelf life. Benzothiadiazole treatment improved the quality and consumer acceptability of 'Taoxingli' plums during storage by increasing the sweetness, red color formation, and the concentration of healthy antioxidant compounds. The BTH treatment could also effectively promote the biosynthesis of anthocyanin by enhancing the enzyme activities of phenylalanine ammonia-lyase (PAL), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and uridine diphosphate flavonoid 3-O-glucosyltransferase (UFGT) and up-regulating the gene expressions of PsPAL, PsCHI, PsDFR, PsANS, and PsUFGT during storage. CONCLUSION Benzothiadiazole treatment could be a potential postharvest technology for improving fruit quality and consumer acceptability in harvested plum fruit. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Huan
- College of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Qihang Xu
- College of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Shen Shuling
- College of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jingxian Dong
- College of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
12
|
BTH Treatment Delays the Senescence of Postharvest Pitaya Fruit in Relation to Enhancing Antioxidant System and Phenylpropanoid Pathway. Foods 2021; 10:foods10040846. [PMID: 33924541 PMCID: PMC8069018 DOI: 10.3390/foods10040846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023] Open
Abstract
The plant resistance elicitor Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) can enhance disease resistance of harvested fruit. Nonetheless, it is still unknown whether BTH plays a role in regulating fruit senescence. In this study, exogenous BTH treatment efficiently delayed the senescence of postharvest pitaya fruit with lower lipid peroxidation level. Furthermore, BTH-treated fruit exhibited lower hydrogen peroxide (H2O2) content, higher contents of reduced ascorbic acid (AsA) and reduced glutathione (GSH) levels and higher ratios of reduced to oxidized glutathione (GSH/GSSG) and ascorbic acid (AsA/DHA), as well as higher activities of ROS scavenging enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and glutathione reductase (GR) in comparison with control fruit. Moreover, BTH treatment enhanced the activities of phenylpropanoid pathway-related enzymes, including cinnamate-4-hydroxylase (C4H), phenylalanine ammonia-lyase (PAL) and 4-coumarate/coenzyme A ligase (4CL) and the levels of phenolics, flavonoids and lignin. In addition, BTH treatment upregulated the expression of HuSOD1/3/4, HuCAT2, HuAPX1/2 and HuPOD1/2/4 genes. These results suggested that application of BTH delayed the senescence of harvested pitaya fruit in relation to enhanced antioxidant system and phenylpropanoid pathway.
Collapse
|
13
|
Benzothiazole (BTH) Induced Resistance of Navel Orange Fruit and Maintained Fruit Quality during Storage. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6631507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current research aimed at studying the effect of benzothiazole (BTH) on the fruit quality and resistance against Penicillium italicum (P. italicum). Recently, a synthetically prepared novel BTH was introduced that elicits the induction of resistance against various diseases of fruits. However, little was reported on the effect of BTH on the disease resistance and fruit quality of postharvest navel orange fruit. In this study, 50 mg·L−1 BTH significantly reduced the decay rate of fruits during 36 days of storage at 20 ± 0.5°C (
). BTH markedly inhibited the weight loss rate in fruits (
) and effectively maintained higher soluble solid content (SSC), titratable acid (TA), and vitamin C (VC) content compared with control navel orange fruits. Further, BTH significantly suppressed the increase of disease incidence and lesion area of orange fruits challenged with P. italicum (
). BTH treatment significantly enhanced antioxidant capacity (DPPH, ABTS radical scavenging activity, and reducing power), and superoxide dismutase (SOD) and peroxidase (POD) activities were significantly increased, while the activity of catalase (CAT) was opposite to the former (
). The activities of β-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and chalcone isomerase (CHT) were significantly higher in BTH-treated navel orange fruits (
). Our results suggested that BTH treatment may be a promising treatment for maintaining the quality and inhibiting blue mold of postharvest navel orange in the future.
Collapse
|
14
|
The role of glucose-6-phosphate dehydrogenase in reactive oxygen species metabolism in apple exocarp induced by acibenzolar-S-methyl. Food Chem 2020; 308:125663. [DOI: 10.1016/j.foodchem.2019.125663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/27/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022]
|
15
|
Effect of benzothiadiazole treatment on improving the mitochondrial energy metabolism involved in induced resistance of apple fruit during postharvest storage. Food Chem 2020; 302:125288. [DOI: 10.1016/j.foodchem.2019.125288] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
|
16
|
Calcium chloride and 1-methylcyclopropene treatments delay postharvest and reduce decay of New Queen melon. Sci Rep 2019; 9:13563. [PMID: 31537851 PMCID: PMC6753129 DOI: 10.1038/s41598-019-49820-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/30/2019] [Indexed: 11/15/2022] Open
Abstract
In this study, newly harvested New Queen melons were treated with calcium chloride (CaCl2) and 1-methylcyclopropene (1-MCP) alone or in combination before storage. The results showed that the respiration rate, ethylene release, the activity and gene expression of pectinases such as polygalacturonase (PG), pectin methylesterase (PME) and pectate lyase (PL) in New Queen melons were dramatically decreased by treatments with 0.18 mol/L CaCl2 and/or 1 μL/L 1-MCP. Meanwhile, the climacteric behavior and flesh hardness reduction were inhibited. We also found that softer melon flesh was more conducive to the growth and reproduction of decay-causing microorganisms according to their growth curves in melons that were different in flesh hardness, suggesting inhibiting fruit softening can slow down the growth of microorganisms in fruit flesh, and thus reduce fruit decay rate. The combined use of CaCl2 and 1-MCP was more effective in suppressing respiration rate, ethylene release and protopectin hydrolysis, which could greatly delay the softening, reduce the decay rate, and extend the shelf life of New Queen melons.
Collapse
|
17
|
Acibenzolar-S-methyl treatment enhances antioxidant ability and phenylpropanoid pathway of blueberries during low temperature storage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Effect of Benzothiadiazole on the Metabolome of Tomato Plants Infected by Citrus Exocortis Viroid. Viruses 2019; 11:v11050437. [PMID: 31091764 PMCID: PMC6563216 DOI: 10.3390/v11050437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/17/2022] Open
Abstract
Benzothiadiazole (BTH) is a functional analogue of the phytohormone salycilic acid (SA) involved in the plant immune response. NahG tomato plants are unable to accumulate SA, which makes them hypersusceptible to several pathogens. Treatments with BTH increase the resistance to bacterial, fungal, viroid, or viral infections. In this study, metabolic alterations in BTH-treated Money Maker and NahG tomato plants infected by citrus exocortis viroid (CEVd) were investigated by nuclear magnetic resonance spectroscopy. Using multivariate data analysis, we have identified defence metabolites induced after viroid infection and BTH-treatment. Glycosylated phenolic compounds include gentisic and ferulic acid accumulated in CEVd-infected tomato plants, as well as phenylalanine, tyrosine, aspartate, glutamate, and asparagine. Besides, an increase of γ-aminobutyric acid (GABA), glutamine, adenosine, and trigonelline, contributed to a clear discrimination between the metabolome of BTH-treated tomato leaves and their corresponding controls. Among them, GABA was the only metabolite significantly accumulated in both genotypes after the chemical treatment. In view of these results, the addition of GABA was performed on tomato plants infected by CEVd, and a reversion of the NahG hypersusceptibility to CEVd was observed, indicating that GABA could regulate the resistance to CEVd induced by BTH.
Collapse
|
19
|
Lyu L, Bi Y, Li S, Xue H, Zhang Z, Prusky DB. Early Defense Responses Involved in Mitochondrial Energy Metabolism and Reactive Oxygen Species Accumulation in Harvested Muskmelons Infected by Trichothecium roseum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4337-4345. [PMID: 30865450 DOI: 10.1021/acs.jafc.8b06333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mitochondria play an essential part in fighting against pathogen infection in the defense responses of fruits. In this study, we investigated the reactive oxygen species (ROS) production, energy metabolism, and changes of mitochondrial proteins in harvested muskmelon fruits ( Cucumis melo cv. Yujinxiang) inoculated with Trichothecium roseum. The results indicated that the fungal infection obviously induced the H2O2 accumulation in mitochondria. Enzyme activities were inhibited in the first 6 h postinoculation (hpi), including succinic dehydrogenase, cytochrome c oxidase, H+-ATPase, and Ca2+-ATPase. However, the activities of Ca2+-ATPase and H+-ATPase and the contents of intracellular adenosine triphosphate (ATP) were improved to a higher level at 12 hpi. A total of 42 differentially expressed proteins were identified through tandem mass tags-based proteomic analyses, which are mainly involved in energy metabolism, stress responses and redox homeostasis, glycolysis and tricarboxylic acid cycle, and transporter and mitochondria dysfunction. Taken together, our results suggest that mitochondria play crucial roles in the early defense responses of muskmelons against T. roseum infection through regulation of ROS production and energy metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dov B Prusky
- Department of Postharvest Science of Fresh Produce , Agricultural Research Organization, The Volcani Center , Beit Dagan 50250 , Israel
| |
Collapse
|
20
|
Lyu L, Bi Y, Li S, Xue H, Li Y, Prusky DB. Sodium silicate prime defense responses in harvested muskmelon by regulating mitochondrial energy metabolism and reactive oxygen species production. Food Chem 2019; 289:369-376. [PMID: 30955625 DOI: 10.1016/j.foodchem.2019.03.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
The effects of postharvest treatment with sodium silicate (Si) (100 mM) on mitochondrial ROS production and energy metabolism of the muskmelon fruits (cv. Yujinxiang) on development of defense responses to Trichothecium roseum were studied. Si treatment decreased decay severity of inoculated muskmelons, enhanced the activities of energy metabolism of key enzymes and kept the intracellular ATP at a higher level; meanwhile, Si also induced the mtROS accumulation such as H2O2 and superoxide anion. TMT-based quantitative proteomics analysis revealed that a total of 24 proteins with significant differences in abundance involved in energy metabolism, defense and stress responses, glycolytic and TCA cycle, and oxidation-reduction process. It is suggested by our study that melon fruit mitochondria, when induced by Si treatments, play a key role in priming of host resistance against T. roseum infection through the regulation of energy metabolism and ROS production in the pathogen infected muskmelon fruits.
Collapse
Affiliation(s)
- Liang Lyu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Shenge Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Huali Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Dov B Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Beit Dagan, Israel
| |
Collapse
|
21
|
Zhu X, Lin H, Si Z, Xia Y, Chen W, Li X. Benzothiadiazole-Mediated Induced Resistance to Colletotrichum musae and Delayed Ripening of Harvested Banana Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1494-502. [PMID: 26871966 DOI: 10.1021/acs.jafc.5b05655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Benzothiadiazole (BTH) works as a plant activator. The effects of different BTH treatments and fungicides SPORGON on fruit ripening and disease incidence were investigated. The results showed that BTH treatment significantly delayed fruit ripening, maintained fruit firmness, color, and good fruit quality, and dramatically reduced the incidence of disease. BTH effectively inhibited the invasion and development of pathogenic bacteria and controlled the occurrence of disease. BTH treatment enhanced the activities of defense-related enzymes, including chitinase, phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase, increased the content of hydrogen peroxide and total antioxidant capacity, and reduced malondialdehyde content. Cellular structure analysis after inoculation confirmed that BTH treatment effectively maintained the cell structural integrity. SPORGON did not provide benefits for delaying fruit ripening or for the resistance system, while it can control the disease only during the earlier stage and not at later stages.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Huanzhang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou 510642, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology , Guangzhou 510006, P. R. China
| | - Zhenwei Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Yihua Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou 510642, P. R. China
- Hainan University , Haikou, Hainan Province 570228, P. R. China
| | - Weixin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Xueping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou 510642, P. R. China
| |
Collapse
|